
Advance Technologies; Automate the World.

Manual Rev. 2.00

Revision Date: August 25, 2006

Part No: 50-11124-1050

PCI-8164/MPC-8164/PXI-8164
Advanced 4-Axis Servo/Stepper

Motion Control Card
User’s Manual

Copyright 2006 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does
not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, spe-
cial, incidental, or consequential damages arising out of the use or
inability to use the product or documentation, even if advised of
the possibility of such damages.

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this manual may be repro-
duced by any mechanical, electronic, or other means in any form
without prior written permission of the manufacturer.

Trademarks

NuDAQ, NuIPC, DAQBench are registered trademarks of ADLINK
TECHNOLOGY INC.

Product names mentioned herein are used for identification pur-
poses only and may be trademarks and/or registered trademarks
of their respective companies.

Getting service from ADLINK
Customer satisfaction is top priority for ADLINK TECHNOLOGY
INC. Please contact us should you require any service or assis-
tance.

ADLINK TECHNOLOGY INC.
Web Site: http://www.adlinktech.com
Sales & Service: Service@adlinktech.com
TEL: +886-2-82265877
FAX: +886-2-82265717
Address: 9F, No. 166, Jian Yi Road, Chungho City,

Taipei, 235 Taiwan

Email or fax this completed service form for prompt and satisfac-
tory service.

Company Information

Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX:
Web Site

Product Information
Product Model

Environment
OS:
M/B: CPU:
Chipset: BIOS:

Please give a detailed description of the problem(s):

Table of Contents i

Table of Contents
Table of Contents... i

List of Tables.. vi

List of Figures ... vii

1 Introduction .. 1
1.1 Features... 6

PCI-8164 .. 6
MPC-8164 ... 8
PXI-8164 ... 9

1.2 Specifications... 11
1.3 Software support.. 14

Programming library ... 14
Motion Creator .. 14

2 Installation .. 15
2.1 Package contents .. 16
2.2 PCI-8164 layout ... 17
2.3 MPC-8164 layout ... 18
2.4 PXI-8164 layout ... 19
2.5 PCI-8164/PXI-8164 hardware installation.......................... 20

Hardware configuration ... 20
PCI slot selection .. 20
Installing the PCI-8164 card ... 20
Installing the PXI-8164 card .. 21

2.6 MPC-8164 hardware installation.. 22
Hardware configuration ... 22

2.7 Driver installation ... 24
2.8 CN1 pin assignments: External Power Input

(PCI-8164 only) ... 25
2.9 CN3 pin assignments: Manual Pulse Input

(PCI-8164 only) ... 26
2.10 J4 pin assignments: Manual Pulse Input

(PXI-8164 only).. 27
2.11 CN3 pin assignments: General Purpose DIO

(MPC-8164 only) ... 28
2.12 J3 pin assignments: Isolated DIO

ii Table of Contents

(PXI-8164 only).. 29
2.13 CN2 pin assignments: Main Connector 30
2.14 CN4 pin assignments: Simultaneous Start/Stop

(PCI-8164 only).. 32
2.15 CN5 pin assignment: TTL Output (PCI-8164 only) 33
2.16 Jumper setting for pulse output (PCI-8164 only) 34
2.17 Switch setting for EL Logic... 35
2.18 CN3 pin assignment: General Purpose DI/DO ports

(MPC-8164 only).. 36
2.19 S2 card ID switch setting (PXI-8164 only) 37

3 Signal Connections .. 39
3.1 Pulse Output Signals OUT and DIR................................... 40
3.2 Encoder Feedback Signals EA, EB and EZ....................... 43
3.3 Origin Signal ORG ... 46
3.4 End-Limit Signals PEL and MEL.. 47
3.5 Ramping-down and PCS ... 48
3.6 In-position Signal INP .. 49
3.7 Alarm Signal ALM .. 50
3.8 Deviation Counter Clear Signal ERC................................. 51
3.9 General-purpose Signal SVON.. 52
3.10 General-purpose Signal RDY .. 53
3.11 Position compare output pin: CMP 54
3.12 Position latch input pin: LTC .. 55
3.13 Pulser Input Signals PA and PB (PCI-8164 only) 56
3.14 Simultaneously Start/Stop Signals STA and STP

(PCI-8164 only).. 57
3.15 General Purpose TTL Output (PCI-8164 only) 59
3.16 Termination board.. 60
3.17 General Purpose DIO (MPC-8164/PXI-8164 only) 61

Isolated input channels ... 62
Isolated output channels ... 62
Example of input connection ... 63
Example of output connections 64

4 Operation Theory .. 65
4.1 Motion Control Modes.. 66

Pulse Command Output ... 67
Velocity mode motion ... 71
Trapezoidal motion ... 72

Table of Contents iii

S-curve profile motion ... 75
Linear interpolation for 2-4 axes 77
Circular interpolation for 2 axes 82
Circular interpolation with Acc/Dec time 84
Relationship between velocity and acceleration time ... 85
Continuous motion .. 88
Home Return Mode .. 95
Home Search Mode .. 103
Manual Pulser Mode (PCI-8164 Only) 104
Synchronous starting modes 105

4.2 The motor driver interface.. 107
INP .. 107
ALM .. 109
ERC .. 110
SVON and RDY .. 111

4.3 The limit switch interface and I/O status 112
SD/PCS .. 112
EL ... 114
ORG ... 115

4.4 Counters .. 116
Command position counter ... 116
Feedback position counter .. 117
Position error counter ... 119
General purpose counter .. 120
Target position recorder .. 122

4.5 Multiple PCI-8164 Card Operation (PCI-8164 Only)........ 123
4.6 Change position or speed on the fly 124

Change speed on the fly ... 124
Change position on the fly .. 129

4.7 Position compare and Latch .. 132
Comparators of the 8164 .. 132
Position compare with trigger output 134
Position Latch ... 138

4.8 Hardware backlash compensator and
vibration suppression... 139

4.9 Software Limit Function ... 140
4.10 Interrupt Control... 141
4.11 PXI Trigger Bus (PXI-8164 only) 147

5 Motion Creator.. 149

iv Table of Contents

5.1 Execute Motion Creator ... 150
5.2 Notes on Motion Creator.. 151
5.3 Using Motion Creator ... 152

Main Menu .. 152
Interface I/O Configuration Menu 152
Pulse I/O and Interrupt Configuration Menu 155
Operation menu: ... 156

6 Function Library.. 163
6.1 List of Functions... 163
6.2 C/C++ Programming Library .. 174
6.3 Initialization .. 175
6.4 Pulse Input/Output Configuration..................................... 179
6.5 Velocity mode motion... 182
6.6 Single Axis Position Mode ... 186
6.7 Linear Interpolated Motion ... 193
6.8 Circular Interpolation Motion .. 201
6.9 Home Return Mode.. 211
6.10 Manual Pulser Motion .. 214
6.11 Motion Status ... 218
6.12 Motion Interface I/O ... 220
6.13 Motion I/O Monitoring... 224
6.14 Interrupt Control ... 226
6.15 Position Control and Counters ... 234

@ Return Code ... 238
6.16 Position Compare and Latch.. 239
6.17 Continuous motion ... 249
6.18 Multiple Axes Simultaneous Operation 251
6.19 General-purposed TTL output (PCI-8164 Only)............... 257
6.20 General-purposed DIO (MPC-8164/PXI-8164 only) 259
6.21 Card ID (PXI-8164 Only).. 261
6.22 PXI Trigger Bus (PXI-8164 Only)..................................... 262

7 Connection Example .. 265
7.1 General Wiring Description.. 265
7.2 Connection Example with Servo Driver 267
7.3 Wiring with DIN-814M.. 270

PIN Assignments: ... 271
Signal Connections ... 274
Mechanical Dimensions: ... 275

Table of Contents v

7.4 Wiring with DIN-814P .. 276
Mechanical Dimensions: ... 277
PIN Assignment: ... 278
How to wire ... 280

7.5 Wiring with DIN-814PA .. 281
Wiring Example: .. 283
Mechanical Dimensions: ... 285
PIN Assignment: ... 286

7.6 Wiring with DIN-814M-J3A .. 288
PIN Assignment: ... 289

7.7 Wiring with DIN-814Y .. 292
PIN Assignment: ... 293

8 Appendix... 295
8.1 Color code of CN3 Cable (MPC-8164 Only).................... 295

Warranty Policy... 297

vi List of Tables

List of Tables
Table 2-1: GEME hardware configuration 22
Table 2-2: Base Addresses .. 22

List of Figures vii

List of Figures
Figure 1-1: PCI-8164 block diagram .. 2
Figure 1-2: MPC-8164 block diagram .. 3
Figure 1-3: PXI-8164 block diagram .. 4
Figure 1-4: Application building flow chart 5
Figure 2-1: PCI-8164 PCB layout .. 17
Figure 2-2: PCI-8164 face plate... 17
Figure 2-3: MPC-8164 PCB layout .. 18
Figure 2-4: MPC-8164 face plate... 18
Figure 2-5: PXI-8164 layout and front panel 19
Figure 7-1: System Integration with PCI-8164 266
Figure 7-2: Connection of PCI-8164 with Panasonic Driver 268
Figure 7-3: Connection of PCI-8164 with SANYO Driver......... 269

Introduction 1

1 Introduction
The PCI-/MPC-/PXI-8164 is an advanced 4-axis motion controller
card that generates high frequency pulses (6.55 MHz) to drive
stepper or servomotors, and provides a 2-axis circular interpola-
tion, 4-axis linear interpolation, or continuous interpolation for con-
tinual velocity. The PCI-/MPC-/PXI-8164 also changes position
and/or speed on the fly with a single axis operation.

Multiple PCI-/MPC-/PXI-8164 cards may be installed in one sys-
tem. Incremental encoder interface on all four axes provide the
ability to correct positioning errors generated by inaccurate
mechanical transmissions. With the aid of an onboard FIFO, the
PCI-/MPC-/PXI-8164 also performs precise and extremely fast
position comparison and trigger functions without compromising
CPU resources. In addition, a mechanical sensor interface, a
servo motor interface, and general-purposed I/O signals are pro-
vided for easy system integration.

The following figures show the functional block diagrams of the
8164 card in PCI, MPC, and PXI interfaces. The PCI-/MPC-/PXI-
8164 uses one ASIC (PCL6045) to perform all 4 axes motion con-
trols. The motion control functions include linear and S-curve
acceleration/deceleration, circular interpolation between two axes,
linear interpolation between 2-4 axes, continuous motion position-
ing, and more than 13 home return modes. All these functions and
complex computations are performed internally by the ASIC, thus
minimizing CPU usage and eliminating real-time issues.

2 Introduction

Figure 1-1: PCI-8164 block diagram

Introduction 3

The MPC-8164 is an advanced 4-axis motion controller card with
a PC104 interface. All features and specification are leveraged
with the PCI-8164, except for some differences in the user I/O
interfaces. Figure 1-2 shows the MPC-8164 card block diagram.

Figure 1-2: MPC-8164 block diagram

4 Introduction

The PXI-8164 is an advanced 4-axis motion controller card with a
PXI interface. All features and specification are the same with the
PCI-8164, except for some differences in the user I/O interfaces.
Figure 1-3 shows the PXI-8164 the block diagram.

Figure 1-3: PXI-8164 block diagram

Introduction 5

Motion Creator is a Windows-based application development soft-
ware package that comes with the card. Motion Creator is useful
for debugging a motion control system during the design phase of
a project. An on-screen display lists all installed axes information
and the card’s I/O signal status.

DOS and Windows programming libraries for C++ and Visual
Basic are included together with some sample programs to illus-
trate the operations of these functions.

Figure 1-4 illustrates a flow chart of application development using
the contents of this manual. Refer to the related chapters for
details.

Figure 1-4: Application building flow chart

6 Introduction

1.1 Features

1.1.1 PCI-8164
32-bit PCI bus, Plug and Play
4 axes of step and direction pulse output for controlling
stepping or servomotor
6.55 MPPS maximum output frequency
OUT/DIR, CW/CCW pulse output options
Programmable acceleration and deceleration time for all
modes
Trapezoidal and S-curve velocity profiles for all modes
Any 2 of 4 axes circular interpolation
Any 2-4 of 4 axes linear interpolation
Continuous interpolation for contour following motion
Change position and speed on the fly
Change speed by condition comparing
13 home return modes with auto searching
Hardware backlash compensator and vibration suppression
2 software end-limits for each axis
28-bit up/down counter for incremental encoder feedback
Home switch, index signal (EZ), positive, and negative end
limit switches interface on all axes
2-axis high speed position latch input
2-axis position compare trigger output with 4k FIFO auto-
loading
2500Vrms isolated digital input and output signals

Programmable interrupt sources
Simultaneous start/stop motion on multiple axes
Manual pulser input interface (A small steering device that gen-
erates pulses when turned)

Software supports a maximum of up to 12 PCI-8164 cards
(48 axes) operation in one system
Compact, half-sized PCB

Introduction 7

Includes Motion Creator, a Microsoft Windows-based appli-
cation development software
Libraries and utilities support DOS, Windows® 9X/NT/2000/
XP, and Linux

8 Introduction

1.1.2 MPC-8164
16-bit PC104 bus
4 axes of step and direction pulse output for controlling
stepping or servomotor
6.55 MPPS maximum output frequency
OUT/DIR, CW/CCW pulse output options
Programmable acceleration and deceleration time for all
modes
Trapezoidal and S-curve velocity profiles for all modes
Any 2 of 4 axes circular interpolation
Any 2-4 of 4 axes linear interpolation
Continuous interpolation for contour following motion
Change position and speed on the fly
Change speed by comparator condition
13 home return modes with auto searching
Hardware backlash compensator and vibration suppression
2 Software end-limits for each axis
28-bit up/down counter for incremental encoder feedback
Home switch, index signal (EZ), positive, and negative end
limit switches interface on all axes
2-axis high speed position latch input
2-axis position compare trigger output with 4k FIFO auto-
loading
2500Vrms isolated digital input and output signals

Programmable interrupt sources
8 channels of general purpose photo-isolated digital inputs
8 channels of general purpose open collector digital outputs
Software supports a maximum of up to 4 MPC-8164 cards
(16 axes) operation in one system
Includes Motion Creator, a Microsoft Windows-based appli-
cation development software
Libraries and utilities support DOS, Windows® 98/NT/2000/
XP, and Windows® XP/NT Embedded
Libraries for Linux and Windows® CE systems

Introduction 9

1.1.3 PXI-8164
PXI specifications Rev. 2.0-compliant
Multiple modules synchronized via PXI trigger bus
3U Eurocard form factor, CompactPCI compliant (PICMG
2.0 R2.1)
4-CH isolated digital I/O
4 axes of step and direction pulse output for controlling
stepping or servomotor
6.55 MPPS maximum output frequency
OUT/DIR, CW/CCW pulse output options
Programmable acceleration and deceleration time for all
modes
Trapezoidal and S-curve velocity profiles for all modes
Any 2 of 4 axes circular interpolation
Any 2-4 of 4 axes linear interpolation
Continuous interpolation for contour following motion
Change position and speed on the fly
Change speed by condition comparing
13 home return modes with auto searching
Hardware backlash compensator and vibration suppression
2 software end-limits for each axis
28-bit up/down counter for incremental encoder feedback
Home switch, index signal (EZ), positive, and negative end
limit switches interface on all axes
2-axis high speed position latch input
2-axis position compare trigger output with 4k FIFO auto-
loading
Programmable interrupt sources
Simultaneous start/stop motion on multiple axes
Manual pulser input interface (A small steering device that gen-
erates pulses when turned)

Software supports a maximum of up to 12 PXI-8164 cards
(48 axes) operation in one system

10 Introduction

Includes Motion Creator, a Microsoft Windows-based appli-
cation development software

Libraries and utilities DOS, Windows® 9x/NT/2000/XP, and
Linux

Introduction 11

1.2 Specifications

Applicable motors
Stepping motors
AC or DC servomotors with pulse train input servo drivers

Performance
4 controllable axes
6.55MPPS maximum pulse output frequency, linear, trape-
zoidal, or S-Curve velocity profile drive
19.66 MHz internal reference clock
28-bit up/down counter range: 0 to 268,435,455 or
–134,217,728 to +134,217,727
Position pulse setting range (28-bit): -134,217,728 to
+134,217,728
Pulse rate setting ranges (pulse ratio = 1: 65535):

0.1 PPS to 6553.5 PPS (multiplier = 0.1)
1 PPS to 65535 PPS (multiplier = 1)
100 PPS to 6553500 PPS (multiplier = 100)

12 Introduction

I/O signals
Input/Output signals for each axis
Opto-isolated digital input with 2500Vrms isolation voltage

OUT and DIR command pulse output pins
EA and EB incremental encoder signals input pins
EZ encoder index signal input pin
±EL, SD/PCS, and ORG mechanical limit/switch signal
input pins
INP, ALM, and ERC servomotor interface I/O pins
LTC position latch input pin
CMP position compare output pin
SVON general-purposed digital output pin
RDY general-purposed digital input pin
PA and PB (PCI-8164/PXI-8164) pulse signal input pin
STA and STP (PCI-8164/PXI-8164) simultaneous start/stop
signal

General-purpose output
6 TTL level digital outputs (PCI-8164 only)
8 digital inputs/8 digital outputs (MPC-8164 only)
4 digital inputs/4 digital outputs (PXI-8164 only)

General specifications
100-pin SCSI-type connector
Operating temperature: 0ºC - 50ºC
Storage temperature: -20ºC - 80ºC
Humidity: 5% - 85%, non-condensing

Power consumption
Slot power supply (input): +5V DC ±5%, 900mA max
External power supply (input): +24V DC ±5%, 500mA max
External power supply (output): +5V DC ±5%, 500mA, max

Introduction 13

Dimensions
PCI-8164: 185 mm (L) X 106.68 mm (W)
MPC-8164: 152 mm (L) X 104.7 mm (W)
PXI-8164: 3U Eurocard form factor, CompactPCI-compliant
(PICMG 2.0 R2.1)

14 Introduction

1.3 Software support

1.3.1 Programming library
Programming libraries for MS-DOS and Borland C/C++ (Version
3.1) and DLLs for Windows® 95/98/NT/2000/XP come bundled
with the PCI-8164/PXI-8164 card package. Support for Linux-
based systems is also included.

MPC-8164 supports DOS/Windows® 98/NT/2000/XP, Windows®

XP/NT Embedded, Windows® CE, and Linux.

1.3.2 Motion Creator
This Windows-based utility sets up cards, motors, and systems. It
also debugs hardware and software problems and enables the
user to set I/O logic parameters that can be loaded in their own
programs. Refer to Chapter 5 for more details.

Installation 15

2 Installation
Follow these steps to install the PCI-/MPC-/PXI-8164 card.

Check the card package contents (section 2.1)
Check the card PCB and face plate/front panel layout (sec-
tion 2.2)
Install the card to the chassis (section 2.3)
Install the drivers (section 2.4)
Refer to the I/O signal connections (chapter 3) and their
operation (chapter 4)
Refer to the connector pin assignments (the remaining sec-
tions) and wiring connections

16 Installation

2.1 Package contents
Check the package contents for the following items:

PCI-8164/MPC-8164/PXI-8164 card
ADLINK All-in-one CD
+24V power input cable (for CN1) accessories (PCI-8164
only)
Optional terminal board for wiring purposes

If any of these items are missing or damaged, contact your dealer
immediately. Save the original packaging for future shipment.

Installation 17

2.2 PCI-8164 layout

Figure 2-1: PCI-8164 PCB layout

CN1: External Power Input Connector
CN2: Input / Output Signal Connector
CN3: Manual Pulse Signal Connector
CN4: Simultaneous Start / Stop Connector
CN5: General purpose TTL output
S1: End limit logic selection switch
J1-J8: Pulse output selection jumper

Figure 2-2: PCI-8164 face plate

18 Installation

2.3 MPC-8164 layout

Figure 2-3: MPC-8164 PCB layout

Figure 2-4: MPC-8164 face plate

CN2: Input / Output Signal Connector
CN3: 8 DI / 8 DO Connector
JP1: IRQ selection
SW1: Base Address Selection

Installation 19

2.4 PXI-8164 layout

Figure 2-5: PXI-8164 layout and front panel

S1: Switch setting for EL logic
S2: Card ID setting from 0-11
J3: 4-CH isolated digital Input/output
J4: 4-axis pulser input interface

20 Installation

2.5 PCI-8164/PXI-8164 hardware installation

2.5.1 Hardware configuration
Since the PCI-8164/PXI-8164 card is Plug and Play, the memory
allocation (I/O port locations) and the IRQ channel are automati-
cally assigned by the system BIOS. The address assignment is
done on a board-by-board basis for all PCI cards installed in the
system.

2.5.2 PCI slot selection
The PCI-8164 card may be installed in any available PCI slot. The
PXI-8164 card may be installed in any PXI slot.

CAUTION Do not install the PCI card into a PC/AT (ISA) slot.

2.5.3 Installing the PCI-8164 card
1. Discharge any static buildup from your body by touching

the metal case of the computer. Hold the card on its
edges and avoid touching the components.

2. Set the card jumper(s) according to your requirements.

3. Turn off the computer and all connected peripherals,
then open the computer chassis.

4. Locate a 32-bit PCI slot. PCI slots are shorter than ISA
or EISA slots and usually comes in white or ivory.

5. Remove the metal bracket opposite the slot you want to
use. Keep the bracket screw for later use.

6. Insert the PCI card connectors (golden fingers) to the
slot, then press firmly until the card is properly seated on
the slot.

7. Secure the card with the bracket screw you removed
earlier, then replace the computer chassis.

8. Connect all peripherals, then turn the computer on.

Installation 21

Installation notes
If your system doesn’t boot or if you experience erratic opera-
tion with your PCI board in place, it’s most likely caused by an
interrupt conflict (possibly an incorrect ISA setup). In general,
the solution, once determined it is not a simple oversight, is to
consult the BIOS documentation that comes with your system.

Check the control panel of the Windows system if the card is
listed by the system. If not, check the PCI settings in the BIOS
or use another PCI slot.

2.5.4 Installing the PXI-8164 card
1. Follow steps 1 to 2 of the previous section.

2. Select an available PXI slot, then remove the metal
cover opposite the slot you want to use. Keep the metal
cover and screws for later use.

3. Align the card’s top and bottom edges with the chassis
card guides, then carefully slide it into the chassis.

4. Lift the card ejector latch until it locks in place.

5. Secure the card with two screws.

6. Connect all peripherals, then turn the computer on.

22 Installation

2.6 MPC-8164 hardware installation

2.6.1 Hardware configuration
The MPC-8164 card is PC104-compliant. The onboard DIP
switches and jumpers assign the card’s I/O port locations and IRQ
channels.

A single-board setup has a default setting of 0x200 and IRQ5. In
GEME systems, the default value varies depending on the location
of the card. Refer to the following table:

Table 2-1: GEME hardware configuration

Base address setting
The base address is set by SW1 (pins 2 to 4). Note that pin 1 is
reserved. If all DIPs are set to OFF, the base address is 0x200.
Default settings are dependent on the order.

Table 2-2: Base Addresses

GEME level Base address IRQ

1 0x300 9
2 0x200 5
3 0x280 10

DIP Switch (2 3 4) Base Address DIP Switch (2 3 4) Base Address

1 1 1 0x3C0 1 1 0 0x2C0
0 1 1 0x380 0 1 0 0x280
1 0 1 0x340 1 0 0 0x240
0 0 1 0x300 0 0 0 0x200

Installation 23

IRQ setting
The JP1 setting assigns the IRQ channel.

Installation note
Make sure that the system has an aqvailable I/O address and
IRQ channel for the card. If there are none available, adjust the
card I/O address and IRQ channel to empty.

24 Installation

2.7 Driver installation

PCI-8164/PXI-8164
1. Place the ADLINK All-In-One CD to the CD-ROM drive.

2. When the Autorun screen appears, select Driver Instal-
lation > Motion Control > PCI-8164/PXI-8164.

3. Follow screen procedures to install, then restart the sys-
tem after installation is completed.

NOTE When using MS-DOS, install the drivers from the \Motion
Control\PCI-8164\DOS_BC directory of the CD.

MPC-8164
1. Place the ADLINK All-In-One CD to the CR-ROM drive.

2. When the Autorun screen appears, select Driver Instal-
lation > Motion Control > MPC-8164.

3. Launch the MPC-8164 Add/Remove utililty from the Start
menu or installed directory to register the new card. The
I/O address and IRQ channel must be the same with the
settings on the board.

4. Restart the computer.

NOTES When using MS-DOS, install the drivers from the \Motion
Control\MPC-8164\DOS_BC directory of the CD.
You may also download the latest software from the
ADLINK website (www.adlinktech.com).

http://www.adlinktech.com
http://www.adlinktech.com

Installation 25

2.8 CN1 pin assignments: External Power Input (PCI-
8164 only)

NOTES

CN1 is a plug-in terminal board with no screws.
Use the external power supply. A +24V DC is used by exter-
nal input/output signal circuits. The power circuit configura-
tion is shown below.
Wires for connection to CN1:

Solid wire: ϕ0.32 mm to ϕ0.65 mm (AWG28 to AWG22)
Twisted wire: 0.08 mm2 to 0.32 mm2 (AWG28 to AWG22)
Naked wire length: 10 mm standard

The diagram below shows the external power supply system of
the PCI-8164. An external +24V power must be provided. An on-
board regulator generates +5V for both internal and external use.

CAUTION The output current capacity of the +5V power source from
the onboard DC/DC is limited. DO NOT use this to drive
several devices simultaneously, especially stepper mo-
tors or external encoders.

NOTE MPC-8164 and PXI-8164 do not have the CN1 for power
input. Use the E_24V and EGND pins of CN2. L is an in-
ductor for EMI use.

CN1 Pin No Name Description
1 EGND External power ground

2 CN1_24V +24V DC ± 5% External power supply

26 Installation

2.9 CN3 pin assignments: Manual Pulse Input
(PCI-8164 only)
CN3 is for the manual pulse input.

NOTE The PCI bus provides the signals for the VCC and DGND
pins. These signals are not isolated.

No. Name Function (Axis)
1 DGND Bus power ground
2 PB4 Pulser B-phase signal input,
3 PA4 Pulser A-phase signal input,
4 PB3 Pulser B-phase signal input,
5 PA3 Pulser A-phase signal input,
6 VCC Bus power, +5V
7 DGND Bus power ground
8 PB2 Pulser B-phase signal input,
9 PA2 Pulser A-phase signal input,
10 PB1 Pulser B-phase signal input,
11 PA1 Pulser A-phase signal input,
12 VCC Bus power, +5V

Installation 27

2.10 J4 pin assignments: Manual Pulse Input
(PXI-8164 only)

No. Name Function No. Name Function
1 DGND Bus power ground 2 PB4 Axis 3 Pulser PHB
3 PA4 Axis 4 Pulser PHA 4 PB3 Axis 2 Pulser PHB
5 PA3 Axis 3 Pulser PHA 6 VCC Bus Power +5V
7 DGND Bus power ground 8 PB2 Axis 1 Pulser PHB
9 PA2 Axis 1 Pulser PHA 10 PB1 Axis 0 Pulser PHB
11 PA1 Axis 0 Pulser PHA 12 VCC Bus Power +5V
13 -- N/A 14 -- N/A
15 -- N/A 16 -- N/A
17 -- N/A 18 -- N/A
19 -- N/A 20 -- N/A

28 Installation

2.11 CN3 pin assignments: General Purpose DIO
(MPC-8164 only)

Pin No Signal Name Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

Installation 29

2.12 J3 pin assignments: Isolated DIO
(PXI-8164 only)

No. Name Function No. Name Function
1 DICOM Digital In Common 2 DOCOM Digital Out Common
3 DI0 Input Channel 0 4 DO0 Output Channel 0
5 DI1 Input Channel 1 6 DO1 Output Channel 1
7 DICOM Digital In Common 8 DOCOM Digital Out Common
9 DI2 Input Channel 2 10 DO2 Output Channel 2
11 DI3 Input Channel 3 12 DO3 Ouput Channel 3
13 DICOM Digital In Common 14 DOCOM Digital Out Common
15 -- N/A 16 -- N/A
17 -- N/A 18 -- N/A
19 -- N/A 20 -- N/A

30 Installation

2.13 CN2 pin assignments: Main Connector
CN2 is the major connector for the motion control I/O signals.

No. Name I/O Function (axis /) No. Name I/O Function (axis /)

1 VPP O +5V power supply output 51 VPP O +5V power supply output

2 EGND Ext. power ground 52 EGND Ext. power ground

3 OUT1+ O Pulse signal (+), 53 OUT3+ O Pulse signal (+),

4 OUT1- O Pulse signal (-), 54 OUT3- O Pulse signal (-),

5 DIR1+ O Dir. signal (+), 55 DIR3+ O Dir. signal (+),

6 DIR1- O Dir. signal (-), 56 DIR3- O Dir. signal (-),

7 SVON1 O Multi-purpose signal, 57 SVON3 O Multi-purpose signal,

8 ERC1 O Dev. ctr, clr. signal, 58 ERC3 O Dev. ctr, clr. signal,

9 ALM1 I Alarm signal, 59 ALM3 I Alarm signal,

10 INP1 I In-position signal, 60 INP3 I In-position signal,

11 RDY1 I Multi-purpose signal, 61 RDY3 I Multi-purpose signal,

12 EGND Ext. power ground 62 EGND Ext. power ground

13 EA1+ I Encoder A-phase (+), 63 EA3+ I Encoder A-phase (+),

14 EA1- I Encoder A-phase (-), 64 EA3- I Encoder A-phase (-),

15 EB1+ I Encoder B-phase (+), 65 EB3+ I Encoder B-phase (+),

16 EB1- I Encoder B-phase (-), 66 EB3- I Encoder B-phase (-),

17 EZ1+ I Encoder Z-phase (+), 67 EZ3+ I Encoder Z-phase (+),

18 EZ1- I Encoder Z-phase (-), 68 EZ3- I Encoder Z-phase (-),

19 VPP O +5V power supply output 69 VPP O +5V power supply output

20 EGND Ext. power ground 70 EGND Ext. power ground

21 OUT2+ O Pulse signal (+), 71 OUT4+ O Pulse signal (+),

22 OUT2- O Pulse signal (-), 72 OUT4- O Pulse signal (-),

23 DIR2+ O Dir. signal (+), 73 DIR4+ O Dir. signal (+),

24 DIR2- O Dir. signal (-), 74 DIR4- O Dir. signal (-),

25 SVON2 O Multi-purpose signal, 75 SVON4 O Multi-purpose signal,

26 ERC2 O Dev. ctr, clr. signal, 76 ERC4 O Dev. ctr, clr. signal,

27 ALM2 I Alarm signal, 77 ALM4 I Alarm signal,

28 INP2 I In-position signal, 78 INP4 I In-position signal,

29 RDY2 I Multi-purpose signal, 79 RDY4 I Multi-purpose signal,

30 EGND Ext. power ground 80 EGND Ext. power ground

31 EA2+ I Encoder A-phase (+), 81 EA4+ I Encoder A-phase (+),

32 EA2- I Encoder A-phase (-), 82 EA4- I Encoder A-phase (-),

33 EB2+ I Encoder B-phase (+), 83 EB4+ I Encoder B-phase (+),

34 EB2- I Encoder B-phase (-), 84 EB4- I Encoder B-phase (-),

35 EZ2+ I Encoder Z-phase (+), 85 EZ4+ I Encoder Z-phase (+),

36 EZ2- I Encoder Z-phase (-), 86 EZ4- I Encoder Z-phase (-),

37 PEL1 I End limit signal (+), 87 PEL3 I End limit signal (+),

38 MEL1 I End limit signal (-), 88 MEL3 I End limit signal (-),

39 CMP1 O Position compare output 89 LTC3 I Position latch input

Installation 31

40 SD/PCS1 I Ramp-down signal 90 SD/PCS3 I Ramp-down signal

41 ORG1 I Origin signal, 91 ORG3 I Origin signal,

42 EGND Ext. power ground 92 EGND Ext. power ground

43 PEL2 I End limit signal (+), 93 PEL4 I End limit signal (+),

44 MEL2 I End limit signal (-), 94 MEL4 I End limit signal (-),

45 CMP2 O Position compare output 95 LTC4 I Position latch input,

46 SD/PCS2 I Ramp-down signal 96 SD/PCS4 I Ramp-down signal

47 ORG2 I Origin signal, 97 ORG4 I Origin signal,

48 EGND Ext. power ground 98 GND Ext. power ground

49 EGND Ext. power ground 99 E_24V Ext. power supply, +24V

50 EGND Ext. power ground 100 E_24V Ext. power supply, +24V

32 Installation

2.14 CN4 pin assignments: Simultaneous Start/Stop
(PCI-8164 only)
CN4 is for simultaneous start/stop signals for multiple axes or mul-
tiple cards.

Note: +5V and GND pins are provided by the PCI Bus power.

No. Name Function (Axis)
1 DGND Bus power ground
2 STP Simultaneous stop signal input/output
3 STA Simultaneous start signal input/output
4 STP Simultaneous stop signal input/output
5 STA Simultaneous start signal input/output
6 VCC Bus power output, +5V

Installation 33

2.15 CN5 pin assignment: TTL Output (PCI-8164 only)
CN5 is for general-purposed TTL output signals.

Pin No. Name Function
1 DGND Digital ground
2 DGND Digital ground
3 ED0 Digital Output 0
4 ED1 Digital Output 1
5 ED2 Digital Output 2
6 ED3 Digital Output 3
7 ED4 Digital Output 4
8 ED5 Digital Output 5
9 VCC VCC +5V

10 N.C. Not used

34 Installation

2.16 Jumper setting for pulse output (PCI-8164 only)
J1 - J8 sets the type of pulse output signals (DIR and OUT). The
output signal type may either be differential line driver or open col-
lector output. Refer to section 3.1 for detailed jumper settings. The
default setting is differential line driver mode.

Installation 35

2.17 Switch setting for EL Logic
The S1 switch sets the EL limit switching type. By default the EL
switch is set to ON, which is the “normally open” position (or "A"
contact type), while OFF is the “normally closed” position (or “B”
contact type).

For safety reasons, you must set a type that will make the end-
limit active when it is broken or disconnected.

NOTE MPC-8164 uses a software function for this setting.

36 Installation

2.18 CN3 pin assignment: General Purpose DI/DO
ports (MPC-8164 only)

CN3 Pin No Signal Name CN3 Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

Installation 37

2.19 S2 card ID switch setting (PXI-8164 only)

NOTE Other settings are invalid. In order to enable this function,
see section 6.21.

Card ID Switch Setting (ON=1)
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011

38 Installation

Signal Connections 39

3 Signal Connections
This chapter describes the signal connections of the card I/Os.
Refer to the contents of this chapter before wiring any cables
between the card and any motor drivers.

This chapter contains the following sections:

Section 3.1 Pulse Output Signals OUT and DIR
Section 3.2 Encoder Feedback Signals EA, EB and EZ
Section 3.3 Origin Signal ORG
Section 3.4 End-Limit Signals PEL and MEL
Section 3.5 Ramping-down & PCS signals
Section 3.6 In-position signals INP
Section 3.7 Alarm signal ALM
Section 3.8 Deviation counter clear signal ERC
Section 3.9 General-purposed signals SVON
Section 3.10 General-purposed signal RDY
Section 3.11 Position compare output pin: CMP
Section 3.12 Position latch input pin: LTC
Section 3.13 Pulse input signals PA and PB
Section 3.14 Simultaneous start/stop signals STA and STP
Section 3.15 General-purposed TTL DIO
Section 3.16 Termination Board
Section 3.17 General-purposed DIO

40 Signal Connections

3.1 Pulse Output Signals OUT and DIR
The PCI-/MPC-/PXI-8164 has 4 axis pulse output signals. Each
axis has two pairs of OUT and DIR signals to transmit the pulse
train and to indicate the direction. The OUT and DIR signals may
also be programmed as CW and CCW signal pairs. Refer to sec-
tion 4.1.1 for details of the logical characteristics of the OUT and
DIR signals. This section details the electrical characteristics of
the OUT and DIR signals. Each signal consists of a pair of differ-
ential signals. For example, OUT2 consists of OUT2+ and OUT2-
signals. The following table shows all pulse output signals on CN2.

The output of the OUT or DIR signals can be configured by jump-
ers as either differential line drivers or open collector output. For
PCI-8164 card, you can select the output mode by closing either
breaks between 1 and 2 or 2 and 3 of jumpers J1-J8.

CN2 Pin No. Signal Name Description Axis #
3 OUT1+ Pulse signals (+) 1
4 OUT1- Pulse signals (-) 1
5 DIR1+ Direction signal (+) 1
6 DIR1- Direction signal (-) 1

21 OUT2+ Pulse signals (+) 2
22 OUT2- Pulse signals (-) 2
23 DIR2+ Direction signal (+) 2
24 DIR2- Direction signal (-) 2
53 OUT3+ Pulse signals (+) 3
54 OUT3- Pulse signals (-) 3
55 DIR3+ Direction signal (+) 3
56 DIR3- Direction signal (-) 3
71 OUT4+ Pulse signals (+) 4
72 OUT4- Pulse signals (-) 4
73 DIR4+ Direction signal (+) 4
74 DIR4- Direction signal (-) 4

Signal Connections 41

By default, the OUT and DIR are set to differential line driver
mode.

The wiring diagram below illustrates the OUT and DIR signals on
the 4 axes of PCI-8164 card.

NOTE When the pulse output is set to open collector output
mode, OUT- and DIR- transmits OUT signals. The sink
current must not exceed 20 mA on the OUT- and DIR-
pins. By default, pin 1-2 of the jumper is shorted.

USAGE Short pin 2-3 of the jumper and connect OUT+/DIR+ to a
470 ohm pulse input interface’s COM of driver. See the
following figure.

Output Signal
For differential line driver

output, close breaks
between 1 and 2 of:

For open collector out-
put, close breaks

between 2 and 3 of:
OUT1- J1 J1
DIR1- J2 J2
OUT2- J3 J3
DIR2- J4 J4
OUT3- J5 J5
DIR3- J6 J6
OUT4- J7 J7
DIR4- J8 J8

42 Signal Connections

MPC-8164/PXI-8164

Non-differential type wiring example
(MPC-8164/PXI-8164, or PCI-8164 when pin 2-3 of the jumper
is shorted)
Choose one of OUT/DIR+ and OUT/DIR- to connect to the
driver’s OUT/DIR.

WARNING The sink current must not exceed 20 mA to prevent dam-
age to the PCI-/MPC-/PXI-8164 card!

Signal Connections 43

3.2 Encoder Feedback Signals EA, EB and EZ
The encoder feedback signals include EA, EB, and EZ. Every axis
has six pins for three differential pairs of phase-A (EA), phase-B
(EB), and index (EZ) inputs. EA and EB are used for position
counting, and EZ is used for zero position indexing. The following
table shows the relative signal names, pin numbers, and axis
numbers.

The diagram below shows the input circuit of the EA, EB, and EZ
signals.

Note that the voltage across each differential pair of encoder input
signals (EA+, EA-), (EB+, EB-), and (EZ+, EZ-) should be at least
3.5V. Therefore, the output current must be observed when con-
necting to the encoder feedback or motor driver feedback to avoid

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
13 EA1+ 1 63 EA3+ 3
14 EA1- 1 64 EA3- 3
15 EB1+ 1 65 EB3+ 3
16 EB1- 1 66 EB3- 3
31 EA2+ 2 81 EA4+ 4
32 EA2- 2 82 EA4- 4
33 EB2+ 2 83 EB4+ 4
34 EB2- 2 84 EB4- 4

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
17 EZ1+ 1 67 EZ3+ 3
18 EZ1- 1 68 EZ3- 3
35 EZ2+ 2 85 EZ4+ 4
36 EZ2- 2 86 EZ4- 4

44 Signal Connections

over driving the source. The differential signal pairs are converted
to digital signals EA, EB, and EZ, then feed to the PCL6045 ASIC.

Below are examples of input signal connection with an external
circuit. The input circuit may be connected to an encoder or motor
driver if it is equipped with a differential line driver or an open col-
lector output.

Connection to line driver output
To drive the card encoder input, the driver output must provide
at least 3.5V across the differential pairs with at least 6 mA
driving capacity. The grounds of both sides must be tied
together. The maximum frequency will be 4 Mhz or more
depending on the wiring distance and signal conditioning.

Connection to open collector output
You need an external power supply to connect with an open
collector output. Some motor drivers provide the power source.
The diagram below shows the connection between the card,
encoder, and the power supply. Note that an external current
limiting resistor R is necessary to protect the card’s input cir-
cuit. The following table lists the suggested resistor values
according to the encoder power supply.

If = 6 mA max

Encoder Power (V) External Resistor R
+5V 0Ω(None)

+12V 1.8kΩ
+24V 4.3kΩ

Signal Connections 45

For more operation information on the encoder feedback signals,
refer to section 4.4.

46 Signal Connections

3.3 Origin Signal ORG
The origin signals (ORG1-ORG4) are used as input signals for the
origin of the mechanism. The table below lists signal names, pin
numbers, and axis numbers.

The input circuit of the ORG signals is shown below. Usually, a
limit switch is used to indicate the origin on one axis. The specifi-
cations of the limit switch should have contact capacity of +24 V @
6 mA minimum. An internal filter circuit is used to filter out any high
frequency spikes, which may cause errors in the operation.

When the motion controller is operated in the home return mode,
the ORG signal is used to inhibit the control output signals (OUT
and DIR). For detailed operations of the ORG signal, refer to sec-
tion 4.3.3.

CN2 Pin No Signal Name Axis #
41 ORG1 1
47 ORG2 2
91 ORG3 3
97 ORG4 4

Signal Connections 47

3.4 End-Limit Signals PEL and MEL
There are two end-limit signals PEL and MEL for each axis. PEL
indicates the end limit signal is in the plus direction and MEL indi-
cates the end limit signal is in the minus direction. The signal
names, pin numbers, and axis numbers are shown in the table
below.

A circuit diagram is provided below. The external limit switch
should have a contact capacity of +24V @ 6 mA minimum. Either
‘A-type’ (normal open) contact or ‘B-type’ (normal closed) contact
switches can be used. To set the type of switch, configure
dipswitch S1/SW2. By default, all bits of S1 on the card are set to
ON (refer to section 2.10). For more details on EL operation, refer
to section 4.3.2.

CN2 Pin No Signal Name Axis # CN2 Pin No Signal Name Axis #
37 PEL1 1 87 PEL3 3
38 MEL1 1 88 MEL3 3
43 PEL2 2 93 PEL4 4
44 MEL2 2 94 MEL4 4

48 Signal Connections

3.5 Ramping-down and PCS
There is a SD/PCS signal for each of the 4 axes. The signal
names, pin numbers, and axis numbers are shown in the table
below.

A circuit diagram is shown below. Typically, the limit switch is used
to generate a slow-down signal to drive motors operating at slower
speeds. For more details on SD/PCS operation, refer to section
4.3.1.

CN2 Pin No Signal Name Axis #
40 SD1/PCS1 1
46 SD2/PCS2 2
90 SD3/PCS3 3
96 SD4/PCS4 4

Signal Connections 49

3.6 In-position Signal INP
The in-position signal INP from a servo motor driver indicates its
deviation error. If there is no deviation error, then the servo’s posi-
tion indicates zero. The signal names, pin numbers, and axis num-
bers are shown in the table below.

The diagram below shows the input circuit of the INP signals.

The in-position signal is usually generated by the servomotor
driver and is ordinarily an open collector output signal. An external
circuit must provide at least 5 mA current sink capabilities to drive
the INP signal. For more details of INP signal operations, refer to
section 4.2.1.

CN2 Pin No Signal Name Axis #
10 INP1 1
28 INP2 2
60 INP3 3
78 INP4 4

50 Signal Connections

3.7 Alarm Signal ALM
The alarm signal ALM indicates the alarm status from the servo
driver. The signal names, pin numbers, and axis numbers are
shown in the table below.

The input alarm circuit diagram is provided. The ALM signal is
usually generated by the servomotor driver and is ordinarily an
open collector output signal. An external circuit must provide at
least 5 mA current sink capabilities to drive the ALM signal. For
more details of ALM signal operations, refer to section 4.2.2.

CN2 Pin No Signal Name Axis #
9 ALM1 1
27 ALM2 2
59 ALM3 3
77 ALM4 4

Signal Connections 51

3.8 Deviation Counter Clear Signal ERC
The deviation counter clear signal (ERC) is active for the following
situations:

1. Home return is complete

2. End-limit switch is active

3. An alarm signal stops OUT and DIR signals

4. An emergency stop command is issued by software
(operator)

The signal names, pin numbers, and axis numbers are shown in
the table below.

The ERC signal clears the deviation counter of the servomotor
driver. The ERC output circuit is an open collector with a maximum
of 35V at 50 mA driving capacity. For more details on ERC opera-
tion, refer to section 4.2.3.

CN2 Pin No Signal Name Axis #
8 ERC1 1

26 ERC2 2
58 ERC3 3
76 ERC4 4

52 Signal Connections

3.9 General-purpose Signal SVON
The SVON signal can be used as a servomotor-on control or gen-
eral purpose output signal. The signal names, pin numbers, and
its axis numbers are shown in the following table.

The output circuit for the SVON signal is shown below:

CN2 Pin No Signal Name Axis #
7 SVON1 1
25 SVON2 2
57 SVON3 3
75 SVON4 4

Signal Connections 53

3.10 General-purpose Signal RDY
The RDY signals can be used as motor driver ready input or gen-
eral purpose input signals. The signal names, pin numbers, and
axis numbers are shown in the table below.

The input circuit of RDY signal is shown in this diagram.

CN2 Pin No Signal Name Axis #
11 RDY1 1
29 RDY2 2
61 RDY3 3
79 RDY4 4

54 Signal Connections

3.11 Position compare output pin: CMP
The card provides 2 comparison output channels: CMP1 and
CMP2, used by the first 2 axes, 1 and 2. The comparison output
channel generates a pulse signal when the encoder counter
reaches a pre-set value set by the user.

The CMP channel is located on CN2. The signal names, pin num-
bers, and axis numbers are shown below.

The wiring diagram below shows the CMP on the first 2 axes.

NOTE CMP trigger type may be set to normal low (rising edge)
or normal high (falling edge). Default setting is normal
high. Refer to function _8164_set_trigger_type() in sec-
tion 6.16 for details.

The CMP pin can be regarded as a TTL output.

CN2 Pin No Signal Name Axis #
39 CMP1 1
45 CMP2 2

Signal Connections 55

3.12 Position latch input pin: LTC
The card provides 2 position latch input channels: LTC3 and LTC4,
used by the last 2 axes, 3 and 4. The LTC signal triggers the
counter-value-capturing functions, which provides a precise posi-
tion determination.

The LTC channel is on CN2. The signal names, pin numbers, and
axis numbers are shown below.

The wiring diagram below shows the LTC of the last 2 axes.

CN2 Pin No Signal Name Axis #
89 LTC3 3
95 LTC4 4

56 Signal Connections

3.13 Pulser Input Signals PA and PB (PCI-8164 only)
The PCI-8164 accepts input pulser signals through the CN3 pins
listed below. The pulses behave like an encoder. The signals gen-
erate the positioning information that guides the motor.

The CN3 PA and PB pins are directly connected to PA and PB
pins of the PCL6045. The interface circuit is shown below.

If the signal voltage of the pulser is not +5V or if the pulser is dis-
tantly placed, it is recommended that a photocoupler or a line
driver be installed in between. Note that the CN3 +5V and DGND
lines are provided from the PCI bus, and that this source is not iso-
lated.

CN3 Pin No Signal Name Axis # CN3 Pin No Signal Name Axis #
11 PA1 1 5 PA3 3
10 PB1 1 4 PB3 3
9 PA2 2 3 PA4 4
8 PB2 2 2 PB4 4

Signal Connections 57

3.14 Simultaneously Start/Stop Signals STA and STP
(PCI-8164 only)
The PCI-8164 provides STA and STP signals that enable simulta-
neous start/stop of motions on multiple axes. The STA and STP
signals are located on CN4.

The diagram below shows the tied STA and STP signals of the
four axes.

Both STP and STA signals are input and output signals. To oper-
ate the start and stop action simultaneously, both software control
and external control are needed. With software control, the signals
can be generated from any one of the PCL6045. You can also use
an external open collector or switch to drive the STA/STP signals
for simultaneous start/stop.

If there are two or more PCI-8164 cards, cascade the CN4 con-
nectors of all cards for simultaneous start/stop control on all con-
cerned axes. In this case, connect CN4 as shown below.

The following diagram shows how to allow an external signal to ini-
tiate the simultaneous start/stop connect a 7406 (open collector)
or an equivalent circuit.

58 Signal Connections

Signal Connections 59

3.15 General Purpose TTL Output (PCI-8164 only)
The PCI-8164 provides six general purpose TTL digital outputs.
The TTL output is located on CN5. The signal names, pin num-
bers, and axis numbers are listed below.

The diagram shows the LTC of the last 2 axes.

Pin No. Name Function
1 DGND Digital ground
2 DGND Digital ground
3 ED0 Digital Output 0
4 ED1 Digital Output 1
5 ED2 Digital Output 2
6 ED3 Digital Output 3
7 ED4 Digital Output 4
8 ED5 Digital Output 5
9 VCC VCC +5V

60 Signal Connections

3.16 Termination board
The card’s CN2 can be connected with a DIN-100M15, including
the ACL-102100 — a 100-pin SCSI-II cable. The DIN-100M15 is a
general purpose 100-pin, SCSI-II DIN socket. It has convenient
wiring screw terminals and an easy-install DIN socket that can be
mounted to the DIN rails.

ADLINK also provides DIN-814M termination boards for Mitsubishi
J2S servo motor drivers, DIN-814PA termination board for Pana-
sonic Minas A servo motor drivers, DIN-814M-J3A termination
board for Mitsubishi J3A Servo motor drviers, and DIN-814Y termi-
nation board for Yaskawa sigma-II servo motor driver.

Signal Connections 61

3.17 General Purpose DIO (MPC-8164/PXI-8164 only)
MPC-8164 has eight opto-isolated digital outputs and eight open
collector digital inputs for general purpose use. Pin assignments
are listed in the table below.

PXI-8164 has four opto-isolated digital outputs and four open col-
lector digital inputs for general purpose use. Pin assignments are
listed in the following table.

CN3 Pin No Signal Name CN3 Pin No Signal Name
1 DOCOM 2 DOCOM
3 DOCOM 4 DOCOM
5 DO0 6 DO1
7 DO2 8 DO3
9 DO4 10 DO5
11 DO6 12 DO7
13 -- 14 DICOM
15 DICOM 16 DICOM
17 DICOM 18 DI0
19 DI1 20 DI2
21 DI3 22 DI4
23 DI5 24 DI6
25 DI7 26 --

No. Name Function No. Name Function
1 DICOM Digital In Common 2 DOCOM Digital Out Common
3 DI0 Input Channel 0 4 DO0 Output Channel 0
5 DI1 Input Channel 1 6 DO1 Output Channel 1
7 DICOM Digital In Common 8 DOCOM Digital Out Common
9 DI2 Input Channel 2 10 DO2 Output Channel 2
11 DI3 Input Channel 3 12 DO3 Ouput Channel 3
13 DICOM Digital In Common 14 DOCOM Digital Out Common
15 -- N/A 16 -- N/A
17 -- N/A 18 -- N/A
19 -- N/A 20 -- N/A

62 Signal Connections

3.17.1 Isolated input channels

3.17.2 Isolated output channels

Signal Connections 63

3.17.3 Example of input connection

64 Signal Connections

3.17.4 Example of output connections

Operation Theory 65

4 Operation Theory
This chapter describes the detailed operation of the 8164PCI-/
MPC-/PXI-8164 card via the following sections:

Section 4.1: The motion control modes
Section 4.2: The motor driver interface (INP, ERC, ALM,

SVON, RDY)
Section 4.3: The limit switch interface and I/O status (SD/

PCS, EL, ORG)
Section 4.4: The counters (EA, EB, EZ)
Section 4.5: Multiple card operation
Section 4.6: Change position or speed on the fly
Section 4.7: Position compare and latch
Section 4.8: Hardware backlash compensator
Section 4.9: Software limit function
Section 4.10: Interrupt control
Section 4.11: PXI Trigger Bus

66 Operation Theory

4.1 Motion Control Modes
This section describes the pulse output signal configuration and
motion control modes.

4.1.1 Pulse command output
4.1.2 Velocity mode motion for one axis
4.1.3 Trapezoidal motion for one axis
4.1.4 S-Curve profile motion for one axis
4.1.5 Linear interpolation for 2-4 axes
4.1.6 Circular interpolation for 2 axes
4.1.7 Circular interpolation with acc/dec time
4.1.8 Relationship between velocity and acceleration time
4.1.9 Continuous motion for multiple-axis
4.1.10 Home return mode for one axis
4.1.11 Home Search mode for one axis
4.1.12 Manual pulse mode for one axis
4.1.13 Synchronous starting modes

Operation Theory 67

4.1.1 Pulse Command Output
The PCI-/MPC-/PXI-8164 uses pulse commands to control servo/
stepper motors via the drivers. A pulse command has two signals:
OUT and DIR. There are two command types: (1) single pulse out-
put mode (OUT/DIR), and (2) dual-pulse output mode (CW/CCW
type pulse output). The software function,
_8164_set_pls_outmode(), is used to program the pulse
command mode. The modes vs. signal type of OUT and DIR pins
are listed in the table below.

The interface characteristics of these signals can be differential
line driver or open collector output. Refer to section 3.1 for the
jumper setting for different signal types.

Single Pulse Output Mode (OUT/DIR Mode)
In this mode, the OUT signal is for the command pulse (posi-
tion or velocity) chain. The numbers of OUT pulse represent
the relative distance or position. The frequency of the OUT
pulse represents the command for speed or velocity. The DIR
signal represents direction command of positive (+) or negative
(-). This mode is most commonly used. The diagrams below

Mode Output of OUT pin Output of DIR pin

Dual pulse output (CW/CCW) Pulse signal in plus
(or CW) direction

Pulse signal in
minus (or CCW)

direction

Single pulse output (OUT/DIR) Pulse signal Direction signal
(level)

68 Operation Theory

show the output waveform. It is possible to set the polarity of
the pulse chain.

Dual Pulse Output Mode (CW/CCW Mode)
In this mode, the waveform of the OUT and DIR pins represent
CW (clockwise) and CCW (counter clockwise) pulse output,
respectively. Pulses output from the CW pin makes the motor
move in positive direction, whereas pulse output from the CCW
pin makes the motor move in negative direction. The following dia-

Operation Theory 69

gram shows the output waveform of positive (+) commands and
negative (-) commands.

A/B Phase Pulse Output Mode (A/B phase Mode)
In this mode, the waveform of the OUT and DIR pins represent A-
phase and B-phase pulse output, respectively. Pulses output from
the OUT pin leading makes the motor move in positive direction,
whereas pulse output from the DIR pin leading makes the motor
move in negative direction. The following diagram shows the out-

70 Operation Theory

put waveform of positive (+) commands and negative (-) com-
mands. This mode is not available in older version boards.

Related function:

 _8164_set_pls_outmode(): Refer to section 6.4.

Operation Theory 71

4.1.2 Velocity mode motion
This mode is used to operate a one-axis motor with velocity mode
motion. The output pulse accelerates from a starting velocity
(StrVel) to a specified maximum velocity (MaxVel). The
_8164_tv_move() function is used for constant linear accelera-
tion while the _8164_sv_move() function is use for acceleration
according to the S-curve. The pulse output rate is kept at maxi-
mum velocity until another velocity command is set or a stop com-
mand is issued. The _8164_v_change() is used to change the
speed during an operation. Before this function is applied, make
sure to call _8164_fix_speed_range(). Refer to section 4.6
for more information. The _8164_sd_stop() function is used to
decelerate the motion until it stops. The _8164_emg_stop()
function is used to immediately stop the motion. These change or
stop functions follow the same velocity profile as its original move
functions, tv_move or sv_move. The velocity profile is shown
below.

NOTE The v_change and stop functions can also be applied to
Preset Mode (both trapezoidal, refer to 4.1.3, and S-curve
Motion, refer to 4.1.4) or Home Mode (refer to 4.1.8).

Related functions:

_8164_tv_move(), _8164_sv_move(), _8164_v_change(),
_8164_sd_stop(), _8164_emg_stop(),
_8164_fix_speed_range(), _8164_unfix_speed_range():
Refer to section 6.5

72 Operation Theory

4.1.3 Trapezoidal motion
This mode moves a singe axis motor to a specified position (or
distance) with a trapezoidal velocity profile. The single axis is con-
trolled from point to point. An absolute or relative motion can be
performed. In absolute mode, the target position is assigned. In
relative mode, the target displacement is assigned. In both cases,
the acceleration and deceleration may be different. The function
_8164_motion_done() is used to check whether the movement
is completed.

The diagram shows the trapezoidal profile.

The card supports 2 trapezoidal point-to-point functions. In the
_8164_start_ta_move() function, the absolute target position
must be given in units of pulses. The physical length or angle of
one movement is dependent on the motor driver and mechanism
(including the motor). Since absolute move mode needs the infor-
mation of current actual position, the “External encoder feedback
(EA, EB pins)” should be set in _8164_set_feedback_src()
function. The ratio between command pulses and external feed-
back pulse input must be appropriately set by the
_8164_set_move_ratio() function.

In the _8164_start_tr_move() function, the relative displace-
ment must be given in units of pulses. Unsymmetrical trapezoidal
velocity profile (Tacc is not equal Tdec) can be specified with
both _8164_start_ta_move() and
_8164_start_tr_move() functions.

Operation Theory 73

The StrVel and MaxVel parameters are given in units of pulses per
second (PPS). The Tacc and Tdec parameters are in units of sec-
ond to represent accel./decel. time respectively. You must know
the physical meaning of “one pulse” to calculate the physical value
of the relative velocity or acceleration parameters. The following
formula gives the basic relationship between these parameters:

MaxVel = StrVel + accel*Tacc;
StrVel = MaxVel + decel *Tdec;

Where accel/decel represents the acceleration/deceleration rate in
units of pps/sec^2. The area inside the trapezoidal profile repre-
sents the moving distance.

Units of velocity setting are pulses per second (PPS). Usually,
units of velocity of the manual of motor or driver are in rounds per
minute (RPM). A simple conversion is necessary to match
between these two units. Here we use an example to illustrate the
conversion:

A servomotor with an AB phase encoder is used in a X-Y table.
The resolution of encoder is 2000 counts per phase. The maxi-
mum rotating speed of motor is designed to be 3600 RPM. What is
the maximum pulse command output frequency that you have to
set on 8164?

Answer: MaxVel = 3600/60*2000*4 = 480000 PPS

Multiplying by 4 is necessary because there are four states per AB
phase (See Section 4.4).

Usually, the axes need to set the move ratio if their mechanical
resolution is different from the resolution of command pulse. For
example, if an incremental encoder is mounted on the working
table to measure the actual position of moving part. A servomotor
is used to drive the moving part through a gear mechanism. The
gear mechanism is used to convert the rotating motion of the
motor into linear motion (see the following diagram). If the resolu-
tion of the motor is 8000 pulses/round, then the resolution of the
gear mechanism is 100 mm/round (i.e., part moves 100 mm if the
motor turns one round). Then, the resolution of the command
pulse will be 80 pulses/mm. If the resolution of the encoder mount-
ing on the table is 200 pulses/mm, then you have to set the move

74 Operation Theory

ratio to 200/80=2.5 using the function _8164_set_move_ratio
(axis, 2.5).

If this ratio is not set before issuing the start moving command, it
will cause problems when running in “Absolute Mode” because the
8164 won’t recognize the actual absolute position during motion.

Related functions:

_8164_start_ta_move(), _8164_start_tr_move(): Refer to
section 6.6
_8164_motion_done(): Refer to section 6.11
_8164_set_feedback_src(): Refer to section 6.4
_8164_set_move_ratio(): Refer to section 6.6

Operation Theory 75

4.1.4 S-curve profile motion
This mode moves a single-axis motor to a specified position (or
distance) with an S-curve velocity profile. S-curve acceleration
profiles are useful for both stepper and servomotors. The smooth
transitions between the start of the acceleration ramp and transi-
tion to constant velocity produce less wear and tear than a trape-
zoidal profile motion. The smoother performance increases the life
of the motor and the mechanics of the system.

There are several parameters that need to be set in order to make
a S-curve move. These include:

Pos: target position in absolute mode, in units of pulses
Dist: moving distance in relative mode, in units of pulses
StrVel: start velocity, in units of PPS
MaxVel: maximum velocity, in units of PPS
Tacc: time for acceleration (StrVel -> MaxVel), in units of seconds
Tdec: time for deceleration (MaxVel -> StrVel), in units of seconds
VSacc: S-curve region during acceleration, in units of PPS
VSdec: S-curve region during deceleration, in units of PPS

Normally, the accel/decel period consists of three regions: two
VSacc/VSdec curves and one linear. During VSacc/VSdec, the
jerk (second derivative of velocity) is constant, and during the lin-
ear region, the acceleration (first derivative of velocity) is constant.
In the first constant jerk region during acceleration, the velocity

76 Operation Theory

goes from StrVel to (StrVel + VSacc). In the second constant jerk
region during acceleration, the velocity goes from (MaxVel –
StrVel) to MaxVel. Between them, the linear region accelerates
velocity from (StrVel + VSacc) to (MaxVel - VSacc) constantly. The
deceleration period is similar in fashion.

Special case:
If you want to disable the linear region, the VSacc/VSdec must be
assigned 0 rather than 0.5 (MaxVel-StrVel).

Remember that the VSacc/VSdec is in units of PPS and it should
always keep in the range of [0 to (MaxVel - Strvel)/2], where “0”
means no linear region.

The S-curve profile motion functions are designed to always pro-
duce smooth motion. If the time for acceleration parameters com-
bined with the final position don’t allow an axis to reach the
maximum velocity (i.e. the moving distance is too small to reach
MaxVel), then the maximum velocity is automatically lowered (see
the figure below).

The rule is to lower the value of MaxVel and the Tacc, Tdec,
VSacc, VSdec automatically, and keep StrVel, acceleration, and
jerk unchanged. This is also applicable for trapezoidal profile
motion.

Operation Theory 77

Related functions:

_8164_start_sr_move(),_8164_start_sa_move(): Refer to
section 6.6
_8164_motion_done(): Refer to section 6.11
_8164_set_feedback_src(): Refer to section 6.4
_8164_set_move_ratio(): Refer to section 6.6

The following table shows the differences between all single axis
motion functions, including preset mode (both trapezoidal and S-
curve motion) and constant velocity mode.

4.1.5 Linear interpolation for 2-4 axes
In this mode, any two of four, three of four, or all four axes may be
chosen to perform linear interpolation. Interpolation between
multi-axes means these axes start simultaneously, and reach
their ending points at the same time. Linear means the ratio of
speed of every axis is a constant value.

Note that you cannot use two groups of two axes for linear interpo-
lation on a single card at the same time. You can however, use
one 2-axis linear and one 2-axis circular interpolation at the same
time. If you want to stop an interpolation group, use the
_8164_sd_stop() or _8164_emg_stop() function.

78 Operation Theory

2 axes linear interpolation
In the diagram below, 2-axis linear interpolation means to move
the XY position (or any two of the four axis) from P0 to P1. The
2 axes start and stop simultaneously, and the path is a straight
line.

The speed ratio along X-axis and Y-axis is (∆X: ∆Y), respec-
tively, and the vector speed is:

When calling 2-axis linear interpolation functions, the vector
speed needs to define the start velocity, StrVel, and maximum
velocity, MaxVel. Both trapezoidal and S-curve profiles are
available.

Example:
_8164_start_tr_move_xy(0, 30000.0, 40000.0, 1000.0, 5000.0,
0.1, 0.2) will cause the XY axes (axes 0 & 1) of Card 0 to perform
a linear interpolation movement, in which:

∆X = 30000 pulses; ∆Y = 40000 pulses

Start vector speed=1000pps, X speed=600pps, Y speed = 800pps

Max. vector speed =5000pps, X speed=3000pps, Y speed =
4000pps

Acceleration time = 0.1sec; Deceleration time = 0.2sec

There are two groups of functions that provide 2-axis linear inter-
polation. The first group divides the four axes into XY (axis 0 &
axis 1) and ZU (axis 2 & axis 3). By calling these functions, the tar-
get axes are already assigned.

_8164_start_tr_move_xy(), _8164_start_tr_move_zu(),

Operation Theory 79

_8164_start_ta_move_xy(), _8164_start_ta_move_zu(),

_8164_start_sr_move_xy(), _8164_start_sr_move_zu(),

_8164_start_sa_move_xy(), _8164_start_sa_move_zu()

(Refer to section 6.7)

The second group allows you to freely assign the two target axes.

_8164_start_tr_line2(), _8164_start_sr_line2(),

_8164_start_ta_line2(), _8164_start_sa_line2()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

a – Absolute motion

3-axis linear interpolation
Any three of the four axes of the card may perform 3-axis linear
interpolation. As shown the figure below, 3-axis linear interpola-
tion means to move the XYZ (if axes 0, 1, 2 are selected and
assigned to be X, Y, Z, respectively) position from P0 to P1,
starting and stopping simultaneously. The path is a straight line
in space.

80 Operation Theory

The speed ratio along X-axis, Y-axis, and Z-axis is (∆X: ∆Y:
∆Z), respectively, and the vector speed is:

When calling 3-axis linear interpolation functions, the vector
speed is needed to define the start velocity, StrVel, and maxi-
mum velocity, MaxVel. Both trapezoidal and S-curve profiles
are available.

Example

_8164_start_tr_line3(….,1000.0 /*∆X */ , 2000.0/*∆Y */, 3000.0 /
DistZ/, 100.0 /*StrVel*/, 5000.0 /* MaxVel*/, 0.1/*sec*/, 0.2 /*sec*/
)

∆X = 1000 pulse; ∆Y = 2000 pulse; ∆Z = 3000 pulse

Start vector speed=100pps,

X speed = 100/ = 26.7pps

Y speed = 2*100/ = 53.3pps

Z speed = 3*100/ = 80.1pps

Max. vector speed =5000pps,

X speed= 5000/ = 1336pps

Y speed = 2*5000/ = 2672pps

Z speed = 3*5000/ = 4008pps

The following functions are used for 3-axis linear interpolation:
_8164_start_tr_line3(), _8164_start_sr_line3()

_8164_start_ta_line3() , _8164_start_sa_line3()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

14

14

14

14

14

14

Operation Theory 81

a – Absolute motion

4-axis linear interpolation
With 4-axis linear interpolation, the speed ratio along X-axis, Y-
axis, Z-axis and U-axis is (∆X: ∆Y: ∆Z: ∆U), respectively, and
the vector speed is:

The following functions are used for 4-axis linear interpolation:

_8164_start_tr_line4(), _8164_start_sr_line4()

_8164_start_ta_line4(),_8164_start_sa_line4()

(Refer to section 6.7)

The characters “t”, “s”, “r”, and “a” after _8164_start mean:

t – Trapezoidal profile

s – S-Curve profile

r – Relative motion

a – Absolute motion

82 Operation Theory

4.1.6 Circular interpolation for 2 axes
Any 2 of the 4 axes of the card can perform circular interpolation.
In the example below, circular interpolation means XY (if axes 0, 1
are selected and assigned to be X, Y respectively) axes simulta-
neously start from initial point, (0,0) and stop at end
point,(1800,600). The path between them is an arc, and the Max-
Vel is the tangential speed. Notice that if the end point of arc is not
at a proper position, it will move circularly without stopping.

Example

_8164_start_a_arc_xy(0 /*card No*/, 1000,0 /*center X*/, 0 /*cen-
ter Y*/, 1800.0 /* End X */, 600.0 /*End Y */ ,1000.0 /* MaxVel */)

To specify a circular interpolation path, the following parameters
must be clearly defined:

Center point: The coordinate of the center of arc (In absolute mode)
or the off_set distance to the center of arc (In relative
mode)

End point: The coordinate of end point of arc (In absolute mode)
or the off_set distance to center of arc (In relative
mode)

Direction: The moving direction, either CW or CCW.
It is not necessary to set radius or angle of arc, since the informa-
tion above gives enough constrains. The arc motion is stopped
when either of the two axes reached end point.

There are two groups of functions that provide 2-axis circular inter-
polation. The first group divides the four axes into XY (axis 0 and

Operation Theory 83

axis 1) and ZU (axis 2 and axis 3). By calling these functions, the
target axes are already assigned.

_8164_start_r_arc_xy(), _8164_start_r_ arc _zu(),

_8164_start_a_ arc _xy(), _8164_start_a_ arc _zu(),

(Refer to section 6.8)

The second group allows user to freely assign any targeted two
axes.

_8164_start_r_arc2(),_8164_start_a_arc2(): Refer to section 6.8

84 Operation Theory

4.1.7 Circular interpolation with Acc/Dec time
In section 4.1.6, the circular interpolation functions do not support
acceleration and deceleration parameters. Therefore, they cannot
perform a T or S curve speed profile during operation. However,
sometimes the need for an Acc/Dec time speed profile will help a
machine to make more accurate circular interpolation. The 8164
card has another group of circular interpolation functions to per-
form this type of interpolation, but requires the use of Axis3 as an
aided axis, which means that Axis3 cannot be used for other pur-
poses while running these functions. For example, to perform a
circular interpolation with a T-curve speed profile, the function
_8164_start_tr_arc_xyu() is used. This function will use
Axis0 and Axis1, and also Axis3 (Axis0=x, Axis1=y, Axis2=z,
Axis3=u). For the full lists of functions, refer to section 6.8.

To check if the card supports these functions use the
_8164_version_info() function. If hardware information for
the card returns a value with the 4th digit greater then 0, for exam-
ple '1003', users can use this group of circular interpolation to per-
form S or T-curve speed profiles. If the hardware version returns a
value with the 4th digit being 0, then the card does not support
these functions.

Operation Theory 85

4.1.8 Relationship between velocity and acceleration
time
The maximum velocity parameter of a motion function will eventu-
ally have a minimum acceleration value. This means that there is a
range for acceleration time over one velocity value. Under this
relationship, to obtain a small acceleration time, a higher maxi-
mum velocity value to match the smaller acceleration time is
required. Function _8164_fix_speed_range() will provide
such operation. This function will raise the maximum velocity
value, which in turn results in a smaller acceleration time. Note it
does not affect the actual end velocity. For example, to have a
1ms acceleration time from a velocity of 0 to 5000 (pps), the func-
tion can be inserted before the motion function as shown.

_8164_fix_speed_range(AxisNo,OverVelocity);

_8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

How do users decide an optimum value for “OverVelocity” in the
_8164_fix_speed_range() function? The _8164_verify_speed()
function is provided to calculate such value. The inputs to this
function are the start velocity, maximum velocity and over velocity
values. The output value will be the minimum and maximum val-
ues of the acceleration time.

For example, if the original acceleration range for the command is:

86 Operation Theory

 _8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001),

then use the following function:

_8164_verify_speed(0,5000,&minAccT, &maxAccT,5000);

The value miniAccT will be 0.0267sec and maxAccT will be
873.587sec. This minimum acceleration time does not meet the
requirement of 1mS. To achieve such a low acceleration time the
over speed value must be used.

By changing the OverVelocity value to 140000,

_8164_verify_speed(0,5000,&minAccT, &maxAccT,140000);

The value miniAccT will be 0.000948sec and maxAccT will be
31.08sec. This minimum acceleration time meets the require-
ments. So, the motion command can be changed to:

_8164_fix_speed_range(AxisNo,140000);

_8164_start_tr_move(AxisNo,5000,0,5000,0.001,0.001);

Notes:
The return value of _8164_verify_speed() is the mini-
mum velocity of motion command, it does not always equal
to your start velocity setting. In the above example, it will be
3pps more than the 0pps setting.
To disable the fix speed function
_8164_fix_speed_range() use
_8164_unfix_speed_range()

Minimize the use of the OverVelocity operation. the more it
is used, the coarser the speed interval is.

Operation Theory 87

Example:
User’s Desired Profile: (MaxV2, Target T) is not possible under
MaxV2 according to the (MaxV, MiniT) relationship. So one must
change the (MaxV, MiniT) relationship to a higher value, (MaxV1,
MiniT1). Finally, the command would be:

_8164_fix_speed_range(AxisNo, MaxV1);

_8164_start_tr_move(AxisNo,Distance, 0 , MaxV2 , Target T, Tar-
get T);

Related functions:

_8164_fix_speed_range(),
_8164_unfix_speed_range(),_8164_verify_speed()

Refer to section 6.5

88 Operation Theory

4.1.9 Continuous motion
The card allows you to perform continuous motion. Both single
axis movement (section 4.1.3: Trapezoidal, section 4.1.4: S-
Curve) and multi-axis interpolation (4.1.5: linear interpolation,
4.1.6: circular interpolation) can be extended to be continuous
motion.

For example, if a user calls the following function to perform a sin-
gle axis preset motion:

1) _8164_set_continuous_move(0, 1)

It enables the continuous move function by keeping current posi-
tion in internal variable. If this function is not enabled, the second
motion function will return busy status and can not do continuous
motion.

2) _8164_start_ta_move(0, 50000, 100, 30000, 0.1, 0.0)

It causes the axis “0” to move to position “50000.0.” Before the
axis arrives, the user can call a second motion (refer to the next
function). Notice that the deceleratin of this function is set to 0. It
means that deceleration is not needed in this command in order to
smoothly link the next command velocity.

3) _8164_start_tr_move(0, 20000, 100, 30000, 0.0, 0.2)

The second function call does not affect the first one. Actually, it
will be executed and written into the card pre-register. After the
first move is finished, the card will continue with the second move
according to the pre-registered value. The time interval between
these two moves can be seen as a continuous move and pulses
will be continuously be generated at the “50000.0” position. Notice
that the acceleration time is set to 0. It means that we do not need
acceleration in this command in order to smoothly link the previ-
ous command velocity.

4) _8164_set_continuous_move(0, 0)

Return to normal move mode.

The theory of continuous motion is described below:

Theory of continuous motion (FIFO architecture)

Operation Theory 89

The following diagram shows the register data flow of the card.

1. The first motion is executed and the CPU writes corre-
sponding values into Pre-Register2.

 _8164_start_ta_move(0,50000.0,100.0,30000.0,0.1,0.0)

2. Since Pre-Register1 and Register are empty, the data in
pre-register 2 is automatically moved to the Register and
executed immediately by the ASIC.

3. The second function is called. The CPU writes the corre-
sponding values into pre-register2.

_8164_start_tr_move(0,20000.0,100.0,30000.0,0.0,0.2)

4. Since Pre-register1 is empty; the data in pre-register 2 is
automatically moved to Pre-Rregister1 and waits to be
executed.

5. You may can execute a 3rd function, and it will be stored
to Pre-register2.

6. When the first function is completed, the Register
becomes empty, and data in pre-register1 is allowed to
move to Register and is executed immediately by the

90 Operation Theory

ASIC. Data in Pre-Register2 is then moved to Pre-
Register1.

7. The ASIC will inform the CPU generating an interrupt
that a motion is completed. Users can then write the 4th
motion command into Pre-Register2.

Procedures for continuous motion (by interrupt)
The following procedures are to help user making continuous
motion.

1. (If under DOS): Enable the interrupt service using
_8164_int_contol()

(If under Windows): Enable the interrupt service using
_8164_int_contol() and _8164_int_enable().

2. Set bit “2” of INT factor to be “True” using
_8164_set_int_factor().

3. Set the “conti_logic” to be “1” by:
_8164_set_continuous_move()

4. Call the first three motion functions.

5. Wait for interrupt in ISR (under DOS) or Event (under
Windows) of 2nd pre-register empty.

6. Call the fourth motion function.

7. Wait for interrupt in ISR (under DOS) or Event (under
Windows) of 2nd pre-register empty.

8. Repeat steps 6 and 7 until all motion functions are
called.

Procedures for continuous motion (by polling)
Another method to determine a motion-completed action is by
polling buffer empty status. User may constantly check the
buffer status using the
_8164_check_continuous_buffer() function before call-
ing a new motion function.

Operation Theory 91

Restrictions of continuous motion
Here are restrictions and suggestions for continuous motion:

1. When the Pre-Registers are full, you may not execute
any more motion functions. Otherwise, the new function
one will overwrite the existing function in Pre-Register2.

2. To get a continuity of velocity between two motions, the
previous end velocity of and starting velocity of the next
must be the same. There are several methods to
achieve this. The easiest way is to set the deceleration/
acceleration time to 0.

3. The dimension of axes can not be changed during con-
tinuous motion

For example:

_8164_set_continuous_move(0, 1)

_8164_set_continuous_move(1, 1)

_8164_set_inp(0,0,0)

_8164_set_inp(1,0,0)

1st motion: _8164_start_tr_move_XY(0,1000,0,0,5000,0.2, 0.0)

2nd motion: _8164_start_r_arc_xy(0,0,500,500,500,1,5000);

_8164_set_inp(0,1,0)

_8164_set_inp(0,1,0)

3rd motion: _8164_start_tr_move_XY(0,0,1000,0,5000,0.0, 0.2)

_8164_set_continuous_move(0, 0)

_8164_set_continuous_move(1, 0)

92 Operation Theory

Explanation of example:

When these three motions ARE executed sequentially, the 1st
occupies the Register and is executed immediately; the 2nd occu-
pies Pre-Register1 and waits for completion of the 1st motion. The
3rd occupies Pre-Register2 and waits for completion of the 2nd
motion. Since the 1st motion has a 0 deceleration time and the
2nd motion is an arc of constant velocity, which is the same as the
max_vel of the 1st, the 8164 will output a constant frequency at
intersections between them.

1. Continuous motion between different axes is meaning-
less. Different axes have their own register and pre-reg-
ister system.

2. Continuous motion between different numbers of axes is
not allowed. For example: _8164_start_tr_move()
can not be followed by _8164_start_ta_move_xy()
nor vice versa.

3. It is possible to perform a 3-axis or 4-axis continuous lin-
ear interpolation, but speed continuity is impossible to
achieve.

4. If any absolute mode is used during continuous motion,
make sure that _8164_reset_target_pos() is exe-

Operation Theory 93

cuted at least once after home move. Refer to 4.1.8:
Home return mode for more details.

5. INP enable could be set before any motion command. In
continuous motion, normally you disable INP except final
command, since you want velocity command to be con-
tinuously sent without slowing down by INP between
every motion.

Examples of continuous motion
The following are examples of continuous motion:

1. Single axes continuous motion: Changing velocity at
preset points.

This example demonstrates how to use the continuous motion
function to achieve velocity changing at pre-set points. The 1st
motion (ta) moves the axis to point A, with Tdec =0, and then
the 2nd continues immediately. The start velocity of (2) is the
same with max velocity of (1), so that the velocity continuity
exists at A. At point B. the Tacc of (3) is set to be 0, so the
velocity continuity is also continued.

94 Operation Theory

2. 2-axis continuous interpolation:

This example demonstrates how to use continuous motion func-
tion to achieve 2-axis continuous interpolation. In this application,
the velocity continuity is the key. Refer to the previous example.

The functions related to continuous motion are listed below:

_8164_set_continuous_move(),
_8164_check_continuous_buffer()

Refer to section 6.17.

Operation Theory 95

4.1.10 Home Return Mode
In this mode, the card is allowed to continuously output pulses
until the condition to complete the home return is satisfied after
writing the command _8164_home_move(). There are 13 home
moving modes provided by the 8164. The home_mode of function
_8164_set_home_config() is used to select whichever mode
is preferred.

After completion of home move, it is necessary to keep in mind
that all related position information should be reset to be 0. The
card has 4 counters and 1 software-maintained position recorder,
including:

Command position counter: counts the number of pulse out-
puts
Feedback position counter: counts the number of pulse
inputs
Position error counter: counts the error between command
and feedback pulse numbers.
General-Purposed counter: can be configured as pulse out-
put, feedback pulse, manual pulse, or CLK/2.
Target position recorder: records the target position. (Soft-
ware mainained)

Refer to section 4.4 for details on the position counters.

After home move is complete, the first four counters will be auto-
matically cleared to 0, however, the target position recorder will
not. Because it is software maintained, it is necessary to manually
set the target position to 0 by calling the function
_8164_reset_target_pos().

In some home mode, the stop position after homing is not at 0
because of deceleration. In this case, users must call
_8164_reset_target_pos() by entering this position.

The following figures show the various home modes:

96 Operation Theory

home_mode=0: ORG > Slow down > Stop
When SD (Ramp-down signal) is inactive.

When SD (Ramp-down signal) is active.

Operation Theory 97

98 Operation Theory

Operation Theory 99

100 Operation Theory

Operation Theory 101

102 Operation Theory

Relative Functions:

_8164_set_home_config(), _8164_home_move(),
_8164_set_fa_speed(), _8164_escape_home(), Refer to
section 6.9.

Operation Theory 103

4.1.11 Home Search Mode
This mode adds auto searching function on normal home return
mode described in section 4.1.10. After _8164_home_config()
is set, without calling _8164_home_move() but use
_8164_home_search() to perform this function. The following
illustration shows an example of home mode 2. The ORG offset
must not be zero. Suggested value is the double length of ORG
area:

.

Related functions:

_8164_set_home_config(), _8164_home_move(),
_8164_home_search(), _8164_set_fa_speed(),
_8164_escape_home(), Refer to section 6.9.

104 Operation Theory

4.1.12 Manual Pulser Mode (PCI-8164 Only)
For manual operation of a device, you may use a manual pulse
such as a rotary encoder. The PCI-8164 can receive input signals
from a pulser and output its corresponding pulses from the OUT
and DIR pins, thereby allowing a simplified external circuit.

This mode is effective when the _8164_pulser_vmove(),
_8164_pulser_pmove(), or _8164_pulser_home_move()
command has been called. To terminate the command use the
_8164_sd_stop() or_8164_emg_stop() command.

The PCI-8164 receives positive and negative pulses (CW/CCW)
or 90-degree phase difference signals (AB phase) from the pulser
at the PA and PB pins. To set the input signal modes of the pulser,
use the _8164_set_pulser_iptmode() function. The 90-
degree phase difference in signals can be set by a multiplication of
1, 2, or 4. If the AB phase input mode is selected, PA and PB sig-
nals should have a 90-degree phase shift, and the position
counter increases when the PA signal is leading the PB signal by
90 degrees.

The following figure shows pulser ratio block diagram.

Related functions:

_8164_pulser_vmove(), _8164_pulser_pmove(),
_8164_pulser_home_move(), _8164_set_pulser_iptmode(),
_8164_set_pulser_ratio(), _8164_pulser_r_line2(),
_8164_pulser_r_arc2(), _8164_pulser_a_line2(),
_8164_a_arc2()

Refer to section 6.10

Operation Theory 105

4.1.13 Synchronous starting modes
Synchronous motion means more than one axes can be started by
a synchronous signal. The has three kinds of this motion.

1. Simultaneously start/stop by externl signal (STA/STP).

 Example: 3 axes move simultaneously
I16 AxisArray[3]={0,1,2};
I16 DistArray[3]={5000,6000,2000};
I16 StartV[3]={0,0,0};
I16 MaxV[3]={10000,20000,50000};
I16 Tacc[3]={0.02, 0.02, 0.02};
I16 Tdec[3]={0.03, 0.03, 0.03};
_8164_set_tr_move_all(3, AxisArray, DistArray,

StartV, MaxV, Tacc,Tdec);

It will wait STA signal to start. You can call
_8164_stop_move_all(0) to cancel it.

2. Simultaneously start/stop by software function.

 Example: 3 axes move simultaneously
I16 AxisArray[3]={0,1,2};
I16 DistArray[3]={5000,6000,2000};
I16 StartV[3]={0,0,0};
I16 MaxV[3]={10000,20000,50000};
I16 Tacc[3]={0.02, 0.02, 0.02};
I16 Tdec[3]={0.03, 0.03, 0.03};
_8164_set_tr_move_all(3, AxisArray, DistArray,

StartV, MaxV, Tacc,Tdec);
_8164_start_move_all(0);

3. Immediately start when other axes stop.

 Example: Axis1 starts after Axis0 stops
_8164_set_sync_option(1,0,0,3,1);
_8164_start_tr_move(1, 1000, 0, 5000, 0.01,

0.01);
_8164_start_tr_move(0, 500, 0, 1000, 0.01, 0.01);

106 Operation Theory

4. Immediately start when other axis’ synchronous condition is sat-
isfied.

 Example: Axis2 starts when Axis1’s acceleration ends.
_8164_set_sync_option(2,0,0,2, 0);
_8164_set_sync_signal_source(2, 1);
_8164_set_sync_signal_mode(1, 9);
_8164_start_tr_move(1, 1000, 0, 5000, 0.01,

0.01);
_8164_start_tr_move(0, 500, 0, 1000, 0.01, 0.01);

Related functions:

_8164_set_sync_signal_mod(),
_8164_set_sync_signal_source(),
_8164_set_sync_option(), _8164_set_tr_move_all(),
_8164_start_move_all(), Refer to section 6.18

Operation Theory 107

4.2 The motor driver interface
The card provides the INP, ALM, ERC, SVON, and RDY signals
for a servomotor driver control interface. The INP and ALM are
used for feedback of the servo driver status, ERC is used to reset
the servo driver’s deviation counter under special conditions, VON
is a general purpose output signal, and RDY is a general purpose
input signal. General purpose means that the processing of the
signal is not a hardware built-in procedure. The hardware pro-
cesses INP, ALM, and ERC signals according to pre-defined rules.
For example, when receiving ALM signal, the card stops or decel-
erate to stop output pulses automatically. However, SVON and
RDY act like common I/Os.

4.2.1 INP
The processing of the INP signal is a hardware build-in procedure,
and it is designed to cooperate with the in-position signal of the
servomotor driver.

Usually, servomotor drivers with a pulse train input has a deviation
(position error) counter to detect the deviations between the input
pulse command and feedback counter. The driver controls the
motion of the servomotor to minimize the deviation until it
becomes 0. Theoretically, the servomotor operates with some time
delay from the command pulses. Likewise, when the pulse gener-
ator stops outputting pulses, the servomotor does not stop imme-
diately but keeps running until the deviation counter is zero. Only
after stopping does the servo driver send out the in-position signal
(INP) to the pulse generator to indicate the motor has stopped run-
ning.

If you do not enable INP checking by _8164_set_inp() func-
tion, the motion completion from _8164_motion_done() func-
tion and INT signal are raised after all pulses are sent.

If you enable INP checking by _8164_set_inp() function, the
motion completion from _8164_motion_done() function and
INT signal will not be raised until the INP signal from servo driver
is raised.

The in-position function can be enabled or disabled, and the input
logic polarity is also programmable by the “inp_logic” parameter of

108 Operation Theory

_8164_set_inp(). The INP signal status can be monitored by
software with the function: _8164_get_io_status().

Related functions:

_8164_set_inp(): Refer to section 6.12
_8164_get_io_status(): Refer to section 6.13
_8164_motion_done(): Refer to section 6.11

Operation Theory 109

4.2.2 ALM
The processing of the ALM signal is a hardware built-in procedure,
and it is designed to interact with the alarm signal of the servomo-
tor driver.

The ALM signal is an output signal from servomotor driver. Usu-
ally, it is designated to indicate when something is wrong with the
driver or motor.

The ALM pin receives the alarm signal output from the servo
driver. The signal immediately stops the card from generating any
further pulses or stops it after deceleration. If the ALM signal is in
the ON status at the start of an operation, the card generates the
INT signal and does not generate any command pulses. The ALM
signal may be a pulse signal with a minimum time width of 5 micro-
seconds.

Setting the parameters “alm_logic” and “alm_mode” of the
_8164_set_alm function can alter the input logic of the ALM.
Whether or not the 8164 is generating pulses, the ALM signal
allows the generation of the INT signal. The ALM status can be
monitored by using the software function:
_8164_get_io_status(). The ALM signal can generate an
IRQ if the interrupt service is enabled. Refer to section 4.7.

Related functions:

_8164_set_alm(): Refer to section 6.12
_8164_get_io_status(): Refer to section 6.13

110 Operation Theory

4.2.3 ERC
The ERC signal is an output from the 8164. The processing of the
ERC signal is a hardware built-in procedure, and it is designed to
interact with the deviation counter clear signal of the servomotor
driver.

The deviation counter clear signal is inserted in the following situa-
tions:

1. Home return is completed

2. The end-limit switch is active

3. An alarm signal stops the OUT and DIR signals

4. The software operator issues an emergency stop com-
mand

Since the servomotor operates with some delay from the pulse
generated from the 8164, it continues to move until the deviation
counter of the driver is zero, even if the 8164 has stopped output-
ting pulses because of the ±EL signal or the completion of home
return. The ERC signal allows immediate stopping of the servomo-
tor by resetting the deviation counter to zero. The ERC signal is
outputted as a one-shot signal. The pulse width is of time length
defined by the function call _8164_set_erc(). The ERC signal
will automatically be generated when the ±EL and ALM signal are
turned on and the servomotor is stopped immediately.

Related functions:

_8164_set_erc(): Refer to section 6.12

Operation Theory 111

4.2.4 SVON and RDY
All 864 axes are equipped with SVON and RDY signals, which are
general purpose output and input channels, respectively. The
SVON is used to interact with the servomotor drivers as a Servo
ON command, and RDY to receive the Servo Ready signal. There
are no built-in procedures for SVON and RDY.

The SVON signal is controlled by the software function
_8164_Set_Servo().

RDY pins are dedicated for digital input usage. The status of this
signal can be monitored using the software function
_8164_get_io_status().

Related functions:

_8164_Set_Servo(): Refer to section 6.12
_8164_get_io_status(): Refer to section 6.13

112 Operation Theory

4.3 The limit switch interface and I/O status
In this section, the following I/O signal operations are described.

SD/PCS: Ramping Down and Position Change sensor
±EL: End-limit sensor
ORG: Origin position

In any operation mode, if an ±EL signal is active during any mov-
ing condition, it causes the 8164 to stop automatically outputting
pulses. If an SD signal is active during moving conditions, it
causes the 8164 to decelerate. If operating in a multi-axis mode, it
automatically applies to all related axes.

4.3.1 SD/PCS
SD/PCS signal pins are available for each axis and acts as the
input channel. It can be connected to a SD (Slow Down) or Posi-
tion Change Signal (PCS). To configure the input signal type use
the function _8164_set_sd_pin().

When the SD/PCS pin is directed to a SD (the default setting), the
PCS signal is kept at a low level and vice versa. Care must be
taken with the logic attributes of the signal not being used.

The slow-down signals are used to force the output pulse (OUT
and DIR) to decelerate to and then maintain the StrVel when it is
active. The StrVel is usually smaller than MaxVel. This signal is
useful in protecting a mechanism moving under high speeds
toward the mechanism’s limit. SD signal is effective for both plus
and minus directions.

The ramping-down function can be enabled or disabled using the
software function _8164_set_sd(). The input logic polarity, level
operation mode, or latched input mode can also be set by this
function. The signal status can be monitored using
_8164_get_io_status().

Operation Theory 113

The PCS signal defines the starting point of current tr and sr
motions. Refer to the chart below. The logic of PCS is configurable
using _8164_set_pcs_logic()

Related functions:

_8164_set_sd_pin(),_8164_set_pcs_logic(): Refer to sec-
tion 6.5
_8164_set_sd(): Refer to section 6.12
_8164_get_io_status(): Refer to section 6.13

114 Operation Theory

4.3.2 EL
The end-limit signal is used to stop the control output signals (OUT
and DIR) when the end-limit is active. There are two possible stop
modes: stop immediately and decelerate to StrVel then stop.
To select either mode, use _8164_set_el().

The PEL signal indicates the end-limit in the positive (plus) direc-
tion. MEL signal indicates the end-limit in negative (minus) direc-
tion. When the output pulse signals (OUT and DIR) is towards the
positive direction, the pulse train will immediately stop when the
PEL signal is asserted, where the MEL signal is meaningless, and
vice versa. When the PEL is asserted, only a negative (minus)
direction output pulse can be generated when moving the motor in
a negative (minus) direction.

The EL signal can generate an IRQ if the interrupt service is
enabled. Refer to section 4.7.

You can either use ‘A’ or ‘B’ type contact switches by setting the
S1 dipswitch. The 8164 is delivered from the factory with all bits of
S1 set to ON. The signal status can be monitored using the soft-
ware function _8164_get_io_status().

Relative Functions:

_8164_set_el(): Refer to section 6.12
_8164_get_io_status(): Refer to section 6.13

Operation Theory 115

4.3.3 ORG
The ORG signal is used when the motion controller is operating in
the home return mode. There are 13 home return modes (Refer to
section 4.1.8), any one of 13 modes cam be selected using
“home_mode” argument in the function
_8164_set_home_config(). The logic polarity of the ORG sig-
nal level or latched input mode is also selectable using this func-
tion as well.

After setting the configuration for the home return mode with
_8164_set_home_config(), the _8164_home_move() com-
mand can perform the home return function.

Related functions:

_8164_set_home_config(), _8164_home_move(): Refer to section
6.19

116 Operation Theory

4.4 Counters
There are four counters for each card axis:

Command position counter: counts the number of output
pulses
Feedback position counter: counts the number of input
pulses
Position error counter: counts the error between com-
mand and feedback pulse numbers.
General purpose counter: The source can be configured
as pulse output, feedback pulse, manual pulser, or CLK/2.
Target position recorder, a software-maintained target
position recorder, is discussed.

4.4.1 Command position counter
The command position counter is a 28-bit binary up/down counter.
its input source is the output pulse from the 8164, thus, it provides
accurate information of the current position. Note: the command
position is different from target position. The command position
increases or decreases according to the pulse output, while the
target position changes only when a new motion command has
been executed. The target position is recorded by the software,
and needs manually resetting after a home move is completed.

The command position counter will clear (reset to “0”) automati-
cally after a home move has completed. The function
_8164_set_command() can be executed at any time to set a
new command position value. To read current command position
use _8164_get_command().

Related functions:

_8164_set_command(), _8164_get_command(): Refer to
section 6.15

Operation Theory 117

4.4.2 Feedback position counter
The card has a 28-bit binary up/down counter managing the
present position feedback for each axis. The counter counts signal
inputs from the EA and EB pins.

It accepts two kinds of pulse inputs: Plus and minus pulse inputs
(CW/CCW mode), and; 90° phase shifted signals (AB phase
mode). The 90° phase shifted signals maybe multiplied by a factor
of 1, 2 or 4. 4x AB phase mode is the most commonly used in
incremental encoder inputs. For example, if a rotary encoder has
2000 pulses per phase (A or B phase), then the value read from
the counter is 8000 pulses per turn or –8000 pulses per turn
depending on its rotating direction. These input modes can be
selected using the _8164_set_pls_iptmode() function.

In cases where the application has not implemented an encoder, it
is possible to set the feedback counter source to generate the out-
put pulses, just as with the command counter. Thus, the feedback
counter and the command counter will have the same value. To
enable the counters to count the number of pulses inputted, set
the “Src” parameter of the software function
_8164_set_feedback_src() to 1.

Plus and Minus Pulses Input Mode (CW/CCW Mode)
The pattern of pulses in this mode is the same as the Dual
Pulse Output Mode in the Pulse Command Output section;
except that the input pins are EA and EB.

In this mode, pulses from EA cause the counter to count up,
whereas EB caused the counter to count down.

90° phase difference signals Input Mode (AB phase Mode)
In this mode, the EA signal is a 90° phase leading or lagging in
comparison with the EB signal. Lead or lag of phase difference
between two signals is caused by the turning direction of the
motor. The up/down counter counts up when the phase of EA
signal leads the phase of EB signal.

118 Operation Theory

The following diagram illustrates the waveform.

The index input (EZ) signals of the encoders are used as the
ZERO reference. This signal is common on most rotational
motors. EZ can be used to define the absolute position of the
mechanism. The input logic polarity of the EZ signals is program-
mable using software function _8164_set_home_config().
The EZ signals status of the four axes can be monitored by
get_io_status().

The feedback position counter is automatically cleared to 0 after a
home move is complete. Besides setting a position with the func-
tion call, _8164_set_position(), it can also be executed at
any time to set a new position value. To read the current command
position use _8164_get_position().

Related functions:

_8164_set_pls_iptmode(), _8164_set_feedback_src():
Refer to section 6.4
_8164_set_position(), _8164_get_position():
Refer to section 6.15
_8164_set_home_config(): Refer to section 6.9

Operation Theory 119

4.4.3 Position error counter
The position error counter is used to calculate the error between
the command position and the feedback position. It will add one
count when the card outputs one pulse and subtracts one count
when the card receives one pulse (from EA, EB). This is useful in
detecting step-loses (stalls) in situations of a stepping motor when
an encoder is applied.

Since the position error counter automatically calculates the differ-
ence between pulses outputted and pulses fed back, it is inevita-
ble to get an error if the motion ratio is not equal to 1.

To obtain a position error reading, use the function call
_8164_get_error_counter(). To reset the position error
counter, use the function call
_8164_reset_error_counter(). The position error counter
automatically clears to 0 after home move is complete.

Related function:

_8164_get_error_counter(), _8164_reset_error_counter():
Refer to section 6.15

120 Operation Theory

4.4.4 General purpose counter
The general purpose counter is very versatile and may be any of
the following:

1. Pulse output – as a command position counter

2. Pulse input – as a feedback position counter

3. Manual Pulse input – Default status.

4. Clock – an accurate timer (9.8 MHz)

The default setting of the general purpose counter is set to manual
pulse. (Refer to section 4.1.9 for a detailed explanation of manual
pulsing). To change the source type, use the function
_8164_set_general_counter(). To obtain the counter status,
use the function _8164_get_general_counter().

Related function:

_8164_set_general_counter(),
_8164_get_general_counter(): Refer to section 6.15

The table below summarizes all functions used for the different
counter types.

Operation Theory 121

Counter Description Counter
Source Function Function

description

Command

Counts the
number of

output
pulses

Pulse output

_8164_set_command
Set a new

value for com-
mand position

_8164_get_command
Read current

command posi-
tion

Feedback
counts the
number of

input pulses

EA/EB or
Pulse output

_8164_set_pls_iptmo
de

Select the input
modes of EA/

EB

_8164_set_feedback
_src

Set the
counters input

source

_8164_set_position
Set a new

value for feed-
back position

_8164_get_position
Read current

feedback posi-
tion:

Position
error

Counts the
error

between
command
and feed-
back pulse

EA/EB and
Pulse output

_8164_get_error_cou
nter

Gets the posi-
tion error

_8164_reset_error_c
ounter

Resets the
position error

counter

General
Purpose

General
Purpose
counter

Pulse output
EA/EB man-

ual pulse
CLK/2.

_8164_set_general_c
ounter

Set a new
counter value

_8164_get_general_c
ounter

Read current
counter value

122 Operation Theory

4.4.5 Target position recorder
The target position recorder provides target position information.
For example, if the 8164 is operating in continuous motion with
absolute mode, the target position lets the next absolute motion
know the target position of previous one.

It is very important to understand how the software handles the
target position recorder. Every time a new motion command is
executed, the displacement is automatically added to the target
position recorder. To ensure the correctness of the target position
recorder, users need to manually maintain it in the following two
situations using the function _8164_reset_target_pos():

1. After a home move completes

2. After a new feedback position is set

Relatied functions:

_8164_reset_target_pos(): Refer to section 6.15

Operation Theory 123

4.5 Multiple PCI-8164 Card Operation (PCI-8164
Only)
The software function library can support a maximum of 12 PCI-
8164 cards. This means that up to 48 motors can be connected.
Since the PCI-8164 is Plug-and-Play compatible, the base
address and IRQ settings for card are are automatically assigned
by the system BIOS when it is turned on. The base address and
IRQ settings assigned by the BIOS can view by using the Motion
Creator Tool.

When multiple cards are applied to a system, each card number
must be noted. The card number of a PCI-8164 depends on the
location on the PCI slot. They are numbered either from left to
right, or right to left on the PCI slots. These card numbers will
affect its corresponding axis number. Note that the axis number is
the first argument for most functions called in the library. Hence, it
is important to identify the slot number before writing any applica-
tion programs. For example, if three PCI-8164 cards are plugged
in to PCI slots, then the corresponding axis number on each card
are:

Example: To accelerate Axis 3 of Card2 from 0 to 10000 pps in 0.5
sec for Constant Velocity Mode operation, the axis number is 6,
and the code for the program is:

_8164_start_tv_move(6, 0, 10000, 0.5);

To determine the right card number, trial and error may be neces-
sary before an application. The Motion Creator utility minimizes
the search time.

For applications requiring many axes to move simultaneously on
multiple PCI-8164 cards, connection diagrams in Section 3.12
should be followed to connect between CN4 connectors. Several
functions listed in Section 6.8 may be useful when writing pro-
grams for such applications.

Card No. Axis 1 Axis 2 Axis 3 Axis 4
1 0 1 2 3
2 4 5 6 7
3 8 9 10 11

124 Operation Theory

4.6 Change position or speed on the fly
The card provides the ability to change position or speed while an
axis is moving. Changing speed/position on the fly means that the
target speed/position can be altered after the motion has started.
However, certain limitations do exist. Carefully study all constraints
before implementing the on-the-fly function.

4.6.1 Change speed on the fly

The change speed on the fly function is only applicable for single
axis motion. Both velocity mode motion and position mode motion
are acceptable. The graph above shows the basic operating the-
ory.

The following functions are related to changing speed on the fly:

_8164_v_change() – change the MaxVel on the fly

_8164_cmp_v_change() –change velocity when the general com-
parator comes into existence

_8164_sd_stop() – slow down to stop

_8164_emg_stop() – immediately stop

_8164_fix_speed_range() – define the speed range

_8164_unfix_speed_range() – release the speed range constrain

The first four functions can be used for changing speed during a
single axis motion. Functions _8164_sd_stop() and
_8164_emg_stop() are used to decelerate the axis speed to 0.

Operation Theory 125

_8164_fix_speed_range() is necessary before any
_8164_v_change() function, and
_8164_unfix_speed_range() releases the speed range con-
strained by _8164_fix_speed_range().

The function _8164_cmp_v_change() almost has the same
function as _8164_v_change(), except
_8164_cmp_v_change() acts only when a general comparator
comes into existence. Refer to section 4.4.4 for more details about
the general comparator.

The last four functions are relatively easy to understand and use.
So, the discussion below will be focused on _8164_v_change().

Theory of _8164_v_change():

The _8164_v_change() function is used to change MaxVel on
the fly. In a normal motion operation, the axis starts at StrVel
speed, accelerates to MaxVel, and then maintains MaxVel until it
enters the deceleration region. If MaxVel is change during this
time, it will force the axis to accelerate or decelerate to a new Max-
Vel in the time period defined by the user. Both Trapezoidal and S-
curve profiles are applicable. The speed changes at a constant
acceleration for a Trapezoidal and constant jerk for a S-curve pro-
file.

126 Operation Theory

Constraints of _8164_v_change():
In positioning mode, when changing to a higher velocity, there
must be enough remaining pulses to decelereate after reaching
new velocity, else the _8164_v_change() will return an error
and the velocity remains unchanged.

For example:

A trapezoidal relative motion is applied:
_8164_start_tr_move(0,10000,0,1000,0.1,0.1).

It causes axis 0 to move for 10000 pulses, and the maximum
velocity is 1000 PPS.

At 5000 pulses, _8164_v_change(0,NewVel,Tacc) is applied.

1. To set the maximum velocity, the function
_8164_fix_speed_range() must be used in order
for the function _8164_v_change() to work correctly. If
_8164_fix_speed_range() is not applied, MaxVel
set by _8164_v_move() or
_8164_start_ta_move() automatically becomes the
maximum velocity, where _8164_v_change() can not be
exceeded.

NewVel(PPS) Tacc(Sec)
Necessary remaining pulses

OK / Error
Acceleration Deceleration Total

5000 0.1 300 313 613 OK
5000 1 3000 3125 6125 Error
10000 0.1 550 556 1106 OK
50000 0.1 2550 2551 5101 Error

Operation Theory 127

2. During the acceleration or deceleration period, using
_8164_v_change() is not recommended. Even if it
does work in most cases, the acceleration and deceler-
ation time is not guaranteed.

Example:

There are three speed change sensors during an absolute move
for 200000 pulses. Initial maximum speed is 10000 pps. Change
to 25000 pps if Sensor 1 is touched. Change to 50000 pps if Sen-
sor 2 is touched. Change to 100000 pps if Sensor 3 is touched.
Then the code for this application and the resulting velocity pro-
files are shown below.

#include “pci_8164.h”
_8164_fix_speed_range(axis, 100000.0);
_8164_start_ta_move(axis, 200000.0, 1000, 10000,

0.02,0.01);
while(!_8164_motion_done(axis))
 {
// Get sensor’s information from another I/O card

128 Operation Theory

if((Sensor1==High) && (Sensor2==Low) && (Sensor3
== Low))

_8164_v_change(axis, 25000, 0.02);
else if((Sensor1==Low) && (Sensor2==High) &&

(Sensor3 == Low))
_8164_v_change(axis, 50000, 0.02);
else if((Sensor1==Low) && (Sensor2==Low) &&

(Sensor3 == High))
_8164_v_change(axis, 100000, 0.02);
}

The information of the three sensors is acquired from another I/O
card and the resulting velocity profile from experiment is shown
below:

Related functions:

_8164_v_change(), _8164_sd_stop(), _8164_emg_stop()
_8164_fix_speed_range(),_8164_unfix_speed_range()
_8164_get_currebt_speed()

Refer to section 6.5

Operation Theory 129

4.6.2 Change position on the fly
When operating in single-axis absolute pre-set motion, it is possi-
ble to change the target position during moving by using the func-
tion _8164_p_change().

Theory of _8164_p_change():
The _8164_p_change() is only applicable for the
_8164_start_ta_move(), and _8164_start_sa_move()
functions. This function changes the target position, defined
originally by these two functions. After changing position, the
axis will move to the new target position and totally disregard
the original position. If the new position is in the passed path, it
will cause the axis to decelerate and eventually stop, then
reverse, as shown in the chart. The acceleration and decelera-
tion rate, and StrVel and MaxVel are kept the same as the orig-
inal setting.

130 Operation Theory

Constraints of _8164_p_change():

1. _8164_p_change() is only applicable on single-axis
absolute pre-set motion, i.e.
_8164_start_ta_move(), and
_8164_start_sa_move() only.

2. Position change during the deceleration period is not
allowed.

3. There must be enough distance between the new target
position and current position where
_8164_p_change() is executed because the 8164
needs enough space to finish deceleration.

For example:

A trapezoidal absolute motion is applied:
_8164_start_ta_move(0,10000,0,1000,0.5,1).

It cause axis 0 to move to pulse 10000 position with a maximum
velocity of 1000 PPS. The necessary number of pulses to deceler-
ate is 0.5*1000*1 = 500.

At position “CurrentPos,” _8164_p_change(0, NewPos) is
applied.

Operation Theory 131

Related function:

_8164_p_change(): refer to section 6.6

NewPos CurrentPos OK / Error Note
5000 4000 OK
5000 4501 Error
5000 5000 Error
5000 5499 Error
5000 6000 OK Go back
5000 9499 OK Go back
5000 9500 Error
5000 9999 Error

132 Operation Theory

4.7 Position compare and Latch
The card provides position comparison functions on axes 0 and 1,
and position latching functions on axes 2 and 3. The comparison
function is used to output a trigger pulse when the counter reaches
a preset value set by the user. CMP1 (axis 0) and CMP2 (axis 1)
are used as a comparison trigger. The latch function is used to
capture values on all 4 counters (refer to section 4.4) at the instant
the latch signal is activated. LTC3 (axis 2) and LTC4 (axis 3) are
used to receive latch pulses.

4.7.1 Comparators of the 8164
There are 5 comparators for each axis of the card. Each compara-
tor has its unique functionality. Below is a table for comparison:

Note: Only comparator 5 has the ability to trigger an output pulse
via the CMP pin.

Comparators 1 and 2 are used for soft limits. Refer to section 4.9.
Comparator 3 is used to compare with the position error counter. It
is useful for detecting if a stepping motor has lost any pulses. To
enable/disable the step-losing detection, or set the allowable toler-
ance use _8164_set_error_counter_check()

The 8164 will generate an interrupt if step-losing is enabled and
has occurred.

Operation Theory 133

Comparator 4 is a general purpose comparator, which will gener-
ate an interrupt (default reaction) if the comparing condition comes
into existence. The comparing source counter can be any counter.
The compared value, source counter, comparing method, and
reaction are set by the function
_8164_set_general_comparator().

134 Operation Theory

4.7.2 Position compare with trigger output
The 5th comparator, whose comparing source can be feedback or
command position counter, performs the position compare func-
tion. Only the first 2 axes (0 and 1) can do a position comparison
with trigger output. The position comparison function triggers a
pulse output via the CMP pin, when the comparing condition
comes into existence.

The comparing condition consists of two parts, the first is the value
to be compared, and the second is the comparing mode. Compar-
ing mode can be “>“, “=“ or “<“. The easiest way to use the posi-
tion comparison function is to call the function:

_8164_set_trigger_comparator (AxisNo, CmpSrc,
Method, Data)

The second parameter, Method, indicates the comparing method,
while the third parameter, Data, is for the value to be compared. In
continuous comparison, this data will be ignored automatically
since the compare data is built by other functions.

Continuously comparison with trigger output

To compare multiple data continuously, functions for building com-
parison tables are provided and are shown below:

1. _8164_build_comp_function(AxisNo, Start, End, Inter-
val)

2. _8164_build_comp_table(AxisNo, tableArray, Size)

3. _8164_set_auto_compare(AxisNo, SelectSource)

Note: Turn off all interrupt function and reduce accessing 8164 like
get_position or issuing other commands when continuously
comparison functions are running.

The first function builds a comparison list using start and end
points and constant intervals. The second function builds on an
arbitrary comparison table (data array). The third function is a
source comparing selection function. Set this parameter to 1 to
use the FIFO mode. Once it is set, the compare mechanism will
start. Users can check current values used for comparison using
the function_8164_check_compare_data():

Operation Theory 135

Example: Using the continuous position comparison function.

In this application, the table is controlled by the motion command,
and the CCD camera is controlled by the position comparison out-
put of the 8164. An image of the moving object is easily obtained.

Working Spec: 34000 triggering points per stroke, trigger speed is
6000 pts/sec)

Program settings:

Table starts moving from 0 to 36000
Compare points are on 1001 35000, total 34000 pts, points
to points interval = 1 pulse
Moving Speed is 6000 pps
Compare condition is “=“

Program code:
_8164_set_trigger_comparator(0, 1, 1, 1001);
_8164_build_compare_function(0, 1001, 35000, 1,

1);
_8164_set_auto_compare(0, 1);
_8164_start_tr_move(0, 36000, 0, 6000, 0.01,

0.01);

Monitoring or Check the current compare data:
_8164_check_compare_data(0, 5, *CurrentData);

136 Operation Theory

Users can use this function to check if auto-trigger is running.

Results:

Operation Theory 137

The Value block in this figure is the position where the comparison
occurs, and where the data can be checked by using
_8164_check_compare_data().

Note that at the final compared point, load an After-final point into
the Value block. Fill a dummy point into the comparison table array
at the final position. This value must be far enough from the table’s
stroke.

If using _build_compare_function(), a dummy “after-final”
point is automatically loaded. This value is equal to (End point +
Interval x Total counts) x moving ratio.

Related functions:

_8164_set_trigger_comparator(),
_8164_build_comp_function()
_8164_build_comp_table(), _8164_set_auto_compare()
_8164_check_compare_data(),_8164_set_trigger_type ()

Refer to section 6.16

138 Operation Theory

4.7.3 Position Latch
The position latch is different than the position compare function in
the following way: the position compare function triggers a pulse
output via the CMP, when the comparing condition comes into
existence, the position latch function receives pulse inputted via
the LTC, and then captures all data in all counters at that instant
(refer to section 4.4). The latency between the occurring latch sig-
nal and the finish position of the captured data is extremely short
as the latching procedure is done by hardware. Only axes 2 and 3
can perform a position latch function. LTC3 (axis 2) and LTC4
(axis 3) are used to receive latch pulses.

To set the latch logic use _8164_set_ltc_logic().

To obtain the latch values of the counters use
_8164_get_latch_data(AxisNo, CntNo, Pos). The sec-
ond parameter “CntNo” is used to indicate the counter of which the
latched data will be read.

Related function:

_8164_set_ltc_logic(),_8164_get_latch_data(: refer to sec-
tion 6.16

Operation Theory 139

4.8 Hardware backlash compensator and vibration
suppression
Whenever direction change has occurred, the card outputs a
backlash corrective pulse before sending the next command. The
function _8164_backlash_comp() sets the pulse number.

In order to minimize vibration when a motor stops, the card can
output a single pulse for a negative direction and then single pulse
for a positive direction right after completion of a command move-
ment. Refer to the timing chart below, the
_8164_suppress_vibration() function is used to set T1 and
T2.

Related function:

_8164_backlash_comp(), _8164_suppress_vibration()

Refer to section 6.6

140 Operation Theory

4.9 Software Limit Function
The card provides two software limits for each axis. The soft limit
is extremely useful in protecting a mechanical system as it works
like a physical limit switch when correctly set.

The soft limits are built on comparators 1 and 2 (Refer to section
4.7.1) and the comparing source is the command position counter.

A preset limit value is set in comparators 1 and 2, then, when the
command position counter reaches the set limit value, the card
reacts by generating the stop immediately or decelerates to stop
pulse output.

To set the soft limit: _8164_set_softlimit();
To enable soft limit: _8164_enable_softlimit();
To disable soft limit: _8164_diable_softlimit();

Note: The soft limit is only applied to the command position and
not the feedback position (Refer to 4.4). In cases where the mov-
ing ratio is not equal to 1, it is necessary to manually calculate its
corresponding command position where the soft limit would be,
when using _8164_set_softlimit().

Related functions:

_8164_set_softlimit(), _8164_enable_softlimit(),
_8164_diable_softlimit()

Refer to section 6.16

Operation Theory 141

4.10 Interrupt Control
The 8164 motion controller can generate an INT signal to the host
PC. The parameter, “intFlag,” of the software function
_8164_int_control(), can enable/disable the interrupt ser-
vice.

After a interrupt occurs, the function _8164_get_int_status()
is used to receive the INT status, which contains information about
the INT signal. The INT status of the 8164 comprises of two inde-
pendent parts: error_int_status and event_int_status.
The event_int_status recodes the motion and comparator
event under normal operation. This INT status can be masked by
_8164_set_int_factor(). The error_int_status is for abnor-
mal stoppage of the 8164 (i.e. EL, ALM, etc.). This INT cannot be
masked. The following are the definitions of the two int_status:

error_int_status: can be masked by function call
_8164_int_factor()

Bit Description
0 +Soft Limit on and stop
1 -Soft Limit on and stop
2 (Reserved)
3 General Comparator on and stop
4 (Reserved)
5 +End Limit on and stop
6 -End Limit on and stop
7 ALM happen and stop
8 CSTP, Sync. stop on and stop
9 CEMG, Emergency on and stop

10 SD on and slow down to stop
11 (Reserved)
12 Interpolation Error and stop
13 Other axis stop on Interpolation
14 Pulse input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error
17 Pulse input signal error

11-31 (Reserved)

142 Operation Theory

event_int_status: can not be masked if interrupt service is acti-
vated.

Bit Description
0 Normal Stop
1 Next command starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 Position Soft Limit On
9 Negative Soft Limit On
10 Error Comparator Compared
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axis2,3
15 ORG Input and Latched
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20-30 (Reserved)
31 Axis Stop Interrupt controlled by continuous motion command

Operation Theory 143

Use Events to handle interrupts under Windows
To detect an interrupt signal from the card in Windows, you must
first create an events array, then use the functions provided by the
card to obtain the interrupt status. A sample program is listed
below:

Steps:

1. Define a Global Value to deal with interrupt events. Each
event is linked to an axis
HANDLE hEvent[4];

2. Enable interrupt event service and setup interrupt factors
and enable interrupt channel
_8164_int_enable(0,hEvent);
_8164_set_int_factor(0,0x01); // Normal Stop

interrupt
_8164_int_control(0,1);

3. Start move command
_8164_start_tr_move(0,12000,0,10000,0.1,0.1);

4. Wait for axis 0 interrupt event
STS=WaitForSingleObject(hEvent[0],15000);
ResetEvent(hEvent[0]);

if(STS==WAIT_OBJECT_0)
{
_8164_get_int_status(0, &error, &event);
if(event == 0x01) …… ; // Success
}
else if(STS==WAIT_TIME_OUT)
{

// Time out, fail
}

144 Operation Theory

8164 Interrupt Service Routine (ISR) with DOS
A DOS function library is included with the card for developing
applications under DOS environment. This library also includes
a few functions to work with the ISR. It is highly recommended
that programs be written according to the following example for
applications working with the ISR. Since the PCI bus has the
ability to do IRQ sharing when multiple cards are installed,
each card must have a corresponding ISR. The library pro-
vided have the names of the ISR fixed, for example:
_8164_isr0(void), _8164_isr1(void)…etc. A sample program is
described below. It assumes that two cards are present in the
system, axes 1 and 5 are requested to work with the ISR:

// header file declare
#include“pci_8164.h”

void main(void) {
I16 TotalCard,i; // Initialize cards
_8164_initial(&TotalCard);
if(TotalCard == 0) exit(1);

_8164_set_int_factor(0,0x1);// Set int factor
_8164_int_control(0,1);// enable int service

 :
: // Insert User’s Code in Main
: //

 _8164_int_control(0,0);// disable int
service

 _8164_close();// Close PCI-8164
}

void interrupt _8164_isr0(void)
{
U16 irq_status;// Declaration
U16 int_type;

I16 i;
U32 i_int_status1[4],i_int_status2[4];

disable(); // Stop all int service

Operation Theory 145

_8164_get_irq_status(0, &irq_status);// Check if
this card’s int

if(irq_status)
{
for(i=0;i<4;i++) _8164_enter_isr(i);// enter ISR
 for(i=0;i<4;i++)
{

_8164_get_int_type(i, &int_type);
// check int type

if(int_type & 0x1)
{

_8164_get_error_int(i, &int_status1[i]);

 // Insert User’s Code in Error INT

//
//

}
if(int_type & 0x2)
{
_8164_get_event_int(i, &int_status2[i]);

 // Insert User’s Code in Event INT
 //
 //

}
}
// end of for every axis on card0

for(i=0;i<4;i++) _8164_leave_isr(i);
}
 else _8164_not_my_irq(0);

 // Send EOI
_OUTPORTB(0x20, 0x20);
 _OUTPORTB(0xA0, 0x20);
 enable(); // allow int service
}

void interrupt _8164_isr1(void){}
void interrupt _8164_isr2(void){}
void interrupt _8164_isr3(void){}
void interrupt _8164_isr4(void){}

146 Operation Theory

void interrupt _8164_isr5(void){}
void interrupt _8164_isr6(void){}
void interrupt _8164_isr7(void){}
void interrupt _8164_isr8(void){}
void interrupt _8164_isr9(void){}
void interrupt _8164_isra(void){}
void interrupt _8164_isrb(void){}

Related functions:

_8164_int_control(), _8164_set_int_factor(),
_8164_int_enable(), _8164_int_disable(),
_8164_get_int_status(), _8164_link_interrupt(),
_8164_get_int_type(), _8164_enter_isr(),
_8164_leave_isr()
_8164_get_event_int(), _8164_get_error_int(),
_8164_get_irq_status()
_8164_not_my_irq(), _8164_isr0-9, a, b

Refer to section 6.14

Operation Theory 147

4.11 PXI Trigger Bus (PXI-8164 only)
There are eight general trigger channels in PXI bus. They are
called PXI_TRG[0] to PXI_TRG[7]. All channels can be pro-
grammed as input or output. These trigger channels are for inter-
board control synchronization.

For example, if there are two PXI cards, card A and card B in one
system, Card A will send a trigger signal through PXI_TRG to card
B and card B is waiting for this signal to do some action. There is
another dedicated channel for trigger input and output, They are
called PXI_STAR(input) and STAR_TRG(output). They can not be
programmed as input or ouput individually. They can only be
enabled or disabled.

This section describes the PXI_TRG’s arrangement in PXI-8164
and how it is used. The following figure is the block diagram of PXI
bus.

148 Operation Theory

If you want to connect STA, STP, and CEMG to the PXI trigger
bus, they can only set it to channel 5, 6, and 7, individually. STA
may also be connected to PXI_START by function selection. Also,
PXI_START’s status could be read back through this function.

If you want to connect CMP1, CMP2 and AP6 to PXI trigger bus,
they can set it to one of the PXI_TRG[7:0] by setting them as out-
put. There is no dedicated channel for these two signals. Any
sources active will force all of the PXI_TRG output. You may also
enable STAR_TRG triggering.

If you want to control the PXI trigger bus’ output by software, use
the software trigger mode for these channels. All of the
PXI_TRIG[7:0] could be used for this mode as output. Also, it can
be set as input and may be readback in any time.

Related section: 6.22

Motion Creator 149

5 Motion Creator
After installing the hardware (Chapters 2 and 3), it is necessary to
correctly configure all cards and double-check the system before
running. This chapter gives guidelines for establishing a control
system and manually testing the cards to verify correct operation.
The Motion Creator software provides a simple yet powerful
means to setup, configure, test, and debug a motion control sys-
tem that uses the PCI-/MPC-/PXI-8164 cards.

Note: Motion Creator is only available for Windows® 95/98 or Win-
dows® NT/2000/XP operating system and a monitor with a screen
resolution of 800x600 or higher. Motion Creator does not DOS
environments.

150 Motion Creator

5.1 Execute Motion Creator
After installing the software drivers for the card in Windows® 95/
98/NT/2000/XP, the motion creator program is located at <chosen
path>\PCI-Motion\MotionCreator. To launch the program, double-
click on the executable file or click Start > Program Files > PCI-
Motion > MotionCreator.

Motion Creator 151

5.2 Notes on Motion Creator
1. Motion Creator is a program written in VB 5.0, and is

available only for Windows® 95/98/NT/2000/XP OS and
a monitor with a screen resolution of 800x600 or higher.
Motion Creator does not support DOS.

2. Motion Creator enables you to save settings and config-
urations for the card(s). Saved configurations are auto-
matically loaded the next time Motion Creator is
launched. The 8164.ini and 8164MC.ini files in Win-
dows root directory saves all settings and configura-
tions.

3. To duplicate configurations from one system to another,
copy 8164.ini and 8164MC.ini into the Windows root
directory.

4. When multiple cards use the same saved Motion Creator
configuration files, the DLL function call
_8164_config_from_file() can be invoked within a
user developed program. This function is also available
in DOS environment.

152 Motion Creator

5.3 Using Motion Creator

5.3.1 Main Menu
The main menu appears after launching the Motion Creator. Refer
to the illustration on the next page for the description of the main
menu functions.

5.3.2 Interface I/O Configuration Menu
This menu configures EL, ORG, EZ, ERC, ALM, INP, SD, and
LTC.

Motion Creator 153

1. ALM Logic and Response mode: Selects the logic and
response modes of ALM signal. The related function call
is _8164_set_alm().

2. INP Logic and Enable/Disable selection: Selects the
logic, and enables/disables the INP signal. The related
function call is _8164_set_inp()

3. ERC Logic and Active timing: Selects the Logic and
Active timing of the ERC signal. The related function call
is _8164_set_erc().

4. EL Response mode: Selects the response mode of the
EL signal. The related function call is
_8164_set_el().

5. ORG Logic: Selects the logic of the ORG signal. The
related function call is _8164_set_home_config().

6. EZ Logic: Selects the logic of the EZ signal. The related
function call is _8164_set_home_config().

7. SD Configuration: Configures the SD signal. The
related function call is _8164_set_sd().

154 Motion Creator

8. LTC Logic: Selects the logic of the LTC signal. The
related function call is _8164_set_ltc_logic().

9. Buttons:

Next Axis: Changes the operating axis.
Save Config: Saves current configuration to 8164.ini.
Operate: Go to the operation menu. Refer to section
5.3.4.
Config Pulse & INT: Go to the Pulse I/O and Interrupt
Configuration menu. Refer to section 5.3.3.
Back: Returns to the main menu.

Motion Creator 155

5.3.3 Pulse I/O and Interrupt Configuration Menu
This menu configures the pulse input/output and move ratio and
INT factor.

1. Pulse Output Mode: Selects the output mode of the
pulse signal (OUT/ DIR). The related function call is
_8164_set_pls_outmode().

2. Pulse Input: Sets the configurations of the Pulse input
signal(EA/EB). The related function calls are
_8164_set_pls_iptmode(),
_8164_set_feedback_src().

3. INT Factor: Selects factors to initiate the event int. The
related function call is _8164_set_int_factor().

4. Buttons:

Next Axis: Changes the operating axis.
Save Config: Saves the current configuration to
8164.ini.
Operate: Go to the operation menu. Refer to section 5.3.
Config Pulse & INT: Go to the Pulse I/O and Interrupt
Configuration menu. Refer to section 5.3.
Back: Return to the main menu.

156 Motion Creator

5.3.4 Operation menu:
This menu changes the settings for a selected axis, including
velocity mode motion, preset relative/absolute motion, manual
pulse move, and home return.

1. Position:

Command: displays the value of the command counter.
The related function is _8164_get_command().
Feedback: displays the value of the feedback position
counter. The related function is
_8164_get_position()

Pos Error: displays the value of the position error
counter. The related function is
_8164_get_error_counter().
Target Pos: displays the value of the target position
recorder. The related function is
_8164_get_target_pos().

2. Position Reset: Sets all positioning counters to a speci-

Motion Creator 157

fied value. The related functions are:

 _8164_set_position()

 _8164_set_command()

 _8164_reset_error_counter()

 _8164_reset_target_pos()

3. Motion Status: Displays the returned value of the
_8164_motion_done function. The related function is
_8164_motion_done().

4. INT Status:

Event: displays the event_int_status (in hexadecimal).
The related function is _8164_get_int_status().
Error: displays the error_int_status (in hexadecimal).
The related function is _8164_get_int_status().
Count: total count of interrupt.
Clear Button: clears all INT status and counter to 0.

5. Velocity: The absolute value of velocity in units of PPS.
The related function is
_8164_get_current_speed().

6. Show Velocity Curve Button: Opens up a window
showing a velocity vs. time curve. In this curve, every
100 ms, a new velocity data point will be added. Click
the same button to close the window. To clear data, click
on the curve.

158 Motion Creator

7. Operation Mode: Select operation mode.

Absolute Mode: Sets the Position1 and Position2 as
absolution target positions for motion. The related func-
tions are _8164_start_ta_move(),
_8164_start_sa_move().
Relative Mode: Uses Distance as relative displacement
for motion. The related function is
_8164_start_tr_move(),
_8164_start_sr_move().
Cont. Move: Velocity motion mode. The related function
is _8164_tv_move(), _8164_start_sv_move().
Manual Pulser Move: Manual Pulse motion. Clicking
this button invokes the manual pulse configuration win-
dow.
Home Mode: Home return motion. Clicking this button
invokes the home move configuration window. The
related function is _8164_set_home_config(). If the
ATU check box is checked, it will execute auto homing
when motion starts.
ERC Output: Select to send the ERC signal when home
move is completed.
EZ Count: Sets the EZ count number, which is effective
on certain home return modes.
Mode: Select from 13 home return modes.
Home Mode figure: The figure below explains the
actions of the individual home modes.
Close: Click this button to close the window.

Motion Creator 159

ORG Distance: The length when ORG is ON

8. Position: Sets the absolute position for Absolute Mode.
This is only available when the Absolute Mode is
selected.

9. Distance: Sets the relative distance for Relative Mode.
This is only available when Relative Mode is selected.

10.Repeat Mode: When you select On, the motion will
become a repeat mode (forward<->backward or
position1<->position2). This is only available when Rela-
tive Mode or Absolute Mode is selected.

11.Vel. Profile: Selects the velocity profile. Both Trapezoi-
dal and S-Curve are available for Absolute Mode, Rela-
tive Mode, and Cont. Move.

12.Motion Parameters: Sets the parameters for single axis
motion. This parameter is meaningless if Manual Pulser
Move is selected, since the velocity and moving distance
is decided by pulse input.

Start Velocity: Sets the start velocity of motion in units
of PPS. In Absolute Mode or Relative Mode, only the
value is effective. For example, -100.0 is the same as

160 Motion Creator

100.0. In Cont. Move, both the value and sign are effec-
tive.
–100.0 means 100.0 in the minus direction.
Maximum Velocity: Sets the maximum velocity of
motion in units of PPS. In Absolute Mode or Relative
Mode, only the value is effective. For example, -5000.0
is the same as 5000.0. In Cont. Move, both the value
and sign is effective. –5000.0 means 5000.0 in the
minus direction.
Accel. Time: Sets the acceleration time in units of sec-
ond.
Decel. Time: Sets the deceleration time in units of sec-
ond.
SVacc: Sets the S-curve range during acceleration in
units of PPS.
SVdec: Sets the S-curve range during deceleration in
unit sof PPS.
Move Delay: This setting is available only when repeat
mode is On. It causes the card to delay for a specified
time before it continues to the next motion.

13.Speed Range: Sets the max speed of motion. When you
select Not Fix, the Maximum Speed automatically
becomes the maximum speed range, which can not be
exceeded by on-the-fly velocity change.

14.Servo On: Sets the SVON signal output status. The
related function is _8164_set_servo().

15.Play Key:

Left play button: Clicking this button lets the card start
to outlet pulses according to previous setting.
In Absolute Mode, this causes the axis to move to
position1.
In Relative Mode, this causes the axis to move forward.
In Cont. Move, this causes the axis to start to move
according to the velocity setting.

Motion Creator 161

In Manual Pulser Move, this causes the axis to go into
pulse move. The speed limit is the value set by Maxi-
mum Velocity.
Right play button: Click this button to let the card start
to outlet pulses according to previous setting.
In Absolute Mode, this causes the axis to move to posi-
tion.
In Relative Mode, this causes the axis to move back-
wards.
In Cont. Move, this causes the axis to start to move
according to the velocity setting, but in the opposite
direction.
In Manual Pulser Move, this causes the axis to go into
pulse move. The speed limit is the value set by Maxi-
mum Velocity.

16.Change Position On The Fly Button: When enabled,
you can change the target position of the current
motion. The new position must be defined in Position2.
The related function is _8164_p_change().

17.Change Velocity On The Fly Button: When enabled,
you can change the velocity of the current motion. The
new velocity must be defined in Maximum Velocity. The
related function is _8164_v_change()

18.Stop Button: Clicking this button causes the card to
decelerate and stop. The deceleration time is defined in
Decel. Time. The related function is
_8164_sd_stop().

19.I/O Status: The status of motion I/O. Light-On means the
motion I/O is active while Light-Off indicates inactivity.
The related function is _8164_get_io_status().

162 Motion Creator

20.Buttons:

Next Axis: Changes the operating axis.
Save Config: Saves the current configuration to
8164.ini.
Config Pulse & INT: Go to the Pulse IO and Interrupt
Configuration menu. Refer to section 5.3.3
Config Interface I/O: Go to the Interface I/O Configura-
tion menu. Refer to section 5.3.2
Back: Return to the main menu.

Function Library 163

6 Function Library
This chapter describes the supporting software for the PCI-/MPC-/
PXI-8164 card. You can use these functions to develop programs
in C, C++, or Visual Basic. If Delphi is used as the programming
environment, you need to manually transform the header files
8164.h.

6.1 List of Functions

Initialization Section 6.3

Pulse Input/Output Configuration Section 6.4

Function Name Description

_8164_initial Card initialization

_8164_initialx Card initialization with I/O base address and IRQ
Channel

_8164_close Card Close
_8164_get_base_addr Get base address of 8164
_8164_get_irq_channel Get the 8164 card’s IRQ number

_8164_delay_time Delay execution of program for specified time in
units of ms.

_8164_config_from_file
Configure 8164 cards according to configuration
file i.e. 8164.ini, which is created by Motion Cre-
ator.

_8164_version_info Check the hardware and software version

Function Name Description

_8164_set_pls_outmode Set pulse command output mode
_8164_set_pls_iptmode Set encoder input mode
_8164_set_feedback_src Set counter input source

164 Function Library

Velocity mode motion Section 6.5

Single Axis Position Mode Section 6.6

Function Name Description

_8164_tv_move Accelerate an axis to a constant velocity with trape-
zoidal profile

_8164_sv_move Accelerate an axis to a constant velocity with S-
curve profile

_8164_v_change Change speed on the fly
_8164_sd_stop Decelerate to stop
_8164_emg_stop Immediately stop
_8164_fix_speed_range Define the speed range
_8164_unfix_speed_range Release the speed range constrain
_8164_get_current_speed Get current speed

_8164_verify_speed Check the min/max acceleration time under max
speed

Function Name Description

_8164_start_tr_move Begin a relative trapezoidal profile move
_8164_start_ta_move Begin an absolute trapezoidal profile move
_8164_start_sr_move Begin a relative S-curve profile move
_8164_start_sa_move Begin an absolute S-curve profile move

_8164_set_move_ratio Set the ratio of command pulse and feedback
pulse.

_8164_p_change Change position on the fly
_8164_set_pcs_logic Set the logic of PCS (Position Change Signal)
_8164_set_sd_pin Set the SD/PCS pin
_8164_backlash_comp Set backlash corrective pulse for compensation
_8164_suppress_vibration Set vibration suppressing timing
_8164_set_idle_pulse Set suppress vibration idle pulse counts
_8164_set_fa_speed Set FA speed for home mode
_8164_dwell_move Start a dwell move

Function Library 165

Linear Interpolated Motion Section 6.7

Function Name Description

_8164_start_tr_move_xy Begin a relative 2-axis linear interpolation for X & Y,
with trapezoidal profile

_8164_start_ta_move_xy Begin an absolute 2-axis linear interpolation for X &
Y, with trapezoidal profile

_8164_start_sr_move_xy Begin a relative 2-axis linear interpolation for X & Y,
with S-curve profile

_8164_start_sa_move_xy Begin an absolute 2-axis linear interpolation for X &
Y, with S-curve profile

_8164_start_tr_move_zu Begin a relative 2-axis linear interpolation for Z &
U, with trapezoidal profile

_8164_start_ta_move_zu Begin an absolute 2-axis linear interpolation for Z &
U, with trapezoidal profile

_8164_start_sr_move_zu Begin a relative 2-axis linear interpolation for Z &
U, with S-curve profile

_8164_start_sa_move_zu Begin an absolute 2-axis linear interpolation for Z &
U, with S-curve profile

_8164_start_tr_line2 Begin a relative 2-axis linear interpolation for any 2
axes, with trapezoidal profile

_8164_start_sr_line2 Begin a relative 2-axis linear interpolation for any 2
axes, with S-curve profile

_8164_start_ta_line2 Begin an absolute 2-axis linear interpolation for any
2 axes, with trapezoidal profile

_8164_start_sa_line2 Begin an absolute 2-axis linear interpolation for any
2 axes, with S-curve profile

_8164_start_tr_line3 Begin a relative 3-axis linear interpolation with trap-
ezoidal profile

_8164_start_sr_line3 Begin a relative 3-axis linear interpolation with S-
curve profile

_8164_start_ta_line3 Begin an absolute 3-axis linear interpolation with
trapezoidal profile

_8164_start_sa_line3 Begin an absolute 3-axis linear interpolation with S-
curve profile,

_8164_start_tr_line4 Begin a relative 4-axis linear interpolation with trap-
ezoidal profile

166 Function Library

_8164_start_sr_line4 Begin a relative 4-axis linear interpolation with S-
curve profile

_8164_start_ta_line4 Begin an absolute 4-axis linear interpolation with
trapezoidal profile

_8164_start_sa_line4 Begin an absolute 4-axis linear interpolation with S-
curve profile

_8164_set_axis_option Choose interpolation speed mode

Function Name Description

Function Library 167

Circular Interpolation Motion Section 6.8

Function Name Description

_8164_start_a_arc_xy Begin an absolute circular interpolation for X & Y
_8164_start_r_arc_xy Begin a relative circular interpolation for X & Y
_8164_start_a_arc_zu Begin an absolute circular interpolation for Z & U
_8164_start_r_arc_zu Begin a relative circular interpolation for Z & U

_8164_start_a_arc2 Begin an absolute circular interpolation for any 2 of
the 4 axes

_8164_start_r_arc2 Begin a relative circular interpolation for any 2 of the
4 axes

_8164_start_tr_arc_xyu Begin a t-curve relative arc with U axis sync.
_8164_start_ta_arc_xyu Begin a t-curve absolute arc with U axis sync.
_8164_start_sr_arc_xyu Begin a s-curve relative arc with U axis sync
_8164_start_sa_arc_xyu Begin a s-curve absolute arc with U axis sync
_8164_start_tr_arc_xy Begin a t-curve relative circular interpolation for X & Y

_8164_start_ta_arc_xy Begin a t-curve absolute circular interpolation for X &
Y

_8164_start_sr_arc_xy Begin a s-curve relative circular interpolation for X &
Y

_8164_start_sa_arc_xy Begin a s-curve absolute circular interpolation for X &
Y

_8164_start_tr_arc_zu Begin a t-curve relative circular interpolation for Z & U

_8164_start_ta_arc_zu Begin a t-curve absolute circular interpolation for Z &
U

_8164_start_sr_arc_zu Begin a s-curve relative circular interpolation for Z &
U

_8164_start_sa_arc_zu Begin a s-curve absolute circular interpolation for Z &
U

_8164_start_tr_arc2 Begin a t-curve relative circular interpolation for any 2
of the 4 axes

_8164_start_ta_arc2 Begin a t-curve absolute circular interpolation for any
2 of the 4 axes

_8164_start_sr_arc2 Begin a s-curve relative circular interpolation for any
2 of the 4 axes

_8164_start_sa_arc2 Begin a s-curve absolute circular interpolation for any
2 of the 4 axes

168 Function Library

Home Return Mode Section 6.9

Manual Pulser Motion Section 6.10

Motion StatusSection 6.11

Motion Interface I/O Section 6.12

Function Name Description

_8164_set_home_config Set the home/index logic configuration
_8164_home_move Begin a home return action
_8164_escape_home Escape Home Function
_8164_home_search Auto-Search Home Switch

Function Name Description

_8164_set_pulser_iptmode Set pulser input mode
_8164_pulser_vmove Start pulser v move
_8164_pulser_pmove Start pulser p move
_8164_pulser_home_move Start pulser home move
_8164_set_pulser_ratio Set manual pulser ratio for actual output pulse rate
_8164_pulser_r_line2 pulser mode for 2-axis linear interpolation
_8164_pulser_r_arc2 pulser mode for 2-axis arc interpolation

Function Name Description

_8164_motion_done Return the motion status

Function Name Description

_8164_set_alm Set alarm logic and operating mode
_8164_set_inp Set INP logic and operating mode
_8164_set_erc Set ERC logic and timing
_8164_set_servo Set state of general purpose output pin
_8164_set_sd Set SD logic and operating mode
_8164_set_el Set EL operating mode

Function Library 169

Motion I/O Monitoring Section 6.13

Interrupt Control Section 6.14

Function Name Description

_8164_get_io_status Get all the motion I/O status of 8164

Function Name Description

_8164_int_control Enable/Disable INT service
_8164_int_enable Enable event (For Windows only)
_8164_int_disable Disable event (For Windows only)
_8164_get_int_status Get INT Status (For Windows only)

_8164_link_interrupt Set link to interrupt call back function (For Windows
only)

_8164_set_int_factor Set INT factor
_8164_get_int_type Get INT type (For DOS only)
_8164_enter_isr Enter interrupt service routine (For DOS only)
_8164_leave_isr Leave interrupt service routine (For DOS only)
_8164_get_event_int Get event status (For DOS only)
_8164_get_error_int Get error status (For DOS only)
_8164_get_irq_status Get IRQ status (For DOS only)
_8164_not_my_irq Not My IRQ (For DOS only)
_8164_isr0-9, a, b Interrupt service routine (For DOS only)
_8164_set_axis_stop_int Enable axis stop int
_8164_mask_axis_stop_int Mask axis stop int

170 Function Library

Position Control and Counters Section 6.15

Function Name Description

_8164_get_position Get the value of the feedback position counter
_8164_set_position Set the feedback position counter
_8164_get_command Get the value of the command position counter
_8164_set_command Set the command position counter
_8164_get_error_counter Get the value of the position error counter
_8164_reset_error_counter Reset the position error counter
_8164_get_general_counter Get the value of the general counter
_8164_set_general_counter Set the general counter
_8164_get_target_pos Get the value of the target position recorder
_8164_reset_target_pos Reset target position recorder
_8164_get_rest_command Get remaining pulses until the end of motion
_8164_check_rdp Check the ramping down point data

Function Library 171

Position Compare and Latch Section 6.16

Continuous Motion Section 6.17

Function Name Description

_8164_set_ltc_logic Set the LTC logic
_8164_get_latch_data Get latched counter data
_8164_set_soft_limit Set soft limit
_8164_enable_soft_limit Enable soft limit function
_8164_disable_soft_limit Disable soft limit function
_8164_set_error_counter_check Step-losing detection
_8164_set_general_comparator Set general-purposed comparator
_8164_set_trigger_comparator Set Trigger comparator
_8164_set_trigger_type Set the trigger output type
_8164_check_compare_data Check current comparator data
_8164_check_compare_status Check current comparator status
_8164_set_auto_compare Set comparing data source for auto loading
_8164_build_compare_function Build compare data via constant interval
_8164_build_compare_table Build compare data via compare table
_8164_cmp_v_change Speed change by comparator
_8164_force_cmp_output Force to output trigger pulses
_8164_set_compare_mode A general function for setting comparator mode
_8164_set_compare_data A general function for setting comparator data
_8164_set_rotary_counter Set counter as a rotary counter

Function Name Description

_8164_set_continuous_move Enable continuous motion for absolute motion
_8164_check_continuous_buffer Check if the buffer is empty

172 Function Library

Multiple Axes Simultaneous Operation Section 6.18

General-purposed TTL Output Section 6.19 (PCI-8164
Only)

General-purposed DIO Section 6.20 (MPC-8164 Only)

General-purposed DIO Section 6.20 (PXI-8164 Only)

Function Name Description

_8164_set_tr_move_all Multi-axis simultaneous operation setup
_8164_set_ta_move_all Multi-axis simultaneous operation setup
_8164_set_sr_move_all Multi-axis simultaneous operation setup
_8164_set_sa_move_all Multi-axis simultaneous operation setup
_8164_start_move_all Begin a multi-axis trapezoidal profile motion
_8164_stop_move_all Simultaneously stop multi-axis motion
_8164_set_sync_option Optional sync options
_8164_set_sync_stop_mode Set the stop mode when CSTOP signal is ON
_8164_set_sync_signal_source Select internal sync. signal’s source of axis
_8164_set_sync_signal_mode Select internal sync. signal’s condition

Function Name Description

_8164_d_output Digital Output
_8164_get_dio_status Get DO status

Function Name Description

_8164_write_do Digital Output
_8164_read_di Digital Input

Function Name Description

_8164_write_axis_do Digital Output
_8164_read_axis_di Digital Input

Function Library 173

Card ID Section 6.21 (PXI-8164 Only)

PXI Trigger Bus Section 6.22 (PXI-8164 Only)

Function Name Description

_8164_enable_card_id Enable card ID’s function
_8164_check_card Check if this Card ID exist

Function Name Description

_8164_get_pxi_trigger_value Digital Output
_8164_set_pxi_trigger_value Digital Input
_8164_enable_pxi_input Enable PXI input channel
_8164_select_pxi_output Select PXI output channel

174 Function Library

6.2 C/C++ Programming Library
This section discusses the functions in detail. The function proto-
types and some common data types are declared in PCI-8164.H
or MPC-8164.H. It is recommended that you use these data types
in your application programs. The following table shows the data
type names and their range.

The functions of the cards’s software drivers use full names to rep-
resent the functions’ real meaning. The naming convention rules
are:

In a ‘C’ programming environment:

_{hardware_model}_{action_name}. e.g. _8164_Initial().

In order to recognize the difference between a C library and a VB
library, a capital “B” is placed at the beginning of each function
name e.g. B_8164_Initial().

Type Name Description Range
U8 8-bit ASCII character 0 to 255

I16 16-bit signed integer -32768 to 32767

U16 16-bit unsigned integer 0 to 65535

I32 32-bit signed long integer -2147483648 to 2147483647

U32 32-bit unsigned long integer 0 to 4294967295

F32 32-bit single-precision floating-point -3.402823E38 to 3.402823E38

F64 64-bit double-precision floating-point -1.797683134862315E308
to 1.797683134862315E309

Boolean Boolean logic value TRUE, FALSE

Function Library 175

6.3 Initialization

@ Name
_8164_initial – Card Initialization

_8164_initialx – Card Initialization with I/O base address and
IRQ channel

_8164_close – Card Close

_8164_get_base_addr – Get the base address of 8164_

_8164_get_irq_channel – Get the 8164 card’s IRQ number

_8164_delay_time – delay execution of program for specified
time in units of ms.

_8164_config_from_file – Configure 8164 card according to
configuration file i.e. 8164.ini.

_8164_version_info – Check hardware and software version
information

@ Description
_8164_Initial:

Initializes the card without assigning the hardware resources. All
8164 cards must be initialized by this function before calling other
functions. The card uses this function in all platforms because it is
Plug and Play compatible. The MPC-8164 uses this function in
Windows® 98/NT/2000/XP.

_8164_initialx:

Initializes the cards with an I/O base address and IRQ channel.
The MPC-8164 uses this function under DOS, Windows® CE, and
Linux.

_8164_close:

Closes the card and releases its resources. This function must be
called at the end of an application.

_8164_get_irq_channel:

Gets the card’s IRQ number.

176 Function Library

_8164_get_base_addr:

Get the card’s base address.

_8164_delay_time:

Delays execution of program for specified time in units of ms.

_8164_config_from_file:

Loads the configuration of the card based on the specified file. By
using Motion Creator, users can test and configure the card cor-
rectly. After pressing the save config button, the configuration is
saved as 8164.ini in the Windows directory. By specifying it in the
parameter, the configuration is automatically loaded.

When this function is executed, all cards in the system will be con-
figured as the following functions were called according to param-
eters recorded in 8164.ini.

_8164_set_pls_outmode
_8164_set_feedback_src
_8164_set_pls_iptmode
_8164_set_home_config
_8164_set_int_factor
_8164_set_el
_8164_set_ltc_logic
_8164_set_erc
_8164_set_sd
_8164_set_alm
_8164_set_inp
_8164_set_move_ratio

_8164_version_info:

Reads back version information.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_initial(I16 *existCards);
I16 _8164_close(void);
I16 _8164_get_irq_channel(I16 cardNo, U16 *irq_no

);
I16 _8164_get_base_addr(I16 cardNo, U16

*base_addr);

Function Library 177

I16 _8164_delay_time(I16 AxisNo, U32 MiniSec);
I16 _8164_config_from_file(char *filename);
I16 _8164_version_info(I16 CardNo, U16

*HardwareInfo, U16
 *SoftwareInfo, U16 *DriverInfo);

Note: In RTX environments, the type of information changes to
U32

Visual Basic (Windows 95/NT/2K/XP)
B_8164_initial (existCards As Integer) As Integer
B_8164_close () As Integer
B_8164_get_irq_channel (ByVal CardNo As Integer,

irq_no As Integer) As Integer
B_8164_get_base_addr (ByVal CardNo As Integer,

base_addr As Integer) As Integer
B_8164_delay_time (ByVal AxisNo As Integer, ByVal

MiniSec As Long) As Integer
B_8164_config_from_file(ByVal filename As

string)as integer
B_8164_version_info (ByVal CardNo As Integer,

HardwareInfo As Integer, SoftwareInfo As
Integer, DriverInfo As Integer) As Integer

@ Argument
*existCards: Number of installed 8164 cards

cardNo: Card index number

AxNo: Specifies which axis to use in measuring the delay time

*irq_no: IRQ number of an specified 8164 card

*base_addr: Base address of an specified 8164 card

*Filename: The specified filename recording the configuration of
8164. This file is created by the Motion Creator.

178 Function Library

@ Return Code
ERR_NoError
ERR_NoCardFound
ERR_PCIBiosNotExist
ERR_ConigFileOpenError

Function Library 179

6.4 Pulse Input/Output Configuration

@ Name
_8164_set_pls_outmode – Set the configuration for pulse
command output.

_8164_set_pls_iptmode – Set the configuration for feedback
pulse input.

_8164_set_feedback_src – Enable/Disable the external feed-
back pulse input

@ Description
_8164_set_pls_outmode:

Configures the output modes of command pulses. There are six
modes for command pulse output.

_8164_set_pls_iptmode:

Configures the input modes of external feedback pulses. There
are four types for feedback pulse input. This functionis only avail-
able when the Src parameter in _8164_set_feedback_src()
function is enabled.

_8164_set_feedback_src:

If external encoder feedback is available in the system, enable the
Src parameter in this function. The internal 28-bit up/down
counter counts according to the configuration of the
_8164_set_pls_iptmode() function. Otherwise, the counter
will count the command pulse output.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_pls_outmode(I16 AxisNo, I16

pls_outmode);
I16 _8164_set_pls_iptmode(I16 AxisNo, I16

pls_iptmode, I16 pls_logic);
I16 _8164_set_feedback_src(I16 AxisNo, I16 Src);

180 Function Library

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_pls_outmode (ByVal AxisNo As Integer,

ByVal pls_outmode As Integer) As Integer
B_8164_set_pls_iptmode (ByVal AxisNo As Integer,

ByVal pls_iptmode As Integer, ByVal
pls_logic As Integer) As Integer

B_8164_set_feedback_src (ByVal AxisNo As Integer,
ByVal Src As Integer) As Integer

@ Argument
AxisNo: The designated axis number to configure pulse Input/
Output.

pls_outmode: Setting of command pulse output mode

pls_iptmode: setting of encoder feedback pulse input mode

pls_logic: Logic of encoder feedback pulse

pls_logic=0, Not inverse direction
pls_logic=1, Inverse direction

Value Meaning Notes
0 OUT/DIR OUT Falling edge, DIR+ is high level
1 OUT/DIR OUT Rising edge, DIR+ is high level
2 OUT/DIR OUT Falling edge, DIR+ is low level
3 OUT/DIR OUT Rising edge, DIR+ is low level
4 CW/CCW Falling edge
5 CW/CCW Rising edge
6 4XA/B Falling edge
7 4XA/B Rising edge

Value Meaning
0 1X A/B
1 2X A/B
2 4X A/B
3 CW/CCW

Function Library 181

Src: Counter source

@ Return Code
 ERR_NoError

Value Meaning
0 External Feedback
1 Command pulse

182 Function Library

6.5 Velocity mode motion

@ Name
_8164_tv_move – Accelerate an axis to a constant velocity with
trapezoidal profile

_8164_sv_move – Accelerate an axis to a constant velocity with
S-curve profile

_8164_v_change – Change speed on the fly

_8164_sd_stop – Decelerate to stop

_8164_emg_stop – Immediately stop

_8164_fix_speed_range – Define the speed range

_8164_unfix_speed_range – Release the speed range con-
strain

_8164_get_current_speed – Get current speed

_8164_verify_speed – get speed profile’s minimum and maxi-
mum acc/dec time

@ Description
_8164_tv_move:

Accelerates an axis to the specified constant velocity with a trape-
zoidal profile. The axis continues to travel at a constant velocity
until the velocity is changed or the axis is commanded to stop. The
direction is determined by the sign of the velocity parameter.

_8164_sv_move:

Accelerates an axis to the specified constant velocity with a S-
curve profile. The axis continues to travel at a constant velocity
until the velocity is changed or the axis is commanded to stop. The
direction is determined by the sign of velocity parameter.

_8164_v_change:

Changes the moving velocity with a trapezoidal profile or S-curve
profile. Before calling this function, define the speed range by
_8164_fix_speed_range. _8164_v_change is also applicable on
pre-set motion.

Function Library 183

Note: The velocity profile is decided by an original motion profile.
When using in S-curve, set the motion to pure S-curve. Refer
to the function limitations on section 4.6.1 before using.

_8164_sd_stop:

Decelerates an axis to stop with a trapezoidal or S-curve profile.
This function is also useful when a preset move (both trapezoidal
and S-curve motion), manual move, or home return function is
performed.

Note: The velocity profile is decided by original motion profile.
_8164_emg_stop:

Immediately stops an axis. This function is also useful when a pre-
set move (both trapezoidal and S-curve motion), manual move, or
home return function is performed.

_8164_fix_speed_range:

Defines the speed range. It should be called before starting motion
that may contains velocity changing.

_8164_unfix_speed_range:

Releases the speed range constrains.

_8164_get_current_speed:

Reads the current pulse output rate of a specified axis. It is appli-
cable in any time in any operating mode.

_8164_verify_speed:

Verifies a speed profile’s minimum and maximum accelerating
time.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_tv_move(I16 AxisNo, F64 StrVel, F64

MaxVel, F64 Tacc);
I16 _8164_sv_move(I16 AxisNo, F64 StrVel, F64

MaxVel, F64 Tacc, F64 SVacc);
I16 _8164_v_change(I16 AxisNo, F64 NewVel, F64

Tacc);
I16 _8164_sd_stop(I16 AxisNo,F64 Tdec);
I16 _8164_emg_stop(I16 AxisNo);

184 Function Library

F64 _8164_fix_speed_range(I16 AxisNo, F64
MaxVel);

I16 _8164_unfix_speed_range(I16 AxisNo);
I16 _8164_get_current_speed(I16 AxisNo, F64

*speed);
F64 _8164_verify_speed(F64 StrVel,F64 MaxVel,F64

*minAccT,F64 *maxAccT, F64 MaxSpeed);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_tv_move (ByVal AxisNo As Integer, ByVal

StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8164_sv_move (ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double, ByVal SVacc As Double)
As Integer

B_8164_v_change (ByVal AxisNo As Integer, ByVal
NewVel As Double, ByVal TimeSecond As
Double) As Integer

B_8164_sd_stop (ByVal AxisNo As Integer, ByVal
Tdec As Double) As Integer

B_8164_emg_stop (ByVal AxisNo As Integer) As
Integer

B_8164_fix_speed_range (ByVal AxisNo As Integer,
ByVal MaxVel As Double) As Integer

B_8164_unfix_speed_range (ByVal AxisNo As
Integer) As Integer

B_8164_get_current_speed (ByVal AxisNo As
Integer, Speed As Double) As Integer

B_8164_verify_speed Lib "8164.DLL" Alias
"_8164_verify_speed" (ByVal StrVel As
Double, ByVal MaxVel As Double, minAccT As
Double, maxAccT As Double, ByVal MaxSpeed As
Double) As Double

Function Library 185

@ Argument
AxisNo: Designated axis number to move or stop

StrVel: Starting velocity in units of pulse per second

MaxVel: Maximum velocity in units of pulse per second

Tacc: Specified acceleration time in units of second

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve
NewVel: New velocity in units of pulse per second

Tdec: specified deceleration time in units of second

*Speed: Variable to save current speed (speed range: 0 -
6553500).

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_SpeedChangeError
ERR_SlowDownPointError
ERR_AxisAlreadyStop

186 Function Library

6.6 Single Axis Position Mode

@ Name
_8164_start_tr_move – Begin a relative trapezoidal profile
move

_8164_start_ta_move – Begin an absolute trapezoidal profile
move

_8164_start_sr_move – Begin a relative S-curve profile move

_8164_start_sa_move – Begin an absolute S-curve profile
move

_8164_set_move_ratio – Set the ratio of command pulse and
feedback pulse.

_8164_p_change – Change position on the fly

_8164_set_pcs_logic – Set the logic of PCS (Position
Change Signal) pin

_8164_set_sd_pin – Set SD/PCS pin

_8164_backlash_comp – Set backlash compensating pulse for
compensation

_8164_suppress_vibration – Set vibration suppressing tim-
ing

_8164_set_idle_pulse – Set suppress vibration idle pulse
counts

_8164_dwell_move – Begin a dwell move

_8164_set_fa_speed – Set FA speed in home mode

Function Library 187

@ Description
General: The moving direction is determined by the sign of the
Pos or Dist parameter. If the moving distance is too short to reach
the specified velocity, the controller automatically lowers the Max-
Vel, and the Tacc, Tdec, VSacc, and VSdec become shorter while
dV/dt(acceleration / deceleration) and d(dV/dt)/dt (jerk) remain
unchanged.

_8164_start_tr_move:

Accelerates the axis from a starting velocity, slew at constant
velocity, and decelerates to stop at the relative distance with trape-
zoidal profile. The acceleration and deceleration time is specified
independently. This function does not let the program wait for
motion completion but immediately returns control to the program.

_8164_start_ta_move:

Accelerates the axis from a starting velocity, slew at constant
velocity, and decelerates to stop at the specified absolute position
with trapezoidal profile. The acceleration and deceleration time is
specified independently. This command does not let the program
wait for motion completion, but immediately returns control to the
program.

_8164_start_sr_move:

This function accelerates the axis from a starting velocity, slew at
constant velocity, and decelerates to stop at the relative distance
with S-curve profile. The acceleration and deceleration time is
specified independently. This command does not let the program
wait for motion completion, but immediately returns control to the
program.

_8164_start_sa_move:

This function accelerate the axis from a starting velocity, slew at
constant velocity, and decelerates to stop at the specified absolute
position with S-curve profile. The acceleration and deceleration
time is specified independently. This command does not let the
program wait for motion completion but immediately returns con-
trol to the program.

_8164_set_move_ratio:

188 Function Library

Configures the scale factors for the specified axis. Usually, the
axes only need scale factors if their mechanical resolutions are dif-
ferent. For example, if the resolution of feedback sensors is two
times resolution of command pulse, then ratio is equal to 2.

_8164_p_change:

Changes the target position on the fly. Refer to the function limita-
tions on section 4.6.2 before using.

_8164_set_pcs_logic:

Sets the logic of Position Change Signal (pcs). The PCS shares
the same pin with the SD signal. Only when the SD/PCS pin is set
to PCS by _8164_set_sd_pin, that this _8164_set_pcs_logic
function becomes available.

_8164_set_sd_pin:

Sets the operating mode of the SD pin. The SD pin may be used
as a Slow-Down signal input or as a Position Change Signal
(PCS) input. Refer to section 4.3.1

_8164_backlash_comp:

Whenever direction change occurs, the 8164 outputs backlash
corrective pulses before sending commands. This function sets
the compensation pulse numbers. It uses FA speed when back-
lashing.

_8164_suppress_vibration:

Suppresses vibration of mechanical systems by outputting a sin-
gle pulse for negative direction then single pulse for positive direc-
tion right after completion of command movement.

Function Library 189

_8164_set_idle_pulse:

Delays acceleration from starting velocity. This outputs the counts
of setting pulses at starting velocity then acceleration.

_8164_dwell_move:

Starts a dwell move that means the move does not cause real
motion for a specific time.

_8164_set_fa_speed:

Sets the FA speed in home mode. If the FA speed is not set before
home move, it will use 1/2 starting velocity as FA speed. The FA
speed is also used in backlash compensation.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_start_tr_move(I16 AxisNo, F64 Dist, F64

StrVel, F64 MaxVel, F64 Tacc,F64 Tdec);
I16 _8164_start_ta_move(I16 AxisNo, F64 Pos, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);
I16 _8164_start_sr_move(I16 AxisNo, F64 Dist, F64

StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8164_start_sa_move(I16 AxisNo, F64 Pos, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8164_set_move_ratio(I16 AxisNo, F64
move_ratio);

I16 _8164_p_change(I16 AxisNo, F64 NewPos);
I16 _8164_set_pcs_logic(I16 AxisNo, I16

pcs_logic);
I16 _8164_set_sd_pin(I16 AxisNo, I16 Type);
I16 _8164_backlash_comp(I16 AxisNo, I16

BcompPulse, I16 mode);
I16 _8164_suppress_vibration(I16 AxisNo, U16 T1,

U16 T2);
I16 _8164_set_idle_pulse(I16 AxisNo, I16

idl_pulse);
I16 _8164_dwell_move(I16 AxisNo, F64 miniSecond);
I16 _8164_set_fa_speed(I16 AxisNo, F64 FA_speed);

190 Function Library

Visual Basic (Windows 95/NT/2K/XP)
B_8164_start_tr_move (ByVal AxisNo As Integer,

ByVal Dist As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_move (ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_move (ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8164_start_sa_move (ByVal AxisNo As Integer,
ByVal Pos As Double, ByVal StrVel As Double,
ByVal MaxVel As Double, ByVal Tacc As
Double, ByVal Tdec As Double, ByVal SVacc As
Double, ByVal SVdec As Double) As Integer

B_8164_set_move_ratio (ByVal AxisNo As Integer,
ByVal move_ratio As Double) As Integer

B_8164_p_change (ByVal AxisNo As Integer, ByVal
NewPos As Double) As Integer

B_8164_set_pcs_logic (ByVal AxisNo As Integer,
ByVal pcs_logic As Integer) As Integer

B_8164_set_sd_pin (ByVal AxisNo As Integer, ByVal
Type As Integer) As Integer

B_8164_backlash_comp (ByVal AxisNo As Integer,
ByVal BCompPulse As Integer, ByVal Mode As
Integer) As Integer

B_8164_suppress_vibration (ByVal AxisNo As
Integer, ByVal ReserveTime As Integer, ByVal
Mode As Integer) As Integer

B_8164_set_idle_pulse(ByVal AxisNo As Integer,
ByVal idl_pulse As Integer);

B_8164_dwell_move(ByVal AxisNo As Integer, ByVal
miniSecond As Double);

B_8164_set_FA_speed(ByVal AxisNo As Integer,
ByVal FA_Speed As Double);

Function Library 191

@ Argument
AxisNo: Designated axis number to move or change position

Dist: Specified relative distance to move

Pos: Specified absolute position to move

StrVel: Starting velocity of a velocity profile in units of pulse per
second

MaxVel: Starting velocity of a velocity profile in units of pulse per
second

Tacc: Specified acceleration time in units of seconds

Tdec: Specified deceleration time in units of seconds

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve

SVdec: specified velocity interval in which S-curve deceleration is
performed

Note: SVdec = 0, for pure S-Curve

Move_ratio: ratio of (feedback resolution)/(command resolu-
tion), should not be 0

NewPos: specified new absolute position to move

pcs_logic: Specify he pcs logic.

Value = 0: low active
Value = 1: high active

Type: define the SD pin usage

Value = 0 : SD pin as SD signal
Value = 1: SD pin as PCS signal

BcompPulse: Specified number of corrective pulses, 12-bit

Mode: 0 turns off, 1: enable backlash compensation, 2: slip correc-
tion

T1: Specified Reverse Time, 0 - 65535, unit 1.6 us

T2: Specified Forward Time, 0 - 65535, unit 1.6 us

192 Function Library

Idl_pulse: Idl_pulse=0 - 7

miniSecond: time of dwell move, the unit is in ms

FA_Speed: the speed of FA

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_PChangeSlowDownPointError
ERR_MoveRatioError

Function Library 193

6.7 Linear Interpolated Motion

@ Name
_8164_start_tr_move_xy – Begin a relative 2-axis linear
interpolation for X & Y, with trapezoidal profile,

_8164_start_ta_move_xy – Begin an absolute 2-axis linear
interpolation for X & Y, with trapezoidal profile,

_8164_start_sr_move_xy – Begin a relative 2-axis linear
interpolation for X & Y, with S-curve profile,

_8164_start_sa_move_xy – Begin an absolute 2-axis linear
interpolation for X & Y, with S-curve profile,

_8164_start_tr_move_zu – Begin a relative 2-axis linear
interpolation for Z & U, with trapezoidal profile,

_8164_start_ta_move_zu – Begin an absolute 2-axis linear
interpolation for Z & U, with trapezoidal profile,

_8164_start_sr_move_zu – Begin a relative 2-axis linear
interpolation for Z & U, with S-curve profile,

_8164_start_sa_move_zu – Begin an absolute 2-axis linear
interpolation for Z & U, with S-curve profile,

_8164_start_tr_line2 – Begin a relative 2-axis linear interpo-
lation for any 2 axes, with trapezoidal profile,

_8164_start_sr_line2 – Begin a relative 2-axis linear interpo-
lation for any 2 axes,, with S-curve profile

_8164_start_ta_line2 – Begin an absolute 2-axis linear inter-
polation for any 2 axes,, with trapezoidal profile

_8164_start_sa_line2 – Begin an absolute 2-axis linear inter-
polation for any 2 axes,, with S-curve profile,

_8164_start_tr_line3 – Begin a relative 3-axis linear interpo-
lation with trapezoidal profile,

_8164_start_sr_line3 – Begin a relative 3-axis linear interpo-
lation with S-curve profile

_8164_start_ta_line3 – Begin an absolute 3-axis linear inter-
polation with trapezoidal profile

194 Function Library

_8164_start_sa_line3 – Begin an absolute 3-axis linear inter-
polation with S-curve profile,

_8164_start_tr_line4 – Begin a relative 4-axis linear interpo-
lation with trapezoidal profile,

_8164_start_sr_line4 – Begin a relative 4-axis linear interpo-
lation with S-curve profile

_8164_start_ta_line4 – Begin an absolute 4-axis linear inter-
polation with trapezoidal profile

_8164_start_sa_line4 – Begin an absolute 4-axis linear inter-
polation with S-curve profile

_8164_set_axis_option – Choose the interpolation speed
mode

@ Description

Function No. of interpo-
lating axes

Velocity
Profile

Relative /
Absolute

Target
Axes

_8164_start_tr_move_xy 2 T R Axes 0 & 1

_8164_start_ta_move_xy 2 T A Axes 0 & 1

_8164_start_sr_move_xy 2 S R Axes 0 & 1

_8164_start_sa_move_xy 2 S A Axes 0 & 1

_8164_start_tr_move_zu 2 T R Axes 2 & 3

_8164_start_ta_move_zu 2 T A Axes 2 & 3

_8164_start_sr_move_zu 2 S R Axes 2 & 3

_8164_start_sa_move_zu 2 S A Axes 2 & 3

_8164_start_tr_move_line2 2 T R Any 2 of 4

_8164_start_ta_move_ line2 2 T A Any 2 of 4

_8164_start_sr_move_ line2 2 S R Any 2 of 4

_8164_start_sa_move_ line2 2 S A Any 2 of 4

_8164_start_tr_move_ line3 3 T R Any 3 of 4

_8164_start_ta_move_ line3 3 T A Any 3 of 4

_8164_start_sr_move_ line3 3 S R Any 3 of 4

_8164_start_sa_move_ line3 3 S A Any 3 of 4

_8164_start_tr_move_ line4 4 T R Any 4 of 4

_8164_start_ta_move_ line4 4 T A Any 4 of 4

_8164_start_sr_move_ line4 4 S R Any 4 of 4

_8164_start_sa_move_ line4 4 S A Any 4 of 4

Function Library 195

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_start_tr_move_xy(I16 CardNo, F64 DistX,

F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8164_start_ta_move_xy(I16 CardNo, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8164_start_sr_move_xy(I16 CardNo, F64 DistX,
F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8164_start_sa_move_xy(I16 CardNo, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8164_start_tr_move_zu(I16 CardNo, F64 DistX,
F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8164_start_ta_move_zu(I16 CardNo, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec);

I16 _8164_start_sr_move_zu(I16 CardNo, F64 DistX,
F64 DistY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8164_start_sa_move_zu(I16 CardNo, F64 PosX,
F64 PosY, F64 StrVel, F64 MaxVel, F64 Tacc,
F64 Tdec, F64 SVacc, F64 SVdec);

I16 _8164_start_tr_line2(I16 CardNo, I16
*AxisArray, F64 DistX, F64 DistY, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_ta_line2(I16 CardNo, I16
*AxisArray, F64 PosX, F64 PosY, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_sr_line2(I16 CardNo, I16
*AxisArray, F64 DistX, F64 DistY, F64
StrVel, F64 MaxVel, F64 Tacc, F64 Tdec, F64
SVacc, F64 SVdec);

I16 _8164_start_sa_line2(I16 CardNo, I16
*AxisArray, F64 PosX, F64 PosY, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc,
F64 SVdec);

196 Function Library

I16 _8164_start_tr_line3(I16 CardNo, I16
*AxisArray, F64 DistX, F64 DistY, F64 DistZ,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_ta_line3(I16 CardNo, I16
*AxisArray, F64 PosX, F64 PosY, F64 PosZ,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_sr_line3(I16 CardNo, I16
*AxisArray, F64 DistX, F64 DistY, F64 DistZ,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec,
F64 SVacc, F64 SVdec);

I16 _8164_start_sa_line3(I16 CardNo, I16
*AxisArray, F64 PosX, F64 PosY, F64 PosZ,
F64 StrVel, F64 MaxVel, F64 Tacc, F64 Tdec,
F64 SVacc, F64 SVdec);

I16 _8164_start_tr_line4(I16 CardNo, F64 DistX,
F64 DistY, F64 DistZ, F64 DistU, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_ta_line4(I16 CardNo, F64 PosX,
F64 PosY, F64 PosZ, F64 PosU, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec);

I16 _8164_start_sr_line4(I16 CardNo, F64 DistX,
F64 DistY, F64 DistZ, F64 DistU, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc,
F64 SVdec);

I16 _8164_start_sa_line4(I16 CardNo, F64 PosX,
F64 PosY, F64 PosZ, F64 PosU, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 Tdec, F64 SVacc,
F64 SVdec);

I16 FNTYPE _8164_set_axis_option(I16 AxisNo, I16
option);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_start_tr_move_xy (ByVal CardNo As Integer,

ByVal Dist As Double, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_ta_move_xy (ByVal CardNo As Integer,
ByVal Pos As Double, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

Function Library 197

B_8164_start_sr_move_xy (ByVal CardNo As Integer,
ByVal Dist As Double, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_sa_move_xy (ByVal CardNo As Integer,
ByVal Pos As Double, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_tr_move_zu (ByVal CardNo As Integer,
ByVal Dist As Double, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_ta_move_zu (ByVal CardNo As Integer,
ByVal Pos As Double, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_sr_move_zu (ByVal CardNo As Integer,
ByVal Dist As Double, ByVal Dist As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_sa_move_zu (ByVal CardNo As Integer,
ByVal Pos As Double, ByVal Pos As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_tr_line2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8164_start_ta_line2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal StrVel As

198 Function Library

Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_line2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8164_start_sa_line2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

 B_8164_start_tr_line3 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double) As Integer

B_8164_start_ta_line3 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_sr_line3 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal DistZ As
Double, ByVal StrVel As Double, ByVal MaxVel
As Double, ByVal Tacc As Double, ByVal Tdec
As Double, ByVal SVacc As Double, ByVal
SVdec As Double) As Integer

B_8164_start_sa_line3 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal PosX As Double,
ByVal PosY As Double, ByVal PosZ As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_tr_line4 (ByVal CardNo As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal DistZ As Double, ByVal DistU

Function Library 199

As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double,
ByVal Tdec As Double) As Integer

B_8164_start_ta_line4 (ByVal CardNo As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal PosZ As Double, ByVal PosU As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_sr_line4 (ByVal CardNo As Integer,
ByVal DistX As Double, ByVal DistY As
Double, ByVal DistZ As Double, ByVal DistU
As Double, ByVal StrVel As Double, ByVal
MaxVel As Double, ByVal Tacc As Double,
ByVal Tdec As Double, ByVal SVacc As Double,
ByVal SVdec As Double) As Integer

B_8164_start_sa_line4 (ByVal CardNo As Integer,
ByVal PosX As Double, ByVal PosY As Double,
ByVal PosZ As Double, ByVal PosU As Double,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_set_axis_option (ByVal AxisNo As Integer,
ByVal option1 As Integer) As Integer

@ Argument
CardNo: Designated card number to perform linear interpolation

DistX: specified relative distance of axis 0 to move

DistY: specified relative distance of axis 1 to move

DistZ: specified relative distance of axis 2 to move

DistU: specified relative distance of axis 3 to move

PosX: specified absolute position of axis 0 to move

PosY: specified absolute position of axis 1 to move

PosZ: specified absolute position of axis 2 to move

PosU: specified absolute position of axis 3 to move

StrVel: starting velocity of a velocity profile in units of pulse per
second

200 Function Library

MaxVel: starting velocity of a velocity profile in units of pulse per
second

Tacc: specified acceleration time in units of seconds

Tdec: specified deceleration time in units of seconds

SVacc: specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve

SVdec: specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve

AxisArray: Array of axis number to perform interpolation.

Example: Int AxisArray[2] = {0,2}; // axis 0 & 2

Int AxisArray[3] = {0,1,3}; // axis 0,1,3

Note: AxisArray[n] must be smaller than AxisArray[m], if n<m.

Option1:

0=default line move mode
1=Composite speed constant mode

@ Return Code
ERR_NoError
ERR_SpeedError
ERR_AxisArrayErrot

Function Library 201

6.8 Circular Interpolation Motion

@ Name
_8164_start_r_arc_xy – Begin a relative circular interpolation
for X & Y

_8164_start_a_arc_xy – Begin an absolute circular interpola-
tion for X & Y

_8164_start_r_arc_zu – Begin a relative circular interpolation
for Z & U

_8164_start_a_arc_zu – Begin an absolute circular interpola-
tion for Z & U

_8164_start_r_arc2 – Begin a relative circular interpolation
for any 2 axes

_8164_start_a_arc2 – Begin an absolute circular interpolation
for any 2 axes

_8164_start_tr_arc_xyu – Begin a T-curve relative circular
interpolation

_8164_start_ta_arc_xyu – Begin a T-curve absolute circular
interpolation

_8164_start_sr_arc_xyu – Begin a S-curve relative circular
interpolation

_8164_start_sa_arc_xyu – Begin a S-curve absolute circular
interpolation

_8164_start_tr_arc_yzu – Begin a T-curve relative circular
interpolation

_8164_start_ta_arc_yzu – Begin a T-curve absolute circular
interpolation

_8164_start_sr_arc_yzu – Begin a S-curve relative circular
interpolation

_8164_start_sa_arc_yzu – Begin a T-curve absolute circular
interpolation

_8164_start_tr_arc2 – Begin a T-curve relative circular inter-
polation

202 Function Library

_8164_start_ta_arc2 – Begin a T-curve absolute circular
interpolation

_8164_start_sr_arc2 – Begin a S-curve relative circular inter-
polation

_8164_start_sa_arc2 – Begin a S-curve absolute circular
interpolation

_8164_start_tr_arc_xy – Begin a T-curve relative circular
interpolation

_8164_start_ta_arc_xy – Begin a T-curve absolute circular
interpolation

_8164_start_tr_arc_zu – Begin a T-curve relative circular
interpolation

_8164_start_ta_arc_zu – Begin a T-curve absolute circular
interpolation

_8164_start_sr_arc_xy – Begin a S-curve relative circular
interpolation

_8164_start_sa_arc_xy – Begin a S-curve absolute circular
interpolation

_8164_start_sr_arc_zu – Begin a S-curve relative circular
interpolation

_8164_start_sa_arc_zu – Begin a S-curve absolute circular
interpolation

Function Library 203

@ Description

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_start_r_arc_xy(I16 CardNo, F64

OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 MaxVel);

I16 _8164_start_a_arc_xy(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 MaxVel);

I16 _8164_start_r_arc_zu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 MaxVel);

I16 _8164_start_a_arc_zu(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 MaxVel);

Function Relative /
Absolute

Speed
Profile

Target
Axes

Hardware
version bit 12

_8164_start_r_arc_xy R Flat Axes 0 & 1 0 or 1

_8164_start_a_arc_xy A Flat Axes 0 & 1 0 or 1

_8164_start_r_arc_zu R Flat Axes 2 & 3 0 or 1

_8164_start_a_arc_zu A Flat Axes 2 & 3 0 or 1

_8164_start_r_arc2 R Flat Any 2 of 4 0 or 1

_8164_start_a_arc2 A Flat Any 2 of 4 0 or 1

_8164_start_tr_arc_xyu R T-curve Axes 0 & 1 0 or 1

_8164_start_ta_arc_xyu A T-Curve Axes 0 & 1 0 or 1

_8164_start_sr_arc_xyu R S-Curve Axes 1 & 2 0 or 1

_8164_start_sa_arc_xyu A S-Curve Axes 1 & 2 0 or 1

_8164_start_tr_arc_xy R T-curve Axes 0 & 1 1

_8164_start_ta_arc_xy A T-Curve Axes 0 & 1 1

_8164_start_sr_arc_xy R S-Curve Axes 0 & 1 1

_8164_start_sa_arc_xy A S-Curve Axes 0 & 1 1

_8164_start_tr_arc_zu R T-curve Axes 2 & 3 1

_8164_start_ta_arc_zu A T-Curve Axes 2 & 3 1

_8164_start_sr_arc_zu R S-Curve Axes 2 & 3 1

_8164_start_sa_arc_zu A S-Curve Axes 2 & 3 1

_8164_start_tr_arc2 R T-curve Any 2 of 4 1

_8164_start_ta_arc2 A T-Curve Any 2 of 4 1

_8164_start_sr_arc2 R S-Curve Any 2 of 4 1

_8164_start_sa_arc2 A S-Curve Any 2 of 4 1

204 Function Library

I16 _8164_start_r_arc2(I16 CardNo, I16
*AxisArray, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64
MaxVel);

I16 _8164_start_a_arc2(I16 CardNo, I16
*AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 MaxVel);

I16 _8164_start_tr_arc_xyu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel,
F64 Tacc);

I16 _8164_start_ta_arc_xyu(I16 CardNo, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,
F64 MaxVel, F64 Tacc);

I16 _8164_start_sr_arc_xyu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 SVacc);

I16 _8164_start_sa_arc_xyu(I16 CardNo, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 SVacc);

I16 _8164_start_tr_arc_yzu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel,
F64 Tacc);

I16 _8164_start_ta_arc_yzu(I16 CardNo, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,
F64 MaxVel, F64 Tacc);

I16 _8164_start_sr_arc_yzu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel, F64 MaxVel,
F64 Tacc, F64 SVacc);

I16 _8164_start_sa_arc_yzu(I16 CardNo, F64 Cx,
F64 Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,
F64 MaxVel, F64 Tacc, F64 SVacc);

I16 _8164_start_tr_arc2(I16 CardNo, I16
*AxisArray, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64
StrVel,F64 MaxVel, F64 Tacc,F64 Tdec);

I16 _8164_start_ta_arc2(I16 CardNo, I16
*AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc,F64 Tdec);

Function Library 205

I16 _8164_start_sr_arc2(I16 CardNo, I16
*AxisArray, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64
StrVel,F64 MaxVel, F64 Tacc,F64 Tdec,F64
SVacc,F64 SVdec);

I16 _8164_start_sa_arc2(I16 CardNo, I16
*AxisArray, F64 Cx, F64 Cy, F64 Ex, F64 Ey,
I16 DIR, F64 StrVel, F64 MaxVel, F64
Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_tr_arc_xy(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _8164_start_ta_arc_xy(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8164_start_tr_arc_zu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,F64
Tacc,F64 Tdec);

I16 _8164_start_ta_arc_zu(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64
MaxVel,F64 Tacc,F64 Tdec);

I16 _8164_start_sr_arc_xy(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,
F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_sa_arc_xy(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

I16 _8164_start_sr_arc_zu(I16 CardNo, F64
OffsetCx, F64 OffsetCy, F64 OffsetEx, F64
OffsetEy, I16 DIR, F64 StrVel,F64 MaxVel,
F64 Tacc,F64 Tdec,F64 SVacc,F64 SVdec);

I16 _8164_start_sa_arc_zu(I16 CardNo, F64 Cx, F64
Cy, F64 Ex, F64 Ey, I16 DIR, F64 StrVel,F64
MaxVel, F64 Tacc,F64 Tdec,F64 SVacc,F64
SVdec);

206 Function Library

Visual Basic (Windows 95/NT/2K/XP)
B_8164_start_a_arc_xy (ByVal CardNo As Integer,

ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_8164_start_r_arc_xy (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal MaxVel As Double) As Integer

B_8164_start_a_arc_zu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal MaxVel As
Double) As Integer

B_8164_start_r_arc_zu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal MaxVel As Double) As Integer

B_8164_start_a_arc2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer,
ByVal MaxVel As Double) As Integer

B_8164_start_r_arc2 (ByVal CardNo As Integer,
AxisArray As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As
Double, ByVal DIR As Integer, ByVal MaxVel
As Double) As Integer

B_8164_start_tr_arc_xyu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_8164_start_ta_arc_xyu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As

Function Library 207

Double, ByVal MaxVel As Double, ByVal Tacc
As Double) As Integer

B_8164_start_sr_arc_xyu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_8164_start_sa_arc_xyu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal SVacc As Double) As Integer

B_8164_start_tr_arc_yzu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_8164_start_ta_arc_yzu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double) As Integer

B_8164_start_sr_arc_yzu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double) As Integer

B_8164_start_sa_arc_yzu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal SVacc As Double) As Integer

B_8164_start_tr_arc2 (ByVal CardNo As Integer,
AxisArray As Double, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As
Double, ByVal DIR As Integer, ByVal StrVel

208 Function Library

As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double) As
Integer

B_8164_start_ta_arc2 (ByVal CardNo As Integer,
AxisArray As Double, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_sr_arc2 (ByVal CardNo As Integer,
AxisArray As Double, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As
Double, ByVal DIR As Integer, ByVal StrVel
As Double, ByVal MaxVel As Double, ByVal
Tacc As Double, ByVal Tdec As Double, ByVal
SVacc As Double, ByVal SVdec As Double) As
Integer

B_8164_start_sa_arc2 (ByVal CardNo As Integer,
AxisArray As Double, ByVal Cx As Double,
ByVal Cy As Double, ByVal Ex As Double,
ByVal Ey As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_tr_arc_xy (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_ta_arc_xy (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8164_start_tr_arc_zu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal

Function Library 209

OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double) As Integer

B_8164_start_ta_arc_zu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double) As Integer

B_8164_start_sr_arc_xy (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_sa_arc_xy (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

B_8164_start_sr_arc_zu (ByVal CardNo As Integer,
ByVal OffsetCx As Double, ByVal OffsetCy As
Double, ByVal OffsetEx As Double, ByVal
OffsetEy As Double, ByVal DIR As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal Tdec As
Double, ByVal SVacc As Double, ByVal SVdec
As Double) As Integer

B_8164_start_sa_arc_zu (ByVal CardNo As Integer,
ByVal Cx As Double, ByVal Cy As Double,
ByVal Ex As Double, ByVal Ey As Double,
ByVal DIR As Integer, ByVal StrVel As
Double, ByVal MaxVel As Double, ByVal Tacc
As Double, ByVal Tdec As Double, ByVal SVacc
As Double, ByVal SVdec As Double) As Integer

210 Function Library

@ Argument
CardNo: Designated card number to perform linear interpolation

OffsetCx: X-axis offset to center

OffsetCy: Y-axis offset to center

OffsetEx: X-axis offset to end of arc

OffsetEy: Y-axis offset to end of arc

Cx: Specified X-axis absolute position of center

Cy: Specified Y-axis absolute position of center

Ex: Specified X-axis absolute position end of arc

Ey: Specified Y-axis absolute position end of arc

DIR: Specified direction of arc, CW:0 , CCW:1

StrVel: Starting velocity of a velocity profile in unit of pulse per
second

MaxVel: Starting velocity of a velocity profile in unit of pulse per
second

Tacc: Specified acceleration time in unit of second

Tdec: Specified deceleration time in unit of second

SVacc: Specified velocity interval in which S-curve acceleration is
performed.

Note: SVacc = 0, for pure S-Curve

SVdec: Specified velocity interval in which S-curve deceleration is
performed.

Note: SVdec = 0, for pure S-Curve

AxisArray: Array of axis number to perform interpolation.

Example: Int AxisArray[2] = {0,2}; // axis 0 & 2
Int AxisArray[2] = {1,3}; // axis 1 & 3
Note: AxisArray[0] must be smaller than AxisArray[1]

@ Return Code
ERR_NoError
ERR_SpeedError, ERR_AxisArrayErrot

Function Library 211

6.9 Home Return Mode

@ Name
_8164_set_home_config – Set the configuration for home
return.

_8164_home_move – Perform a home return move.

_8164_escape_home – Escape home

_8164_home_search – Perform auto home search

@ Description
_8164_set_home_config:

Configures the home return mode, origin and index signal (EZ)
logic, EZ count, and ERC output options for the home_move()
function. Refer to Section 4.1.8 for the setting of home_mode con-
trol.

_8164_home_move:

Causes the axis to perform a home return move according to the
_8164_set_home_config() function settings. The direction of
movement is determined by the sign of velocity parameter (svel,
mvel). Since the stopping condition of this function is determined
by the home_mode setting, you must take caution in selecting the
initial moving direction. You must also take caution when handling
conditions when the limit switch is touched or other conditions that
are possible causing the axis to stop. Executing v_stop() func-
tion during home_move() can also cause the axis to stop.

_8164_escape_home:

After homing, this function leaves the home switch.

_8164_home_search:

Starts home searching regardless of the location of axis. The
ORGoffset must be set to non-zero to previous miss operation.

212 Function Library

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_home_config(I16 AxisNo, I16

home_mode, I16 org_logic, I16 ez_logic, I16
ez_count, I16 erc_out);

I16 _8164_home_move(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc);

I16 _8164_escape_home(I16 AxisNo, F64 SrVel,F64
MaxVel,F64 Tacc);

I16 _8164_home_search(I16 AxisNo, F64 StrVel, F64
MaxVel, F64 Tacc, F64 ORGOffset);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_home_config (ByVal AxisNo As Integer,

ByVal home_mode As Integer, ByVal org_logic
As Integer, ByVal ez_logic As Integer, ByVal
ez_count As Integer, ByVal erc_out As
Integer) As Integer

B_8164_home_move (ByVal AxisNo As Integer, ByVal
StrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double) As Integer

B_8164_escape_home(ByVal AxisNo As Integer, ByVal
SrVel As Double, ByVal MaxVel As Double,
ByVal Tacc As Double);

B_8164_home_search (ByVal AxisNo As Integer,
ByVal StrVel As Double, ByVal MaxVel As
Double, ByVal Tacc As Double, ByVal
ORGOffset As Double) As Integer

Function Library 213

@ Argument
AxisNo: Designated axis number to configure and perform home
return

home_mode: Stopping modes for home return, 0-12

(Please refer to section 4.1.8)

org_logic: Action logic configuration for ORG

org_logic=0, active low
org_logic=1, active high

EZ_logic: Action logic configuration for E

EZ_logic=0, active low
EZ_logic=1, active high

ez_count: 0-15 (Refer to section 4.1.8)

erc_out: Set ERC output options

erc_out =0, no erc out;
erc_out =1, erc out when home finishing

StrVel: starting velocity of a velocity profile in units of pulse per
second

MaxVel: starting velocity of a velocity profile in units of pulse per
second

Tacc: specified acceleration time in units of seconds

ORGOffset: The escape pulse amounts when home search
touches the ORG singal

@ Return Code
 ERR_NoError

214 Function Library

6.10 Manual Pulser Motion

@ Name
_8164_set_pulser_iptmode - set the input signal modes of
pulser

_8164_pulser_vmove – manual pulser v_move

_8164_pulser_pmove – manual pulser p_moce

_8164_pulser_home_move – manual pulser home move

_8164_set_pulser_ratio – Set manual pulser ratio for actual
output pulse rate

_8164_pulser_r_line2 – Pulser mode for 2-axis linear inter-
polation

_8164_pulser_r_arc2 – Pulser mode for 2-axis arc interpola-
tion

@ Description
_8164_set_pulser_iptmode:

Configures the input mode of manual pulser.

_8164_pulser_vmove:

With this command, the axis begins to move according to the man-
ual pulse input. The axis outputs one pulse when it receives one
manual pulse, until the sd_stop or emg_stop command is writ-
ten.

_8164_pulser_pmove:

With this command, the axis begins to move according to the man-
ual pulse input. The axis outputs one pulse when it receives one
manual pulse, until the sd_stop or emg_stop command is writ-
ten or the output pulse number reaches the distance.

_8164_pulser_home_move:

With this command, the axis begins to move according to manual
pulse input. The axis outputs one pulse when it receives one man-
ual pulse, until the sd_stop or emg_stop command is written or
the home move finishes.

Function Library 215

_8164_set_pulser_ratio:

Sets the manual pulse ratio for actual output pulse rate. The for-
mula for manual pulse output rate is:

Output Pulse Count = Input Pulse Count * (PMG+1) *
[(PDV+1)/2048]
The PDV=0-2047 Divide Factor
The PMG=0-31 Multiplication Factor

_8164_pulser_r_line2:

Pulser mode for 2-axis linear interpolation (relative mode only).

_8164_pulser_r_arc2:

Pulser mode for 2-axis arc interpolation (relative mode only)

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_pulser_iptmode(I16 AxisNo,I16

InputMode, I16 Inverse);
I16 _8164_pulser_vmove(I16 AxisNo, F64

SpeedLimit);
I16 _8164_pulser_pmove(I16 AxisNo, F64 Dist, F64

SpeedLimit);
I16 _8164_pulser_home_move(I16 AxisNo, I16

HomeType, F64 SpeedLimit);
I16 _8164_set_pulser_ratio(I16 AxisNo,I16 PDV,

I16 PMG);
I16 _8164_pulser_r_line2(I16 CardNo,I16

*AxisArray, F64 DistX, F64 DistY, F64
SpeedLimit);

I16 _8164_pulser_r_arc2(I16 CardNo, I16
*AxisArray, F64 OffsetCx, F64 OffsetCy, F64
OffsetEx, F64 OffsetEy, I16 DIR, F64
MaxVel);

216 Function Library

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_pulser_iptmode (ByVal AxisNo As

Integer, ByVal InputMode As Integer, ByVal
Inverse As Integer) As Integer

B_8164_pulser_vmove (ByVal AxisNo As Integer,
ByVal SpeedLimit As Double) As Integer

B_8164_pulser_pmove (ByVal AxisNo As Integer,
ByVal Dist As Double, ByVal SpeedLimit As
Double) As Integer

B_8164_pulser_home_move (ByVal AxisNo As Integer,
ByVal HomeType As Integer, ByVal SpeedLimit
As Double) As Integer

B_8164_set_pulser_ratio(ByVal AxisNo As Integer,
ByVal PDV As Integer, ByVal PMG As Integer)
As Integer

B_8164_pulser_r_line2(ByVal CardNo As Integer,
AxisArray As Integer, ByVal DistX As Double,
ByVal DistY As Double, ByVal SpeedLimit As
Double) As Integer

B_8164_pulser_r_arc2(ByVal CardNo As Integer,
AxisArray As Integer, ByVal OffsetCx As
Double, ByVal OffsetCy As Double, ByVal
OffsetEx As Double, ByVal OffsetEy As
Double, ByVal DIR As Integer, ByVal MaxVel
As Double) As Integer

@ Argument
AxisNo: Designated axis number to start manual move

InputMode: Setting of manual pulse input mode from the PA and
PB pins

ipt_mode=0, 1X AB phase type pulse input
ipt_mode=1, 2X AB phase type pulse input
ipt_mode=2, 4X AB phase type pulse input
ipt_mode=3, CW/CCW type pulse input

Inverse: Reverse the moving direction from pulse direction

Inverse =0, no inverse
Inverse =1, Reverse moving direction

SpeedLimit: The maximum speed in a manual pulse move

Function Library 217

For example, if SpeedLimit is set to be 100pps, then the axis
can move at fastest 100pps , even the input pulser signal rate
is more then 100pps

Dist: specified relative distance to move

HomeType: specified home move type

HomeType =0, Command Origin.(that means axis stops
when command counter becomes ‘0’)
HomeType =1, ORG pin.

PDV, PMG: Divide and Multi Factor

PDV=0-2047 Divide Factor
PMG=0-31 Multi Factor

Output Pulse Count = Input Pulse Count * (PMG+1) *
[(PDV+1)/2048]

DistX: specified relative distance of axis 0 to move

DistY: specified relative distance of axis 1 to move

OffsetCx: X-axis offset from center

OffsetCy: Y-axis offset from center

OffsetEx: X-axis offset from end of arc

OffsetEy: Y-axis offset from end of arc

DIR: Specified direction of arc, CW:0 , CCW:1

SpeedLimit: Maximum tangential velocity in units of pulse per
second

MaxVel: Maximum tangential velocity in units of pulse per second

@ Return Code
ERR_NoError
ERR_PulserHomeTypeError

218 Function Library

6.11 Motion Status

@ Name
_8164_motion_done – Return the motion status

@ Description
_8164_motion_done:

Returns the motion status of the 8164. If the card is in stopped
condition, check if it is in error stop status by reading error inter-
rupt status in section 6.14.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_motion_done(I16 AxisNo);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_motion_done (ByVal AxisNo As Integer) As

Integer

@ Argument
AxisNo: Designated axis number to start manual move

Function Library 219

@ Return Value
0 Under Stopped condition
1 Reserved
2 Wait CSTA (Synchronous start signal)
3 Wait Internal sync. signal
4 Wait for another axis to stop
5 Wait ERC timer finished
6 Wait DIR Change timer finished
7 Backlash compensating
8 Wait PA/PB input
9 In FA speed motion
10 In start velocity motion
11 In acceleration
12 In Max velocity motion
13 In deceleration
14 Wait INP input
15 Others

220 Function Library

6.12 Motion Interface I/O

@ Name
_8164_set_alm – Set alarm logic and operating mode

_8164_set_el – Set EL stopping mode

_8164_set_inp – Set Inp logic and operating mode

_8164_set_erc – Set ERC logic and timing

_8164_set_servo – Set state of general purpose output pin

_8164_set_sd – Set SD logic and operating mode

@ Description
_8164_set_alm:

Sets the active logic of the ALARM signal input from the servo
driver. Two reacting modes are available when the ALARM signal
is active.

_8164_set_el:

Sets the stopping mode of the EL active.

_8164_set_inp:

Sets the active logic of the In-Position signal input from the servo
driver. You can select whether to enable or disable this function.
The function is disabled by default.

_8164_set_erc:

Sets the logic and on time of the ERC.

_8164_set_servo:

Sets the ON/OFF state of the SVON signal. The default value is 1
(OFF), which means that the SVON is open to GND.

_8164_set_sd:

Sets the active logic, latch control, and operating mode of the SD
signal input from a mechanical system. You can select whether to
enable or disable this function. This function is disabled by default.

Function Library 221

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_alm(I16 AxisNo, I16 alm_logic, I16

alm_mode);
I16 _8164_set_el(I16 AxisNo, I16 el_mode);
I16 _8164_set_inp(I16 AxisNo, I16 inp_enable, I16

inp_logic);
I16 _8164_set_erc(I16 AxisNo, I16 erc_logic, I16

erc_on_time);
I16 _8164_set_servo(I16 AxisNo, I16 on_off);
I16 _8164_set_sd(I16 AxisNo, I16 enable, I16

sd_logic, I16 sd_latch, I16 sd_mode);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_alm (ByVal AxisNo As Integer, ByVal

alm_logic As Integer, ByVal alm_mode As
Integer) As Integer

B_8164_set_el (ByVal AxisNo As Integer, ByVal
el_mode As Integer) As Integer

B_8164_set_inp (ByVal AxisNo As Integer, ByVal
inp_enable As Integer, ByVal inp_logic As
Integer) As Integer

B_8164_set_erc (ByVal AxisNo As Integer, ByVal
erc_logic As Integer, ByVal erc_on_time As
Integer) As Integer

B_8164_set_servo (ByVal AxisNo As Integer, ByVal
On_Off As Integer) As Integer

B_8164_set_sd (ByVal AxisNo As Integer, ByVal
enable As Integer, ByVal sd_logic As
Integer, ByVal sd_latch As Integer, ByVal
sd_mode As Integer) As Integer

@ Argument
AxisNo: Designated axis number to configure

alm_logic: Setting of active logic for ALARM signals

alm_logic=0, active LOW
alm_logic=1, active HIGH

222 Function Library

alm_mode: Reacting modes when receiving an ALARM signal

alm_mode=0, motor immediately stops (default)
alm_mode=1, motor decelerates then stops.

el_mode: Reacting modes when receiving an EL signal

el_mode=0, motor immediately stops (default)
el_mode=1, motor decelerates then stops.

inp_enable: INP function enabled/disabled

inp_enable=0, Disabled (default)
inp_enable=1, Enabled

inp_logic: Set the active logic for the INP signal

inp_logic=0, active LOW
inp_logic=1, active HIGH

erc_logic: Set the active logic for the ERC signal

erc_logic=0, active LOW
erc_logic=1, active HIGH

erc_on_time: Set the time length of ERC active

erc_on_time=0, 12µs
erc_on_time=1, 102µs
erc_on_time=2, 409µs
erc_on_time=3, 1.6ms
erc_on_time=4, 13ms
erc_on_time=5, 52ms
erc_on_time=6, 104ms
erc_on_time=7, Level output

on_off: ON-OFF state of SVON signal

on_off = 0 , ON
on_off = 1 , OFF

enable: Enable/disable the SD signal.

enable=0, Disabled (Default)
enable=1, Enabled

Function Library 223

sd_logic: Set the active logic for the SD signal

sd_logic=0, active LOW
sd_logic=1, active HIGH

sd_latch: Set the latch control for the SD signal

sd_latch=0, do not latch
sd_latch=1, latch

sd_mode: Set the reacting mode of the SD signal

sd_mode=0, slow down only
sd_mode=1, slow down then stop

el_logic: Set EL as normal low (0) or normal high(1)

@ Return Code
 ERR_NoError

224 Function Library

6.13 Motion I/O Monitoring

@ Name
_8164_get_io_status – Get all the motion I/O statuses of
each 8164

@ Description
_8164_get_io_status:

Obtains all the I/O statuses for each axis. The definition for each
bit is as follows:

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_get_io_status(I16 AxisNo, U16 *io_sts);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_get_io_status (ByVal AxisNo As Integer,

io_sts As Integer) As Integer

Bit Name Description
0 RDY RDY pin input
1 ALM Alarm Signal
2 +EL Positive Limit Switch
3 -EL Negative Limit Switch
4 ORG Origin Switch
5 DIR DIR output
6 EMG EMG status
7 PCS PCS signal input
8 ERC ERC pin output
9 EZ Index signal
10 Reserved
11 Latch Latch signal input
12 SD Slow Down signal input
13 INP In-Position signal input
14 SVON Servo-ON output status

Function Library 225

@ Argument
AxisNo: Axis number for I/O control and monitoring

*io_status: I/O status word. “1” is ON and “0” is OFF. ON/OFF
state is read based on the corresponding set logic.

@ Return Code
 ERR_NoError

226 Function Library

6.14 Interrupt Control

@ Name
_8164_int_control – Enable/Disable INT service

_8164_set_int_factor – Set INT factor

_8164_int_enable – Enable event (For Window only)

_8164_int_disable – Disable event (For Window only)

_8164_get_int_status – Get INT Status (For Window only)

_8164_link_interrupt – Set link to interrupt call back function
(For Window only)

_8164_get_int_type – Get INT type (For DOS only)

_8164_enter_isr – Enter interrupt service routine (For DOS
only)

_8164_leave_isr – Leave interrupt service routine (For DOS
only)

_8164_get_event_int – Get event status (For DOS only)

_8164_get_error_int – Get error status (For DOS only)

_8164_get_irq_status – Get IRQ status (For DOS only)

_8164_not_my_irq – Not My IRQ (For DOS only)

_8164_isr0-9, a, b – Interrupt service routine (For DOS only)

_8164_set_axis_stop_int – enable axis stop int

_8164_mask_axis_stop_int – mask axis stop int

@ Description
_8164_int_control:

Enables interrupt generating to host computer.

_8164_set_int_factor:

Allows factor selection to initiate the event int. The error can never
be masked once the interrupt service is turned on by
_8164_int_control().

Function Library 227

The INT status of 8164 is composed of two independent parts:
error_int_status and event_int_status. The
event_int_status recordes the motion and comparator event
under normal operation, and this kind of INT status can be masked
by _8164_set_int_factor(). The error_int_status is for
abnormal stop of the 8164, for example: EL, ALM …etc. This kind
of INT cannot be masked. Below is the definition of these two
int_status. By setting the relative bit as 1, the card can generate
INT signal to the host computer.

Interrupt factors

Bit Description
0 Normal Stop
1 Next command Starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 Positive soft limit on
9 Negative soft limit on

10 Comparator 3 compared
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axis2,3
15 ORG Latch Active
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20-31 (Reserved)

228 Function Library

_8164_int_enable: (For Window only.)

Enables the Windows INT event.

_8164_int_disable: (For Window only.)

Disables the Windows INT event.

_8164_get_int_status: (For Window only.)

Identifies the cause of the interrupt signal. After the value is
obtained, the status register will be cleared to 0. The return value
is two, 32-bit unsigned integers. The first one is for
error_int_status, which is not able to mask by
_8164_set_int_factor(). The definition for bit of
error_int_status is as following:

error_int_status: can not be masked

Bit Interrupt Factor
0 +Soft Limit on and stop
1 -Soft Limit on and stop
2 (Reserved)
3 General Comparator on and Stop
4 (Reserved)
5 +End Limit on and stop
6 -End Limit on and stop
7 ALM happen and stop
8 CSTP, Sync. Stop on and stop
9 CEMG, Emergency on and stop

10 SD on and slow down to stop
11 (Reserved)
12 Interpolation Error and stop
13 Other Axis stop on Interpolation
14 Pulser input buffer overflow and stop
15 Interpolation counter overflow
16 Encoder input signal error
17 Pulser input signal error

11-31 (Reserved)

Function Library 229

The second is for event_int_status, which can be masked by
_8164_set_int_factor(). See table below:

event_int_status: can be masked by function call
_8164_int_factor()

_8164_link_interrupt: (Windows only.)

Links to the interrupt call back function.

_8164_get_int_type: (DOS only)

Detects the type of INT that occurred.

Bit Description
0 Normal Stop
1 Next command Starts
2 Command pre-register 2 is empty
3 (Reserved)
4 Acceleration Start
5 Acceleration End
6 Deceleration Start
7 Deceleration End
8 (Reserved)
9 (Reserved)

10 (Reserved)
11 General Comparator compared
12 Trigger Comparator compared
13 (Reserved)
14 Counter Latched for axes 2 and 3
15 ORG Input and Latched
16 SD on
17 (Reserved)
18 (Reserved)
19 CSTA, Sync. Start on

20-30 (Reserved)
31 Axis Stop Interrupt

230 Function Library

_8164_enter_isr: (DOS only)

This function is used to inform the system that the process is now
entering interrupt service routine.

_8164_leave_isr: (DOS only)

This function is used to inform the system that the process is now
leaving interrupt service routine.

_8164_get_event_int: (DOS only)

This function is used to get event_int_status.

_8164_get_error_int: (DOS only)

This function is used to get error_int_status.

_8164_get_irq_status: (DOS only)

This function allows user to confirm if the designated card gener-
ates the INT signal to host PC.

_8164_not_my_irq: (DOS only)

This function must be called after the designated card generates
the INT signal to host PC.

_8164_isr0, _8164_isr1, _8164_isr2, _8164_isr3, …..
_8164_isr9, _8164_isra, _8164_isrb: (DOS only)

Individual Interrupt service routine for cards 0-11.

_8164_set_axis_stop_int:

Enables an axis stop interrupt. Once it is enabled, the interrupt
happens no matter if it is a normal stop or error stop. This interrupt
condition can be turned on or off accompanied with every motion
command by setting _8164_mask_axis_stop_int(). This
kind of interrupt condition is different from
_8164_set_int_factor(). It can be controlled in each motion
command, which is very useful in continuous motion when you
only need a final command interrupt. The interrupt status is in
“event interrupt status” bit 31.

_8164_mask_axis_stop_int:

This function will affect the axis stop interrupt factor which is set by
_8164_set_axis_stop_int().

Function Library 231

@ Syntax

C/C++ (DOS)
I16 _8164_int_control(U16 cardNo, U16 intFlag);
I16 _8164_set_int_factor(I16 AxisNo, U32

int_factor);
I16 _8164_get_int_type(I16 AxisNo, U16

*int_type);
I16 _8164_enter_isr(I16 AxisNo);
I16 _8164_leave_isr(I16 AxisNo);
I16 _8164_get_event_int(I16 AxisNo, U32

*event_int);
I16 _8164_get_error_int(I16 AxisNo, U32

*error_int);
I16 _8164_get_irq_status(U16 cardNo, U16 *sts);
I16 _8164_not_my_irq(I16 CardNo);
void interrupt _8164_isr0 (void);
void interrupt _8164_isr1 (void);
void interrupt _8164_isr2 (void);
void interrupt _8164_isr3 (void);
void interrupt _8164_isr4 (void);
void interrupt _8164_isr5 (void);
void interrupt _8164_isr6 (void);
void interrupt _8164_isr7 (void);
void interrupt _8164_isr8 (void);
void interrupt _8164_isr9 (void);
void interrupt _8164_isra (void);
void interrupt _8164_isrb (void);

232 Function Library

C/C++ (Windows 95/98/NT)
I16 _8164_int_control(U16 cardNo, U16 intFlag);
I16 _8164_set_int_factor(I16 AxisNo, U32

int_factor);
I16 _8164_int_enable(I16 CardNo, HANDLE

*phEvent);
I16 _8164_int_disable(I16 CardNo);
I16 _8164_get_int_status(I16 AxisNo, U32

*error_int_status, U32 *event_int_status);
I16 _8164_link_interrupt(I16 CardNo, void (

__stdcall *callbackAddr)(I16
IntAxisNoInCard));

I16 _8164_set_axis_stop_int(I16 AxisNo, I16
axis_stop_int);

I16 _8164_mask_axis_stop_int(I16 AxisNo, I16
int_mask);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_int_control (ByVal CardNo As Integer,

ByVal intFlag As Integer) As Integer
B_8164_set_int_factor (ByVal AxisNo As Integer,

ByVal int_factor As Long) As Integer
B_8164_int_enable (ByVal CardNo As Integer,

phEvent As Long) As Integer
B_8164_int_disable (ByVal CardNo As Integer) As

Integer
B_8164_get_int_status (ByVal AxisNo As Integer,

error_int_status As Long, event_int_status
As Long) As Integer

B_8164_link_interrupt (ByVal CardNo As Integer,
ByVal lpCallBackProc As Long) As Integer

B_8164_mask_axis_stop_int (ByVal AxisNo As
Integer, ByVal int_mask As Integer) As
Integer

B_8164_set_axis_stop_int (ByVal AxisNo As
Integer, ByVal axis_stop_int As Integer) As
Integer

Function Library 233

@ Argument
cardNo: card number 0,1,2,3…

AxisNo: axis number 0,1,2,3,4…

intFlag: int flag, 0 or 1 (0: Disable, 1:Enable)

int_factor: interrupt factor, refer to previous table

*int_type: Interrupt type, (1: error int, 2: event int, 3: both hap-
pened)

*event_int: event_int_status, refer to previous table

*error_int: error_int_status, refer to previous table

*sts: (0: not this card’s IRQ, 1: this card’s IRQ)

*phEvent: event handler (Windows)

*error_int_status: refer to previous table

*event_int_status: refer to previous table

int_mask: (0:make axis stop interrupt active, 1:make axis stop
interrupt in-active)

axis_stop_int: (0: disable axis stop interrupt factor, 1: enable
axis stop interrupt factor)

@ Return Code
ERR_NoError
ERR_EventNotEnableYet
ERR_LinkIntError
ERR_CardNoErrot

234 Function Library

6.15 Position Control and Counters

@ Name
_8164_get_position – Get the value of feedback position
counter

_8164_set_position – Set the feedback position counter

_8164_get_command – Get the value of command position
counter

_8164_set_command – Set the command position counter

_8164_get_error_counter – Get the value of position error
counter

_8164_reset_error_counter – Reset the position error
counter

_8164_get_general_counter – Get the value of general
counter

_8164_set_general_counter – Set the general counter

_8164_get_target_pos – Get the value of target position
recorder

_8164_reset_target_pos – Reset target position recorder

_8164_get_rest_command – Get remaining pulse till end of
motion

_8164_check_rdp – Get the ramping down point data

Function Library 235

@ Description
_8164_get_position():

Reads the feedback position counter value. Note that this value
has already been processed by the move ratio. If the move ratio is
0.5, than the value read will be twice as the counter value. The
source of the feedback counter is selectable by the function
_8164_set_feedback_src() to be external EA/EB or pulse
output of 8164.

_8164_set_position():

Changes the feedback position counter to the specified value.
Note that the value to be set will be processed by the move ratio. If
move ratio is 0.5, then the set value will be twice as the given
value.

_8164_get_command():

Reads the value of the command position counter. The source of
the command position counter is the pulse output of the 8164.

_8164_set_command():

Changes the value of the command position counter.

_8164_get_error_counter():

Reads the value of the position error counter.

_8164_reset_error_counter():

Clears the position error counter.

_8164_get_general_counter():

Read the value of the general counter.

_8164_set_general_counter():

Sets the counting source of and change the value of general
counter. By default, the source is pulse input.

_8164_get_target_pos():

Reads the value of the target position recorder. The target position
recorder is maintained by the card software driver. It records the
position to settle down for current running motion.

_8164_reset_target_pos():

236 Function Library

Sets new value for the target position recorder. It is necessary to
call this function when home return completes or when a new
feedback counter value is set by function
_8164_set_position().

_8164_get_rest_command():

Reads the remaining pulse counts until the end of the current
motion.

_8164_check_rdp():

Reads the ramping down point data. The ramping down point is
the position where deceleration starts. The data is stored as a
pulse count and it causes the axis start to decelerate when
remaining pulse count reach the data.

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_get_position(I16 AxisNo, F64 *pos);
I16 _8164_set_position(I16 AxisNo, F64 pos);
I16 _8164_get_command(I16 AxisNo, I32 *cmd);
I16 _8164_set_command(I16 AxisNo, I32 cmd);
I16 _8164_get_error_counter(I16 AxisNo, I16

*error_counter);
I16 _8164_reset_error_counter(I16 AxisNo);
I16 _8164_get_general_counter(I16 AxisNo, F64

*CntValue);
I16 _8164_set_general_counter(I16 AxisNo,I16

CntSrc, F64 CntValue);
I16 _8164_get_target_pos(I16 AxisNo, F64 *T_pos);
I16 _8164_reset_target_pos(I16 AxisNo, F64

T_pos);
I16 _8164_get_rest_command(I16 AxisNo, I32

*rest_command);
I16 _8164_check_rdp(I16 AxisNo, I32

*rdp_command);

Function Library 237

Visual Basic (Windows 95/NT/2K/XP)
B_8164_get_position (ByVal AxisNo As Integer, Pos

As Double) As Integer
B_8164_set_position (ByVal AxisNo As Integer,

ByVal Pos As Double) As Integer
B_8164_get_command (ByVal AxisNo As Integer, cmd

As Long) As Integer
B_8164_set_command (ByVal AxisNo As Integer,

ByVal cmd As Long) As Integer
B_8164_get_error_counter (ByVal AxisNo As

Integer, error_counter As Integer) As
Integer

B_8164_reset_error_counter (ByVal AxisNo As
Integer) As Integer

B_8164_get_general_counter (ByVal AxisNo As
Integer, CntValue As Double) As Integer

B_8164_set_general_counter (ByVal AxisNo As
Integer, ByVal CntSrc As Integer, ByVal
CntValue As Double) As Integer

B_8164_get_target_pos (ByVal AxisNo As Integer,
Pos As Double) As Integer

B_8164_reset_target_pos (ByVal AxisNo As Integer,
ByVal Pos As Double) As Integer

B_8164_get_rest_command (ByVal AxisNo As Integer,
rest_command As Long) As Integer

B_8164_check_rdp (ByVal AxisNo As Integer,
rdp_command As Long) As Integer

238 Function Library

@ Argument
AxisNo: Axis number

Pos, *Pos: Feedback position counter value,

range: -134217728-134217727

cmd, *cmd: Command position counter value,

range: -134217728-134217727

error_counter, *error_counter: Position error counter
value,

range: -32768-32767

T_pos, *T_pos: Target position recorder value,

T_range: -134217728-134217727

CntValue, *CntValue: General counter value,

range: -134217728-134217727

rest_command, *rest_command: Rest pulse count till end,

range: -134217728-134217727

rdp_command, *rdp_command: Ramping down point data

range: 0-167777215

CntSrc: Source of general counter

0: command
1: EA/EB
2: PA/PB (Default)
3: CLK/2

6.15.1 @ Return Code
ERR_NoError
ERR_PosOutofRange

Function Library 239

6.16 Position Compare and Latch

@ Name
_8164_set_ltc_logic – Set the LTC logic

_8164_get_latch_data – Get latched counter data

_8164_set_soft_limit – Set soft limit

_8164_enable_soft_limit – Enable soft limit function

_8164_disable_soft_limit – Disable soft limit function

_8164_set_error_counter_check – Step-losing detection
setup

_8164_set_general_comparator – Set general-purposed
comparator

_8164_set_trigger_comparator – Set trigger comparator

_8164_set_trigger_type – Set the trigger output type

_8164_check_compare_data – Check current comparator data

_8164_check_compare_status – Check current comparator
status

_8164_set_auto_compare – Set comparing data source for
auto loading

_8164_build_compare_function – Build compare data via
constant interval

_8164_build_compare_table – Build compare data via com-
pare table

_8164_cmp_v_change – Speed change by comparator

_8164_force_cmp_output – Force to output trigger pulses
from CMP

_8164_set_compare_mode – A general function for setting
comparator mode

_8164_set_compare_data – A general function for setting
comparator data

_8164_set_rotary_counter – set the counter as a rotary
counter

240 Function Library

@ Description
_8164_set_ltc_logic:

Sets the logic of the latch input. This function is applicable only for
last two axes in every 8164 card.

_8164_get_latch_data:

After the latch signal arrived, this function reads the latched value
of counters.

_8164_set_soft_limit:

Sets the soft limit value .

_8164_enable_soft_limit, _8164_disable_soft_limit:

Enable/disable the soft limit function. Once enabled, the action of
soft limit will be exactly the same as physical limit.

_8164_set_error_counter_check:

Enables the step losing checking facility. By giving a tolerance
value, the card generates an interrupt (event_int_status , bit 10)
when position error counter exceed tolerance.

_8164_set_general_comparator:

Sets the source and comparing value for the general comparator.
When the source counter value reached the comparing value, the
8164 will generate an interrupt (event_int_status , bit 11).

_8164_set_trigger_comparator:

Sets the comparing method and value for the trigger comparator.
When the feedback position counter value reaches the comparing
value, the card generates a trigger and a pulse output via CMP and
an interrupt (event_int_status, bit 12) is sent to the host computer.
If _8164_set_auto_compare is used, then the comparing value set
by this function is ignored automatically.

Note: it is applicable only for first two axes in every 8164 card.

Function Library 241

_8164_set_trigger_type:

Sets the trigger output mode

In hardware version A2, it is used for setting the output pulse as a
one shot or constant on.

In hardware version A3, it is used for setting the output pulse as
normal high or normal low.

_8164_check_compare_data:

Obtains the current comparing data of the designated comparator.

_8164_check_compare_status:

Obtains the status of all comparators. When some comparators
come into existence, the relative bits of cmp_sts will become ‘1,’
otherwise 0.

_8164_set_auto_compare:

Sets the comparing data source of the trigger comparator. The
source can be either a function or a table.

_8164_build_compare_function:

Builds a comparing function by defining the start/end point and
interval. There is no limitation on the max number of comparing
data. It automatically loads a final point after user’s end point. That
is, (end point + Interval x total points) x move ratio.

Note: Turn off all interrupt functions when triggering is running.

_8164_build_compare_table:

Builds a comparing table by defining a data array. The size of
array is limited to 1024 when using RAM mode.

Note: Turn off all interrupt functions when triggering is running.

_8164_cmp_v_change:

Sets up the comparator velocity change function. It is a v_change
function but acts when a general comparator comes into exist-
ence. When this function is issued, the parameter “CmpAction” of
_8164_set_general_comparator() must be set to 3 which is
for speed change option.

242 Function Library

The compare data is also set by
_8164_set_general_comparator(), while the remain dis-
tance, compare point’s velocity, new velocity, and acceleration
time are set by _8164_cmp_v_change().

_8164_force_cmp_output:

Ouputs trigger pulses from CMP without comparing position.
Meanwhile, only axis 0 and axis 1 can use this function.

_8164_set_rotary_counter:

Sets the counter of axis as a rotary (ring) counter. Once it is set as
a rotary counter, the value will be reset upon the condition
matched.

@ Syntax

C/C++ (DOS, Windows 95/98/NT)
I16 _8164_set_ltc_logic(I16 AxisNo_2or3, I16

ltc_logic);
I16 _8164_get_latch_data(I16 AxisNo, I16 LatchNo,

F64 *Pos);
I16 _8164_set_soft_limit(I16 AxisNo, I32 PLimit,

I32 NLimit);
I16 _8164_disable_soft_limit(I16 AxisNo);
I16 _8164_enable_soft_limit(I16 AxisNo, I16

Action);
I16 _8164_set_error_counter_check(I16 AxisNo, I16

Tolerance, I16 On_Off);
I16 _8164_set_general_comparator(I16 AxisNo, I16

CmpSrc, I16 CmpMethod, I16 CmpAction, F64
Data);

I16 _8164_set_trigger_comparator(I16 AxisNo, I16
CmpSrc, I16 CmpMethod, F64 Data);

I16 _8164_set_trigger_type(I16 AxisNo, I16
TriggerType);

I16 _8164_check_compare_data(I16 AxisNo, I16
CompType, F64 *Pos);

I16 _8164_check_compare_status(I16 AxisNo, U16
*cmp_sts);

I16 _8164_set_auto_compare(I16 AxisNo ,I16
SelectSrc);

Function Library 243

I16 _8164_cmp_v_change(I16 AxisNo, F64 Res_dist,
F64 oldvel, F64 newvel, F64 AccTime)

I16 _8164_force_comp_output(I16 AxisNo);
I16 _8164_set_compare_mode(I16 AxisNo, I16

CompNo, I16 CmpSrc, I16 CmpMethod, I16
CmpAction);

I16 _8164_set_compare_data(I16 AxisNo, I16
CompNo, F64 Pos);

I16 _8164_set_rotary_counter(I16 AxisNo ,I16
reset_src);

C/C++ (Windows 95/98/NT)
I16 _8164_build_compare_function(I16 AxisNo, F64

Start, F64 End, F64 Interval, I16 Device);
I16 _8164_build_compare_table(I16 AxisNo, F64

*TableArray, I32 Size, I16 Device);

C/C++ (Dos)
I16 _8164_build_compare_function(I16 AxisNo, F64

Start, F64 End, F64 Interval);
I16 _8164_build_compare_table(I16 AxisNo, F64

*TableArray, I32 Size);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_ltc_logic (ByVal AxisNo As Integer,

ByVal ltc_logic As Integer) As Integer
B_8164_get_latch_data (ByVal AxisNo As Integer,

ByVal Counter As Integer, Pos As Double) As
Integer

B_8164_set_soft_limit (ByVal AxisNo As Integer,
ByVal PLimit As Long, ByVal NLimit As Long)
As Integer

B_8164_disable_soft_limit (ByVal AxisNo As
Integer) As Integer

B_8164_enable_soft_limit (ByVal AxisNo As
Integer, ByVal Action As Integer) As Integer

B_8164_set_error_counter_check (ByVal AxisNo As
Integer, ByVal Tolerance As Integer, ByVal
On_Off As Integer) As Integer

B_8164_set_general_comparator (ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal CmpAction As
Integer, ByVal Data As Double) As Integer

244 Function Library

B_8164_set_trigger_comparator (ByVal AxisNo As
Integer, ByVal CmpSrc As Integer, ByVal
CmpMethod As Integer, ByVal Data As Double)
As Integer

B_8164_set_trigger_type (ByVal AxisNo As Integer,
ByVal TriggerType As Integer) As Integer

B_8164_check_compare_data (ByVal AxisNo As
Integer, ByVal CompType As Integer, Pos As
Double) As Integer

B_8164_check_compare_status (ByVal AxisNo As
Integer, cmp_sts As Integer) As Integer

B_8164_set_auto_compare (ByVal AxisNo As Integer,
ByVal SelectSrc As Integer) As Integer

B_8164_build_compare_function (ByVal AxisNo As
Integer, ByVal Start As Double, ByVal End As
Double, ByVal Interval As Double, ByVal
Device As Integer) As Integer

B_8164_build_compare_table (ByVal AxisNo As
Integer, TableArray As Double, ByVal Size As
Integer, ByVal Device As Integer) As Integer

B_8164_cmp_v_change(ByVal AxisNo, ByVal Res_dist
as Double, ByVal oldvel as Double, ByVal
newvel as Double, ByVal AccTime as Double)

B_8164_force_cmp_output (ByVal AxisNo As Integer)
As Integer

B_8164_set_compare_mode(ByVal AxisNo As Integer,
ByVal CompNo As Integer, ByVal CmpSrc As
Integer, ByVal CmpMethod As Integer, ByVal
CmpAction As Integer) As Integer

B_8164_set_compare_data (ByVal AxisNo As Integer,
ByVal CompNo Integer, ByVal Pos As Double)
As Integer

B_8164_set_rotary_counter (ByVal AxisNo As
Integer, ByVal reset_src As Integer) As
Integer

Function Library 245

@ Argument
AxisNo_2or3: Axis number, for last two axes in one card

ltc_logic: 0 means active low, 1 means active high

AxisNo: Axis number

LatchNo: Specified Counter to latch

LatchNo = 1 , Command counter
LatchNo = 2 , Feedback counter
LatchNo = 3 , Error Counter
LatchNo = 4 , General Counter

Pos: Latched counter value,

PLimit: Soft limit value, positive direction

NLimit: Soft limit value, negative direction

Action: The reacting method of soft limit

Action =0, INT only
Action =1, Immediately stop
Action =2, Slow down, then stop
Action =3, Reserved

Tolerance: The tolerance of step-losing detection form 0 - 32767

On_Off: Enable/Disable step-losing detection

On_Off =0, Disable
On_Off =1, Enable

CompNo: The comparator number of axis

CompNo =1, Comparator1, default for positive soft limit
CompNo =2, Comparator2, default for negative soft limit
CompNo =3, Comparator3, default for for position error
check
CompNo =4, Comparator4, It could be any counter source
CompNo =5, Comparator5, default for triggering output

246 Function Library

CmpSrc: The comparing source counter

CmpSrc =0, Command Counter
CmpSrc =1, Feedback Counter
CmpSrc =2, Error Counter
CmpSrc =3, General Counter

CmpMethod: The comparing method

CmpMethod =0, No compare
CmpMethod =1, CmpValue=Counter (Directionless)
CmpMethod =2, CmpValue=Counter (+Dir)
CmpMethod =3, CmpValue=Counter (-Dir)
CmpMethod =4, CmpValue>Counter
CmpMethod =5, CmpValue<Counter
CmpMethod =6, Reserved

CmpAction: The reacting mode when comparison comes into
exist

CmpAction =0, INT and Internal sync. signal output
CmpAction =1, Immediate stop
CmpAction =2, Slow down then stop
CmpAction =3, Speed change

Data: Comparing value

TriggerType: Selection of type of trigger output mode

Hardware Version A2
TriggerType =0, one shoot (default)
TriggerType =1, constant high

Hardware Version A3
TriggerType =0, normal high (default)
TriggerType =1, normal low

Function Library 247

CompType: Selection of type of comparator

CompType =1, + Soft Limit
CompType =2, -Soft Limit
CompType =3, Error Counter Comparator Value
CompType =4, General Comparator Value
CompType =5, Trigger Output Comparator Value

cmp_sts: status of comparator

SelectSrc: The comparing data source

SelectSrc =0, disable auto compare
SelectSrc =1, use FIFO
SelectSrc =2, compare function on RAM
SelectSrc =3, compare table on RAM

Start: Start point of compare function

End: End point of compare function

Interval: Interval of compare function

TableArray: Array of comparing data

Size: Size of table array

Device: Selection of reload device for comparator data

Device =0, RAM for axis2,3 of card, outputting pulses to
DO0,1
Device =1, FIFO for axis 0,1 of card, outputting pulses to
CMP0,1

Res_dist: The remaining distance from the compare point. After
comparison, the original target position is ignored, and the axis will
keep moving the Res_dist.

Bit Meaning
0 +Softlimit On
1 -SoftLimit On
2 Error counter comparator On
3 General comparator On
4 Trigger comparator On (for 0 , 1 axis only)

248 Function Library

oldvel: Velocity at compare point. Must be specified manually.

newvel: New velocity

AccTime: Acceleration time

reset_src: Reset source selection

Value=0, disable
Value=1, Latch pin ON
Value=2, ORG pin ON
Value=3, Comparator 4 ON
Value=4, Comparator 5 ON

@ Return Code
ERR_NoError
ERR_CompareNoError
ERR_CompareMethodError
ERR_CompareAxisError
ERR_CompareTableSizeError
ERR_CompareFunctionError
ERR_CompareTableNotReady
ERR_CompareLineNotReady
ERR_HardwareCompareAxisWrong
ERR_AutocompareSourceWrong
ERR_CompareDeviceTypeError

Function Library 249

6.17 Continuous motion

@ Name
_8164_set_continuous_move – toggle continuous motion
sequence flags

_8164_check_continuous_buffer – check if the command
register buffer is empty

@ Description
_8164_set_continuous_move():

This function is needed before and after continuous motion com-
mand sequences.

_8164_check_continuous_buffer():

Detects whether the command pre-register is empty or not. Once
the command pre-register is empty, you may write the next motion
command into it. Otherwise, the new command overwrites the pre-
vious command in the 2nd command pre-register.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_continuous_move(I16 AxisNo, I16

conti_flag);
I16 _8164_check_continuous_buffer(I16 AxisNo);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_continuous_move (ByVal AxisNo As

Integer, ByVal conti_flag As Integer) As
Integer

B_8164_check_continuous_buffer (ByVal AxisNo As
Integer) As Integer

250 Function Library

@ Argument
AxisNo: Designated axis number

conti_flag: Flag for continuous motion

conti_flag = 0, declare continuous motion sequence is fin-
ished
conti_flag = 1, declare continuous motion sequence is
started

@ Return Value
ERR_NoError

Return value of _8164_check_continuous_buffer():
Hardware version bit 12=0

0: command register 2 is empty
1: command register 2 is in-use

Return value of _8164_check_continuous_buffer():
Hardware version bit 12=1

0: all command registers are empty
1: command register is in-use
2: command register 1 is in-use
3: command register 2 is in-use

Function Library 251

6.18 Multiple Axes Simultaneous Operation

@ Name
_8164_set_tr_move_all – Multi-axis simultaneous operation
setup.

_8164_set_ta_move_all – Multi-axis simultaneous operation
setup.

_8164_set_sr_move_all – Multi-axis simultaneous operation
setup.

_8164_set_sa_move_all – Multi-axis simultaneous operation
setup.

_8164_start_move_all – Begin a multi-axis trapezoidal profile
motion

_8164_stop_move_all – Simultaneously stop Multi-axis motion

_8164_set_sync_option – Other sync. motion setting

_8164_set_sync_stop_mode – Setting the stop mode of
CSTOP signal

_8164_set_sync_signal_source – Synchronous signal
source setting

_8164_set_sync_signal_mode – Synchronous signal mode
setting

252 Function Library

@ Description
These functions are related to simultaneous operations of multi-
axes even in different cards. Simultaneous multi-axis operation
means to start or stop moving specified axes at the same time.
The axes moves are specified by the parameter AxisArray, and
the number of axes are defined by parameter TotalAxes in
_8164_set_tr_move_all().

When properly setup with _8164_set_xx_move_all(), the
function _8164_start_move_all() causes all specified axes
to begin a trapezoidal relative movement, and
_8164_stop_move_all() stops them. Both functions guaran-
tee that motion Start/Stop on all specified axes occur at the same
time.

Note that proper CN4 connections are needed for these two func-
tions. Refer to Section 3.14.

The following codes tell how to utilize these functions. This code
moves axis 0 and axis 4 to distance 8000.0 and 120000.0, respec-
tively. If you choose velocities and accelerations that are propor-
tional to the ratio of distances, then the axes will arrive at their
endpoints at the same time.

int main()
{

I16 axes[2] = {0, 4};
F64 dist[2] = {8000.0, 12000.0},

str_vel[2]={0.0, 0.0},
max_vel[2]={4000.0, 6000.0},
Tacc[2]={0.04, 0.06},
Tdec[2]= {0.04, 0.06};

_8164_set_tr_move_all(2, axes, dist, str_vel,
max_vel, Tacc, Tdec);

_8164_start_move_all(axes[0]);

returnERR_NoError;
}

_8164_set_sync_option():

Allows two or more different command groups start at the same
time. For example, if you want a 2-axis linear interpolation and a 1-

Function Library 253

axis single motion to start at the same time, you can turn on this
option before the command starts. This function may also be used
when waiting for another command’s finish signal before starting.
For example, axis1 must start after axis2 is done.

_8164_set_sync_stop_mode():

Provides two options for stop types: immediately stop and slow
down to stop. When the _8164_stop_move_all() or CSTOP signal
is used, the axes stop according to this setting.

_8164_set_sync_signal_source:

Selects the synchrous signal source of one axis. It could be from
itself or from the other three axes.

_8164_set_sync_signal_mode:

Specifies the internal synchronous signal output timing. If one of
the condition is satisfied, the internal synchronous signal is trig-
gered.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_set_tr_move_all(I16 TotalAxes, I16

*AxisArray, F64 *DistA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8164_set_sa_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8164_set_ta_move_all(I16 TotalAx, I16
*AxisArray, F64 *PosA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA);

I16 _8164_set_sr_move_all(I16 TotalAx, I16
*AxisArray, F64 *DistA, F64 *StrVelA, F64
*MaxVelA, F64 *TaccA, F64 *TdecA, F64
*SVaccA, F64 *SVdecA);

I16 _8164_start_move_all(I16 FirstAxisNo);
I16 _8164_stop_move_all(I16 FirstAxisNo);
I16 _8164_set_sync_option(I16 AxisNo, I16

sync_stop_on, I16 cstop_output_on, I16
sync_option1, I16 sync_option2);

254 Function Library

I16 _8164_set_sync_stop_mode(I16 AxisNo, I16
stop_mode);

I16 _8164_set_sync_signal_source(I16 AxisNo, I16
Sync_axis);

I16 _8164_set_sync_signal_mode(I16 AxisNo, I16
mode);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_set_tr_move_all(ByVal TotalAxes As

Integer, AxisArray As Integer, DistA As
Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double);

B_8164_set_sa_move_all(ByVal TotalAxes As
Integer, AxisArray As Integer, PosA As
Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double,
SVaccA As double, SVdecA As Double);

B_8164_set_ta_move_all(ByVal TotalAxes As
Integer, AxisArray As Integer, PosA As
Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double);

B_8164_set_sr_move_all(ByVal TotalAxes As
Integer, AxisArray As Integer, DistA As
Double, StrVelA As double, MaxVelA As
double, TaccA As double, TdecA As double,
SVaccA As double, SVdecA As Double);

B_8164_start_move_all(ByVal FirstAxisNo As
Integer);

B_8164_stop_move_all(ByVal FirstAxisNo As
Integer);

B_8164_set_sync_option (ByVal AxisNo As Integer,
ByVal sync_stop_on As Integer, ByVal
cstop_output_on As Integer, ByVal
sync_option1 As Integer, ByVal sync_option2
As Integer) As Integer

B_8164_set_sync_stop_mode (ByVal AxisNo As
Integer, ByVal stop_mode As Integer) As
Integer

B_8164_set_sync_signal_source (ByVal AxisNo As
Integer, ByVal Sync_axis As Integer) As
Integer

B_8164_set_sync_signal_mode (ByVal AxisNo As
Integer, ByVal mode As Integer) As Integer

Function Library 255

@ Argument
TotalAxes: Number of axes for simultaneous motion, 1-48.

*AxisArray: Specified axes number array designated to move.

*DistA: Specified position array in units of pulse

*StrVelA: Starting velocity array in units of pulse per second

*MaxVelA: Maximum velocity array in units of pulse per second

*TaccA: Acceleration time array in units of seconds

*TdecA: Deceleration time array in units of seconds

*SVaccA: Specified velocity interval array in which S-curve accel-
eration is performed

*SVdecA: specified velocity interval array in which S-curve decel-
eration is performed.

FirstAxisNo: the first element in AxisArray

Sync_stop_on: Axis will stop if the CSTOP signal is on

Cstop_output_on: CSTOP signal will output with an abnormal
stop (ALM,EL..etc)

Sync_option1: Choose command start type:

0: default (immediately start)
1: waiting _8164_start_move_all() or CSTA signal
2: waiting Internal sync. signal to start (sync_source)
3: waiting Sync_option2’s condition to start

Sync_option2: For example:

0: default (useless)
1: after Axis0 stops
2: after Axis1 stops
4: after Axis2 stops
8: after Axis3 stops
5: after Axis0 and Axis2 stop
15: Axis0-Axis3 stop

256 Function Library

stop_mode:

0: immediate stop
1: slow down to stop

mode:

0=Off
1-5=compare 1-5 active
8=Acc start
9=Acc end
10=Dec start
11=Dec end

Sync_axis: 0-3, the axis index in the card.

@ Return Code
ERR_NoError
ERR_SpeedError

Function Library 257

6.19 General-purposed TTL output (PCI-8164 Only)

@ Name
_8164_d_output – Digital Output

_8164_get_dio_status – Get DIO status

@ Description
_8164_d_output():

Sets the on_off status for general-purposed TTL digital output pin.

_8164_get_dio_status():

Reads the status of all digital output pins.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_d_output(I16 CardNo, I16 Ch_No, I16

value);
I16 _8164_get_dio_status(I16 CardNo, U16

*dio_sts);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_d_output (ByVal CardNo As Integer, ByVal

Ch_No As Integer, ByVal value As Integer) As
Integer

B_8164_get_dio_status (ByVal CardNo As Integer,
dio_sts As Integer) As Integer

258 Function Library

@ Argument
CardNo: Designated card number

Ch_No: Designated channel number 0 - 5

Value: On-Off Value for output

Value =0, output OFF
Value =1, output ON

dio_status: Digital output status

bit0-bit5 for channel 0 - 5, respectively

@ Return Value
ERR_NoError
ERR_DioNoError

Function Library 259

6.20 General-purposed DIO (MPC-8164/PXI-8164 only)

@ Name
_8164_write_do – Digital Output (MPC-8164 only)

_8164_read_di – Digital Input (MPC-8164 only)

_8164_write_axis_do – Digital Output (PXI-8164 only)

_8164_read_axis_di – Digital Input (PXI-8164 only)

@ Description
_8164_write_do():

Outputs an 8-bit value once to control eight output channels.

_8164_read_di():

Reads back an 8-bit value once from eight input channels.

_8164_write_axis_do():

Controls the axis’ general digital output channel.

_8164_read_axis_di():

Reads back the axis’ general digital input channel.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
I16 _8164_write_do(I16 CardNo, U16 Value);
U16 _8164_read_di(I16 CardNo);
I16 _8164_write_axis_do(I16 AxisNo, U16 Value);
U16 _8164_read_axis_di(I16 AxisNo);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_write_do (ByVal CardNo As Integer, ByVal

value As Integer) As Integer
B_8164_read_di (ByVal CardNo As Integer) As

Integer
B_8164_write_axis_do (ByVal AxisNo As Integer,

ByVal value As Integer) As Integer
B_8164_read_axis_di (ByVal AxisNo As Integer) As

Integer

260 Function Library

@ Argument
CardNo: Designated card number

AxisNo: Designated axis number

Value: Value for output

Bit value =0, output OFF
Bit value =1, output ON

@ Return Value
ERR_NoError

Digital Input Value for 8 channels in MPC-8164
Axis’ general digital input value in PXI-8164

Function Library 261

6.21 Card ID (PXI-8164 Only)

@ Name
_8164_enable_card_id – Enable card ID’s function

_8164_check_card – Check if this Card ID exist

@ Description
_8164_enable_card_id():

Makes the card ID settings valid. This line must be placed before
_8164_initial() function

_8164_check_card():

Checks if the card ID exists. You can use this function to search all
the cards in the 0 - 11 range.

@ Syntax

C/C++ (DOS, Windows 95/NT/2K/XP)
void _8164_enable_card_id(void);
I16 _8164_check_card(I16 CardNo);

Visual Basic (Windows 95/NT/2K/XP)
B_8164_enable_card_id ()
B_8164_check_card (ByVal CardNo As Integer) As

Integer

@ Argument
CardNo: Designated card number

@ Return Value
ERR_NoError
_8164_check_card():

TRUE means card ID exist
FALSE means card ID not exist

262 Function Library

6.22 PXI Trigger Bus (PXI-8164 Only)

@ Name
_8164_get_pxi_trigger_value – Readback PXI_TRG’s sta-
tus value

_8164_set_pxi_trigger_value – Write PXI_TRG’s status
value

_8164_enable_pxi_input – Enable PXI input channel

_8164_select_pxi_output – Select PXI output channel

@ Description
_8164_get_pxi_trigger_value():

Reads back the PXI TRG’s status value from bit0 to bit7.

_8164_set_pxi_trigger_value():

Writes the PXI TRG’s status value from bit0 to bit7.

_8164_enable_pxi_input():

There are three dedicated channels in the PXI_TRG for STA, STP,
and CEMG. When this is enabled, the corresponding channels of
PXI_TRG are set as inputs. These channels map to PXI_TRG’s
channel 5, 6, and 7. If you need these functions, the correspond-
ing PXI_TRG channel is fixed as Input.

_8164_select_pxi_output():

You can select many sources for PXI_TRG outputs. You can use
this function to assign a source for PXI_TRG output. There should
only be one source at the same time. The source could be from
CMP1, CMP2, or other general purpose output pins from motion
chip. The output channel of PXI_TRG could also be assigned
using this function. The STAR_TRG could be assigned to an out-
put channel in this function.

Function Library 263

@ Syntax

C/C++ (DOS, Win32)
I16 _8164_get_pxi_trigger_value(I16 CardNo, U16

*value);
I16 _8164_set_pxi_trigger_value(I16 CardNo, U16

value);
I16 _8164_enable_pxi_input(I16 CardNo, I16 STA,

I16 STP, I16 CEMG);
I16 _8164_select_pxi_output(I16 CardNo, I16

source, I16 pxi_channel);

Visual Basic (Win32)
B_8164_get_pxi_trigger_value(ByVal CardNo As

Integer, value As Integer) As Integer
B_8164_set_pxi_trigger_value(ByVal CardNo As

Integer, ByVal value As Integer) As Integer
B_8164_enable_pxi_input(ByVal CardNo As Integer,

ByVal STA As Integer, ByVal STP As Integer,
ByVal CEMG As Integer) As Integer

B_8164_select_pxi_output(ByVal CardNo As Integer,
ByVal source As Integer, ByVal pxi_channel
As Integer) As Integer

264 Function Library

@ Argument
CardNo: Designated card number

*value: PXI_TRG value bit0-7, PXI_STAR value in bit8

value: PXI_TRG value bit0-7

STA: 0=disable, 1=link to PXI_TRG[5], 2=link to PXI_STAR

STP: 0=disable, 1=link to PXI_TRG[6]

CEMG: 0=disable, 1=link to PXI_TRG[7]

source:

 0 = Software control
 1 = AP6X
 2 = AP6Y
 3 = AP6Z
 4 = AP6U
 5 = CMP1
 6 = CMP2

pxi_channel:

PXI_TRG value bit0-7
STAR_TRG bit8

@ Return Value
ERR_NoError
ERR_CardTypeWrong
ERR_CardNoError
ERR_PXISourceWrong
ERR_PXIChannelWrong

Connection Example 265

7 Connection Example
This chapter illustrates connection examples between the PCI-/
MPC-/PXI-8164 card and servo drivers or stepping drivers.

7.1 General Wiring Description
CN1: Receives +24V power from the external power supply. (PCI-

8164 only)
CN2: Main connection between the PCI-8164 and the pulse input

servo driver or stepping driver.
CN3: Receives pulse commands from manual pulse in the PCI-

8164 card.
General Purpose DIO for MPC-8164
CN4: Connector for simultaneously start or stop of multiple PCI-

8164 cards.
CN5: TTL digital output for PCI-8164This example will illustrate

the connection between a Panasonic Servo Driver and the
8164. Figure 9 shows the wiring diagram.

NOTES:

1. For convenience, the drawing shows connections for
single axis only.

2. Default pulse output mode is OUT/DIR. Default input
mode is 1X AB phase. Other modes can be set using the
available software functions.

3. Most general purpose servomotor drivers can operate in
Torque Mode, Velocity Mode, or Position Mode. To con-
nect the card, you must set the operating mode to Posi-
tion Mode.

266 Connection Example

Figure 7-1 illustrates the integration of the PCI-8164 card with a
physical system.

Figure 7-1: System Integration with PCI-8164

Connection Example 267

7.2 Connection Example with Servo Driver
This example illustrates the connection between a Panasonic
Servo Driver and the card. Figure 7-2 shows the wiring diagram.

NOTES:

1. For convenience, the drawing shows connections for
single axis only.

2. Default pulse output mode is OUT/DIR. Default input
mode is 1X AB phase. Other modes can be set using the
available software functions.

3. Most general purpose servomotor drivers can operate in
Torque Mode, Velocity Mode, or Position Mode. To con-
nect the card, you must set the operating mode to Posi-
tion Mode.

268 Connection Example

Figure 7-2: Connection of PCI-8164 with Panasonic Driver

Connection Example 269

Figure 7-3: Connection of PCI-8164 with SANYO Driver

Wiring of PCI-8164 with SANYO AC Servo PY2

3
4
5
6

98
99

7
8
9

10

13
14
15
16
17
18

20
37
38
39
40
41

OUT1 +
OUT1 -
DIR +
DIR -

EX GND
EX +24V

SVON 1
ERC 1
ALM 1
INP 1

EA1 +
EA1 -
EB1 +
EB1 -
EZ1 +
EZ1 -

EX GND
PEL1
MEL1
PSD1
MSD1
ORG1

RDY 1
EX GND

11
12

EX +5V19

PCI_8164 Axis 1 Servo Driver

SANYO
BL Super P

Series

Table

MEL ORG MSD PSD PEL

E

M

26
27
28
29

PPC
PPC
NPC
NPC

25
23

37

DC24V COM
DC24V

Servo ON

43
39

ALM1
General Out

32PROT

3Encoder A
4Encoder A
5
6

Encoder B
Encoder B

7Encoder C
8Encoder C

33NROT

CN1

EX +24V100 49DC24V

270 Connection Example

7.3 Wiring with DIN-814M
WARNING
The DIN-814M is used for wiring between Mitsubishi J2S series
servo drivers / stepper with pulse trains input driver and ADLINK
PCI-8134, PCI-8164, PXI-8164 or MPC-8164 motion controller
card ONLY. Never use it with any other servo driver or cards.

NOTES
1. Servo and stepper: The DIN-814M provides two con-

nection methods for each axis: CNA and CNB connec-
tors for Mitsubishi J2S series servo drivers, and an SJ
connector for stepping drivers. The signals in SJ, CNA,
and CNB of the same axis are directly shorted. DO NOT
use both connectors at the same time.

2. CAN or CNB cables: Two 20-pin cables (pin-to-pin) are
required to connect the CNA and CNB with the Mitsub-
ishi J2S driver. The required cables are available from
ADLINK.

3. PSD Signal: The PSD signal on the IOIF# connector
has different functions depending on different motion

CNA1

C
N

A
3

C
N

2

C
N

A
2

CN1

SJ
3

SJ
4

SJ
1

SJ
2

LED4

LED3

LED2

LED1

IOIF4

IOIF2

IOIF3

IOIF1

CNB1 CNB2

CNA4 CNB4 CNB3

J1~J4 HD1 HD2

HD4 HD3

To Motion
Card

GND
+24V

1st Axis
To Mitsubishi

J2S Driver
2nd Axis

To Mitsubishi J2S
Driver

A1 B1

A2

A3

A4

B2

B4 B3

4th Axis
To Mitsubishi

J2S Driver

3rd Axis
To Mitsubishi

J2S Driver

To stepping
driver

Mechanical I/O
Interface

LED indecater
& TD

connector

1
1

TJ1 TJ2

TD4

TD3

TD2

TD1

Connection Example 271

cards. When using PCI-8134, PSD is used as a positive
slow down signal. When using PCI-8164/PXI-8164/
MPC-8164, PSD1/2 is for CMP1/2 of Axis0/Axis1 and
PSD3/4 is for LTC3/4 of Axis3/Axis4.

4. Emergency Signal: This signal is defined by Mitsub-
ishi’s servo driver (pin15 of CNB) as a normally closed
input. Disable the signal by connecting jumpers J1-J4 of
1-2 to GND. You may also connect a switch to the EMG
pin of each axis of the IOIF# or HD# connectors and
short jumpers J1-J4 of 2-3 to make EMG controllable by
a switch.

7.3.1 PIN Assignments:
CNA1-CNA4 (Mitsubishi AC Servo Driver CNA Interface)

No. Name I/O Function No. Name I/O Function
1 IGND -- Isolated Ground 2 DIR+ O Direction Signal (+)
3 OUT+ O Pulse Signal (+) 4 --
5 EZ+ I Encoder Z-phase (+) 6 EA+ I Encoder A-phase (+)
7 EB+ I Encoder B-phase (+) 8 ERC O Error counter Clear
9 -- Voltage output 10 IGND -- Isolated Ground
11 -- 12 DIR- O Direction Signal (-)
13 OUT- O Pulse Signal (-) 14 --
15 EZ- I Encoder Z-phase (-) 16 EA- I Encoder A-phase (-)
17 EB- I Encoder B-phase (-) 18 INP I Servo In Position
19 RDY I Servo Ready 20 IGND -- Isolated Ground

272 Connection Example

CNB1-CNB4 (Mitsubishi AC Servo Driver CNB Interface)

IOIF1-IOIF4 External Motion Input Signal Interface)

SJ1-SJ4 (Stepping Motor Control Interface)

CN1 (External +24VDC Input Connector)

No. Name I/O Function No. Name I/O Function

1 IGND -- Isolated Ground 2 VC I Analog Torque Com-
mand

3 +24V -- Driver Voltage output 4 DO1 O ABS bit 0
5 Servo ON I Servo On 6 TLC I Limiting Torque
7 SP2 I Speed Selection 2 8 ABSM I ABS transfer mode
9 ABSR I ABS request 10 IGND -- Isolated Ground
11 P15R -- +15 VDC power supply 12 VLA I Analog Speed Limit
13 +24V O Driver Voltage output 14 RES I Reset
15 EMG -- Internal EMG Signal 16 IGND -- Isolated Ground
17 IGND -- Isolated Ground 18 ALM I Servo Alarm
19 ZSP I Zero Speed 20 IGND -- Isolated Ground

No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 EX_EMG I External EMG Signal 7 ORG I Origin Switch
3 PEL I Positive Limit (+) 8 IGND -- Isolated Ground
4 MEL I Negative Limit (-) 9 IGND -- Isolated Ground
5 PSD I *CMP/LTC/PSD * Please check the note in first page

No. Name I/O Function No. Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

No. Name I/O Function
1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground.

Connection Example 273

HD1-HD4 (Auxiliary. Servo I/O Interface)

Jumper (Mitsubishi AC Servo Driver EMG Signal Source
Selection)

TD1-TD4 (External AC Servo Driver Reset & ABS system
Interface)

TJ1-TJ2 (Speed Control Mode Interface only for Axis0,1)

Name I/O Function No. Name I/O
+24V O Voltage output 4 EX_EMG I

Servo ON O Servo On 5 ALM I
RDY I Servo Ready 6 IGND --

J1-J4 1: GND 2: EMG4 3: EX_EMG

No. Name I/O Function No. Name I/O Function
1 RES I Reset 5 ZSP O ABS bit 1
2 ABSM I ABS transfer mode 6 TLC O Send data ready
3 ABSR I ABS request 7 IGND -- Isolated Ground
4 D01 O ABS bit 0 8 IGND -- Isolated Ground

No. Name I/O Function No. Name I/O Function
1 SP2 I Speed Selection 2 4 LG -- Control Common
2 P15R I +15VDC power supply 5 TLA I Analog torque limit
3 VC O Analog Speed Command 6 LG -- Control Common

274 Connection Example

7.3.2 Signal Connections
1. PEL, MEL, ORG, PSD, MSD (in IOIF#)

2. EX_EMG (both IOIF# and HD#)

3. CMP, LTC (in IOIF#’s PSD pin only for 8164 series)

4. CNA & CNB, CN2

5. CN1: This connector is parallel with on board CN1.

6. SJ1-4: For stepping driver, refer to the ADLINK user’s
manual for wiring.

7. TD1-4: Refer to the Mitsubishi user’s manual for wiring.

8. TJ1-2: Refer to the Mitsubishi user’s manual for wiring.

Connection Example 275

7.3.3 Mechanical Dimensions:

276 Connection Example

7.4 Wiring with DIN-814P
WARNING
The DIN-814M is used for wiring between the Panasonic MINAS
MSD series servo driver and ADLINK PCI-8134 or PCI-8164
motion controller cards ONLY. Do not try the DIN-814P to connect
other servo drivers or cards.

NOTES
1. The DIN-814P provides TWO connection methods for

every axis. The first is through the CNIF connector for
the Panasonic MINAS MSD series servo driver. The sec-
ond is through the SJ connector for stepping drivers or
other servo drivers (for the Mitsubishi J2S driver, use
DIN-814M). The signals in SJ and CNIF of the same axis
are directly shorted. DO NOT use these connectors at
the same time.

CNIF-(4)

CNIF-(1)

C
N

IF-(3)

C
N

2

C
N

IF-(2)

CN1

SJ
-(
3)

SJ
-(

4)

SJ
-(
1)

SJ
-(

2)

LE
D
4

LE
D
3

LE
D
2

LE
D
1

IOIF-(4)

IOIF-(2)

IOIF-(3)

IOIF-(1)

To
PCI-8134/8164

GND
+24V

4th Axis
To Panasonic
Driver - CN1

2nd Axis
To Panasonic
Driver - CN1

1st Axis
To Panasonic
Driver - CN1

LED indecaterTo stepping
driver

Mechanical I/O
Interface

-(1) : for 1st axis
-(2) : for 2nd axis
-(3) : for 3rd axis
-(4) : for 4th axis

3rd Axis
To Panasonic
Driver - CN1

1
1

1

1

1

1

Connection Example 277

2. A 36-pin cable (one-to-one) is required to connect the
CNIF and the Panasonic MINAS MSD driver. Contact
your local ADLINK representative for availability.

3. Depending on the PCI-8134/PCI-8164 card usage, some
signals in the IOIF connector, such as PSD and MSD,
will function differently. When using PCI-8134, the PSD
and MSD signals are for positive slow down and nega-
tive slow down signal, respectively. When using PCI-
8164, PSD is for CMP and LTC, and MSD is for SD. For
more details, refer to the PCI-8134/PCI-8164 user’s
manual.

7.4.1 Mechanical Dimensions:

278 Connection Example

7.4.2 PIN Assignment:
CNIF1-CNIF4

IOIF1-IOIF4

No. Name I/O Function No. Name I/O Function
1 EZ+ I Encoder Z-phase (+) 2 EZ- I Encoder Z-phase (-)
3 IGND -- Isolated Ground 4
5 OUT+ O Pulse Signal (+) 6 OUT- O Pulse Signal (-)
7 DIR+ O Direction Signal (+) 8 DIR- O Direction Signal (-)
9 IGND -- Isolated Ground 10
11 +24V O Voltage output 12 Servo ON O Servo On
13 ERC O Error counter Clear 14
15 IGND -- Isolated Ground 16
17 18
19 EA+ I Encoder A-phase (+) 20 EA- I Encoder A-phase (-)
21 EB+ I Encoder B-phase (+) 22 EB- I Encoder B-phase (-)
23 24
25 INP I Servo In Position 26 ALM I Servo Alarm
27 RDY I Servo Ready 28 IGND -- Isolated Ground
29 30
31 32
33 34
35 36

No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 6 MSD I Negative Slow Switch (+)
2 +24V O Voltage output 7 ORG I
3 PEL I Positive Limit (+) 8 IGND --
4 MEL I Negative Limit (-) 9 IGND --
5 PSD I Positive Slow Switch (+)

Connection Example 279

SJ1-SJ4

CN1

No. Name I/O Function No Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 Servo ON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

No. Name I/O Function
1 EX+24V I External Power Supply Input (+24V DC ± 5%)
2 EXGND -- External Power Supply Ground

280 Connection Example

7.4.3 How to wire

PEL, MEL, ORG, SD, PSD, MSD (in IOIF):

CMP, LTC (in IOIF)
CMP is a TTL 5V or 0V output (vs. Ext GND)
LTC is a TTL 5V or 0V input (vs. Ext. GND)

CNA & CNB, CN2

SJ: Refer to PCI-8134/PCI-8164 user’s manual for wiring infor-
mation.

CN1:

Connection Example 281

7.5 Wiring with DIN-814PA
WARNING
The DIN-814PA is designed for Panasonic MINAS A-series servo
drivers with ADLINK PCI-8134/PCI-8164 series motion control
board. DO NOT use the DIN-814PA with other servo drivers and
motion control boards.

Description:

1. The DIN-814PA has two kinds of connections for four
axes motion control. One is connector CNIF# designed
for Panasonic MINAS A-series servo driver. Another is
the SJ# connector designed for stepping drivers or other

CNIF1 CNIF2

CNIF3 CNIF4

IOIF4

IOIF3

IOIF2

IOIF1

CN2

CN1

SJ1 SJ2

SJ3 SJ4

To stepping motor
driver

Mechanical I/O
interface

1st axis to servo
driver

2nd axis to servo
driver

3rd axis to servo
driver

4th axis to servo
driver

ORG/MEL/PEL
LED indicator

To 24V power
supply

To motion control
board

282 Connection Example

servo drivers. The signals at CNIF# and SJ# are con-
nected together. DO NOT use them simultaneously.

2. A 50-pin cable is required to connect the Panasonic
MINAS A-series servo driver with the CNIF# connector
on the DIN-814PA. Contact your local ADLINK represen-
tative for additional information.

3. Signals PSD# and MSD# at the connector IOIF# are
assigned different names on the 8164-series motion
control board. The PSD1, PSD2, PSD3, and PSD4 sig-
nals are renamed CMP1, CMP2, LTC3, and LTC4,
respectively. MSD# is replaced by SD/PCS#.

Connection Example 283

7.5.1 Wiring Example:

PEL, MEL, ORG, SD, PSD, MSD, and Alarm Clear (at IOIF):

CMP, LTC (at IOIF)
CMP is a TTL 5V or 0V output (vs. Ext GND)
LTC is a TTL 5V or 0V input (vs. Ext. GND)

284 Connection Example

CNIF# and CN2

SJ: Refer to 8134/64 series user manual.

CN1: 24V power supply input

Connection Example 285

7.5.2 Mechanical Dimensions:

286 Connection Example

7.5.3 PIN Assignment:
CNIF1-CNIF4

IOIF1-IOIF4

No. Name I/O Function No. Name I/O Function
1 NC -- 2 NC --
3 OUT- O Pulse Signal (-) 4 OUT+ O Pulse Signal (+)
5 DIR- O Direction Signal (-) 6 DIR+ O Direction Signal (+)
7 +24V O +24V Power supply 8 NC --
9 NC -- 10 NC --
11 NC -- 12 NC --
13 IGND -- Isolated Ground 14 NC --
15 IGND -- Isolated Ground 16 NC --
17 IGND -- Isolated Ground 18 NC --
19 NC -- 20 NC --
21 EA+ I Encoder A-phase (+) 22 EA- I Encoder A-phase (-)
23 EZ+ I Encoder Z-phase (+) 24 EZ- I Encoder Z-phase (-)
25 IGND -- Isolated Ground 26 NC --
27 NC -- 28 NC --
29 SVON Servo On 30 ERC O
31 A-CLR O Alarm Clear 32 NC --
33 IGND -- Isolated Ground 34 IGND -- Isolated Ground
35 RDY Servo Ready 36 IGND -- Isolated Ground
37 ALM Servo Alarm 38 IGND -- Isolated Ground
39 INP Servo In Position 40 NC --
41 IGND -- Isolated Ground 42 NC --
43 NC -- 44 NC --
45 NC -- 46 NC --
47 NC -- 48 EB+ I Encoder B-phase (+)
49 EB- I Encoder B-phase (-) 50 NC --

No. Name I/O Function No. Name I/O Function
1 +24V O +24V Power supply 6 MSD I Negative Slow Switch (+)
2 +24V O External EMG Signal 7 ORG I
3 PEL I Positive Limit (+) 8 A-CLR O Alarm Clear
4 MEL I Negative Limit (-) 9 IGND -- Isolated Ground
5 PSD I Positive Slow Switch (+)

Connection Example 287

SJ1-SJ4

CN1

No. Name I/O Function No. Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O +5V Power supply
3 DIR+ O Direction Signal (+) 8 SVON O Servo On
4 DIR- O Direction Signal (-) 9 +5V O +5V Power supply
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

No. Name I/O Function

1 EX+24V I External Power Supply Input (+24V DC ± 5%)

2 EXGND -- External Ground.

288 Connection Example

7.6 Wiring with DIN-814M-J3A

Connection Example 289

7.6.1 PIN Assignment:
CNIF1-CNIF4

No. Name I/O Function No. Name I/O Function
1 P15R -- 15VDC power supply 2 VLA O Analog speed limit
3 IGND -- Isolated Ground 4 EA+ I Encoder A-phase(+)
5 EA- I Encoder A-phase(-) 6 EB+ I Encoder B-phase(+)
7 EB- I Encoder B-phase(-) 8 EZ+ I Encoder Z-phase(+)
9 EZ- I Encoder Z-phase(-) 10 OUT+ O Pulse Signal(+)
11 OUT- O Pulse Signal(-) 12 N.C
13 N.C 14 N.C
15 SVON O Servo ON 16 SP2 O Speed selection 2
17 ABSM O Forward rotation 18 ABSR O Reverse rotation
19 RES I Reset Signal 20 +24V -- Voltage output
21 +24V -- Voltage output 22 ABSB0 I Speed reached
23 ZSP I Zero Speed 24 INP I In-position Signal
25 TLC I Limiting Torque 26 N.C
27 TC O Analog torque command 28 IGND -- Isolated Ground
29 N.C 30 N.C
31 N.C 32 N.C
33 N.C 34 IGND -- Isolated Ground
35 DIR+ O Direction Signal(+) 36 DIR- O Direction Signal(-)
37 N.C 38 N.C
39 N.C 40 N.C
41 ERC O Error counter Clear 42 EMG O Emergency stop
43 IGND -- Isolated Ground 44 IGND -- Isolated Ground
45 LOP O Control selection 46 IGND -- Isolated Ground
47 IGND -- Isolated Ground 48 ALM I Servo Alarm Signal
49 RDY I Servo Ready Signal 50 N.C

290 Connection Example

BH1-BH4

IOIF1-IOIF4

SJ1-SJ4

No. Name I/O Function No. Name I/O Function
1 RES I Reset Signal 2 ABSM O Forward rotation
3 ABSR O Reverse rotation 4 ABSB0 I Speed reached
5 ZSP I Zero Speed 6 TLC I Limiting Torque
7 SP2 O Speed selection 2 8 P15R -- 15VDC power supply
9 VLA O Analog speed limit 10 TC O Analog torque command
11 +24V -- Voltage output 12 ALM I Servo Alarm Signal
13 EXEMG I External EMG Signal 14 IGND -- Isolated Ground
15 LOP O Control selection 16 IGND -- Isolated Ground

No. Name I/O Function
1 +24V -- Voltage output
2 EXEMG I External EMG Signal
3 PEL I Positive Limit(+)
4 MEL I Positive Limit(-)
5 PSD I Positive Slow Switch(+)
6 MSD I Negative Slow Switch(+)
7 ORG I Origin signal
8 RES I Reset Signal
9 IGND -- Isolated Ground

No. Name I/O Function
1 OUT+ O Pulse Signal(+)
2 OUT- O Pulse Signal(-)
3 DIR+ O Direction Signal(+)
4 DIR- O Direction Signal(-)
5 EZ+ I Encoder Z-phase(+)
6 ALM I Servo Alarm
7 +5V -- +5V power supply output
8 SVON O Servo ON
9 +5V -- +5V power supply output

10 IGND -- Isolated Ground

Connection Example 291

CN1

No. Name I/O Function
1 EX +24V I External Power Supply Input (+24V DC+5%)
2 EX GND -- External Power Supply Ground

292 Connection Example

7.7 Wiring with DIN-814Y

Connection Example 293

7.7.1 PIN Assignment:
CNIF1-CNIF4

No. Name I/O Function No. Name I/O Function
1 IGND -- Isolated Ground 2 IGND -- Isolated Ground
3 PL1 I Collector +12V Output 4 SEN I Reset Absolute Encoder
5 V-REF I Speed Command 6 IGND -- Isolated Ground
7 OUT+ O Pulse Signal (+) 8 OUT- O Pulse Signal (-)
9 T-REF I Torque Command 10 IGND -- Isolated Ground
11 DIR+ O Direction Signal (+) 12 DIR- O Direction Signal (-)
13 X 14 IGND -- Isolated Ground
15 ERC O Dev. ctr, clr. Signal 16 X
17 X 18 X
19 EZ+ I Encoder Z-phase (+) 20 EZ- I Encoder Z-phase (-)
21 BAT+ I Battery (+) 22 BAT- I Battery (-)
23 X 24 X
25 INP I In-position Signal 26 IGND -- Isolated Ground
27 X 28 X
29 RDY I Servo Ready Signal 30 IGND -- Isolated Ground
31 ALM I Alarm Signal 32 IGND -- Isolated Ground
33 EA+ I Encoder A-phase (+) 34 EA- I Encoder A-phase (-)
35 EB+ I Encoder B-phase (+) 36 EB- I Encoder B-phase (-)
37 AL01 O Alarm Number1 38 AL02 O Alarm Number2
39 AL03 O Alarm Number3 40 SVON O Servo ON
41 P-CON I Proportion control 42 IGND -- Isolated Ground
43 IGND -- Isolated Ground 44 RES I Reset Signal
45 /P-CL I Forward Current 46 /N-CL I Reverse Current
47 +24V O Voltage output 48 PSO+ O Encoder S-phase (+)
49 PSO- O Encoder S-phase (-) 50 X

294 Connection Example

BH1-BH4

IOIF1-IOIF4

SJ1-SJ4

CN1

No. Name I/O Function No. Name I/O Function
1 SEN I Reset Absolute Encoder 2 BAT+ I Battery (+)
3 BAT- I Battery (-) 4 PSO+ O Encoder S-phase (+)
5 PSO- O Encoder S-phase (-) 6 P-CON I Proportion control
7 V-REF I Speed Command 8 T-REF I Torque Command
9 /P-CL I Forward Current 10 /N-CL I Reverse Current
11 AL01 O Alarm Number1 12 AL02 O Alarm Number2
13 AL03 O Alarm Number3 14 PL1 I Collector +12V Output
15 +24V O Voltage output 16 IGND -- Isolated Ground

No. Name I/O Function No. Name I/O Function
1 +24V O Voltage output 6 MSD I Negative Slow Switch(+)
2 IGND -- Isolated Ground 7 ORG I Origin Signal
3 PEL I Positive Limit (+) 8 RES I Reset Signal
4 MEL I Positive Limit (-) 9 IGND -- Isolated Ground
5 PSD I Positive Slow Switch (+)

No. Name I/O Function No. Name I/O Function
1 OUT+ O Pulse Signal (+) 6 ALM I Servo Alarm
2 OUT- O Pulse Signal (-) 7 +5V O Voltage output
3 DIR+ O Direction Signal (+) 8 SVON O Servo ON
4 DIR- O Direction Signal (-) 9 +5V O Voltage output
5 EZ+ I Index Signal 10 IGND -- Isolated Ground

No. Name I/O Function
1 EX +24V I External Power Supply Input (+24V DC+5%)
2 EX GND -- External Power Supply Ground

 295

8 Appendix
8.1 Color code of CN3 Cable (MPC-8164 Only)

CN3 Pin No Signal Name Color CN3 Pin No Signal Name Color

1 DOCOM Brown 2 DOCOM Pink-Black
3 DOCOM Grey 4 DOCOM Blue-White
5 DO0 Red 6 DO1 Grey-Black
7 DO2 White 8 DO3 Purple-White
9 DO4 Orange 10 DO5 Light Green-Black
11 DO6 Pink 12 DO7 White-Blue
13 -- Yellow 14 DICOM Light Blue-Black
15 DICOM Light Blue 16 DICOM Red-White
17 DICOM Green 18 DI0 Green-Black
19 DI1 Light Green 20 DI2 Brown-White
21 DI3 Blue 22 DI4 Yellow-Black
23 DI5 Red Black 24 DI6 White-Black
25 DI7 Purple 26 -- Black-Orange

296

Warranty Policy 297

Warranty Policy
Thank you for choosing ADLINK. To understand your rights and
enjoy all the after-sales services we offer, please read the follow-
ing carefully.

1. Before using ADLINK’s products please read the user man-
ual and follow the instructions exactly. When sending in
damaged products for repair, please attach an RMA appli-
cation form which can be downloaded from: http://
rma.adlinktech.com/policy/.

2. All ADLINK products come with a limited two-year war-
ranty, one year for products bought in China:

The warranty period starts on the day the product is
shipped from ADLINK’s factory.
Peripherals and third-party products not manufactured
by ADLINK will be covered by the original manufactur-
ers' warranty.
For products containing storage devices (hard drives,
flash cards, etc.), please back up your data before send-
ing them for repair. ADLINK is not responsible for any
loss of data.
Please ensure the use of properly licensed software with
our systems. ADLINK does not condone the use of
pirated software and will not service systems using such
software. ADLINK will not be held legally responsible for
products shipped with unlicensed software installed by
the user.
For general repairs, please do not include peripheral
accessories. If peripherals need to be included, be cer-
tain to specify which items you sent on the RMA Request
& Confirmation Form. ADLINK is not responsible for
items not listed on the RMA Request & Confirmation
Form.

298 Warranty Policy

3. Our repair service is not covered by ADLINK's guarantee
in the following situations:

Damage caused by not following instructions in the
User's Manual.
Damage caused by carelessness on the user's part dur-
ing product transportation.
Damage caused by fire, earthquakes, floods, lightening,
pollution, other acts of God, and/or incorrect usage of
voltage transformers.
Damage caused by unsuitable storage environments
(i.e. high temperatures, high humidity, or volatile chemi-
cals).
Damage caused by leakage of battery fluid during or
after change of batteries by customer/user.
Damage from improper repair by unauthorized ADLINK
technicians.
Products with altered and/or damaged serial numbers
are not entitled to our service.
This warranty is not transferable or extendible.
Other categories not protected under our warranty.

4. Customers are responsible for shipping costs to transport
damaged products to our company or sales office.

5. To ensure the speed and quality of product repair, please
download an RMA application form from our company web-
site: http://rma.adlinktech.com/policy. Damaged products
with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff:
service@adlinktech.com.

mailto:service@adlinktech.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при
поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

 Оперативные поставки широкого спектра электронных компонентов отечественного и
импортного производства напрямую от производителей и с крупнейших мировых
складов;

 Поставка более 17-ти миллионов наименований электронных компонентов;

 Поставка сложных, дефицитных, либо снятых с производства позиций;

 Оперативные сроки поставки под заказ (от 5 рабочих дней);

 Экспресс доставка в любую точку России;

 Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;

 Система менеджмента качества сертифицирована по Международному стандарту ISO
9001;

 Лицензия ФСБ на осуществление работ с использованием сведений, составляющих
государственную тайну;

 Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil,
Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq,
Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление
«Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

 Подбор оптимального решения, техническое обоснование при выборе компонента;

 Подбор аналогов;

 Консультации по применению компонента;

 Поставка образцов и прототипов;

 Техническая поддержка проекта;

 Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)
Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.

mailto:org@eplast1.ru

