

FEATURES

- Available in the Texas Instruments
 NanoFree[™] Package
- 1.65-V to 5.5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{nd} of 0.8 ns at 3.3 V
- High On-Off Output Voltage Ratio
- High Degree of Linearity

- Rail-to-Rail Input/Output
- Low On-State Resistance, Typically \approx 6 Ω (V_{CC} = 4.5 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

This dual bilateral analog switch is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC2G66 can handle both analog and digital signals. The device permits signals with amplitudes of up to 5.5 V (peak) to be transmitted in either direction.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Each switch section has its own enable-input control (C). A high-level voltage applied to C turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽²⁾
	NanoFree™ – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Reel of 3000	SN74LVC2G66YZPR	C6_
-40°C to 85°C	SSOP - DCT	Reel of 3000	SN74LVC2G66DCTR	C66
	VSSOP – DCU	Reel of 3000	SN74LVC2G66DCUR	C66
	V330F - DC0	Reel of 250	SN74LVC2G66DCUT	C00_

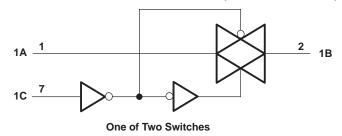
⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NanoFree is a trademark of Texas Instruments.

⁽²⁾ DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site.

DCU: The actual top-side marking has one additional character that designates the assembly/test site.


YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, ● = Pb-free).

FUNCTION TABLE (EACH SECTION)

CONTROL INPUT (C)	SWITCH
L	Off
Н	On

LOGIC DIAGRAM, EACH SWITCH (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range ⁽²⁾		-0.5	6.5	V
VI	Input voltage range ⁽²⁾⁽³⁾		-0.5	6.5	V
Vo	Switch I/O voltage range (2)(3)(4)		-0.5	V _{CC} + 0.5	V
I _{IK}	Control input clamp current	V _I < 0		-50	mA
I _{I/OK}	I/O port diode current	$V_{I/O} < 0$ or $V_{I/O} > V_{CC}$		-50	mA
I _T	On-state switch current	$V_{I/O} = 0$ to V_{CC}		±50	mA
	Continuous current through V _{CC} or GND			±100	mA
		DCT package		220	
θ_{JA}	Package thermal impedance (5)	DCU package		227	°C/W
		YZP package		102	
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltages are with respect to ground, unless otherwise specified.

⁽³⁾ The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽⁴⁾ This value is limited to 5.5 V maximum.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

SCES325J-JULY 2001-REVISED FEBRUARY 2007

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT	
V_{CC}	Supply voltage		1.65	5.5	V	
V _{I/O}	I/O port voltage		0	V _{CC}	V	
		V _{CC} = 1.65 V to 1.95 V	V _{CC} × 0.65			
.,	High-level input voltage, control input	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	$V_{CC} \times 0.7$		V	
V _{IH}		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$			
		V _{CC} = 1.65 V to 1.95 V		V _{CC} × 0.35		
V	Low-level input voltage, control input	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$	V	
V_{IL}		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{CC} \times 0.3$	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		$V_{CC} \times 0.3$		
VI	Control input voltage	·	0	5.5	V	
		V _{CC} = 1.65 V to 1.95 V		20		
A # / A > .	Input transition rise /fall time	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		20	2011	
Δt/Δv	Input transition rise/fall time	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		10	ns/V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		10		
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITION	ONS	V _{cc}	MIN TYP ⁽¹⁾	MAX	UNIT	
			$I_S = 4 \text{ mA}$	1.65 V	12.5	30		
_	On-state switch resistance	$V_I = V_{CC}$ or GND,	$I_S = 8 \text{ mA}$	2.3 V	9	20	Ω	
r _{on}	On-state switch resistance	$V_C = V_{IH}$ (see Figure 1 and Figure 2)	$I_S = 24 \text{ mA}$	3 V	7.5	15	32	
			$I_S = 32 \text{ mA}$	4.5 V	6	10		
			$I_S = 4 \text{ mA}$	1.65 V	85	120 ⁽¹⁾		
_	Peak on-state resistance	$V_I = V_{CC}$ to GND,	$I_S = 8 \text{ mA}$	2.3 V	22	30(1)	Ω	
r _{on(p)}	reak on-state resistance	$V_C = V_{IH}$ (see Figure 1 and Figure 2)	$I_S = 24 \text{ mA}$	3 V	12	20	22	
			I _S = 32 mA	4.5 V	7.5	15		
			I _S = 4 mA	1.65 V		7		
A =	Difference of on-state resistance	$V_I = V_{CC}$ to GND,	$I_S = 8 \text{ mA}$	2.3 V		5	Ω	
Δr_{on}	between switches	$V_C = V_{IH}$ (see Figure 1 and Figure 2)	I _S = 24 mA	3 V		3		
			$I_S = 32 \text{ mA}$	4.5 V		2		
		$V_I = V_{CC}$ and $V_O = GND$ or			±1			
I _{S(off)}	Off-state switch leakage current	$V_I = GND \text{ and } V_O = V_{CC},$ $V_C = V_{IL} \text{ (see Figure 3)}$		5.5 V		±0.1 ⁽¹⁾	μА	
1	On-state switch leakage current	$V_I = V_{CC}$ or GND, $V_C = V_{IH}$, V_O	= Open	5.5 V		±1 ±0.1 ⁽¹⁾	μΑ	
I _{S(on)}	On-state switch leakage current	(see Figure 4)		3.5 V		μΛ		
1.	Control input current	$V_C = V_{CC}$ or GND		5.5 V		±1	μΑ	
I _I	Control input current	AC = ACC OL GIAD		5.5 V		μΑ		
	Supply current	$V_C = V_{CC}$ or GND		5.5 V		10	^	
I _{CC}	Supply current	AC = ACC OL GIAD		5.5 V		1 (1)	μΑ	
ΔI_{CC}	Supply-current change	$V_C = V_{CC} - 0.6 \text{ V}$		5.5 V		500	μΑ	
C _{ic}	Control input capacitance			5 V	3.5		pF	
C _{io(off)}	Switch input/output capacitance			5 V	6		pF	
C _{io(on)}	Switch input/output capacitance			5 V	14		pF	

⁽¹⁾ $T_A = 25^{\circ}C$

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1 ± 0.1		V_{CC} = 2.5 V \pm 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V_{CC} = 5 V \pm 0.5 V		UNIT
	(INFOT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd} ⁽¹⁾	A or B	B or A		2		1.2		8.0		0.6	ns
t _{en} (2)	С	A or B	2.3	10	1.6	5.6	1.5	4.4	1.3	3.9	ns
t _{dis} (3)	С	A or B	2.5	10.5	1.2	6.9	2	7.2	1.1	6.3	ns

⁽¹⁾ t_{PLH} and t_{PHL} are the same as t_{pd}. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

 ⁽²⁾ t_{PZL} and t_{PZH} are the same as t_{en}.
 (3) t_{PLZ} and t_{PHZ} are the same as t_{dis}.

Analog Switch Characteristics

 $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{cc}	TYP	UNIT
				1.65 V	35	
			C_L = 50 pF, R_L = 600 Ω , f_{in} = sine wave	2.3 V	120	
			(see Figure 6)	3 V	175	MHz
Frequency response	A or B	B or A		4.5 V	195	
(switch on)	710.2	BOIA		1.65 V	>300	IVII IZ
			$C_L = 5 \text{ pF}, R_L = 50 \Omega,$ $f_{in} = \text{sine wave}$	2.3 V	>300	
			(see Figure 6)	3 V	>300	
				4.5 V	>300	
				1.65 V	-58	
			$C_L = 50 \text{ pF}, R_L = 600 \Omega,$ $f_{in} = 1 \text{ MHz (sine wave)}$	2.3 V	-58	
		B or A	(see Figure 7)	3 V	-58	dB
Crosstalk ⁽¹⁾	A or B			4.5 V	-58	
(between switches)	AUB			1.65 V	-42	
			$C_L = 5 \text{ pF}, R_L = 50 \Omega,$	2.3 V	-42	
			f _{in} = 1 MHz (sine wave) (see Figure 7)	3 V	-42	
				4.5 V	-42	
		A or B	C_L = 50 pF, R_L = 600 Ω , f_{in} = 1 MHz (square wave) (see Figure 8)	1.65 V	35	mV
Crosstalk (control input to signal output)	С			2.3 V	50	
	C			3 V	70	
			,	4.5 V	100	
			$C_L = 50 \text{ pF}, R_L = 600 \Omega,$ $f_{in} = 1 \text{ MHz (sine wave)}$ (see Figure 9)	1.65 V	-58	
				2.3 V	-58	
				3 V	-58	
Feedthrough attenuation	A D	D A	,	4.5 V	-58	٩D
(switch off)	A or B	B or A		1.65 V	-42	dB
			$C_L = 5 \text{ pF}, R_L = 50 \Omega,$	2.3 V	-42	
			f _{in} = 1 MHz (sine wave) (see Figure 9)	3 V	-42	
			(000 1 1921 0 0)	4.5 V	-42	
				1.65 V	0.1	
			$C_L = 50 \text{ pF}, R_L = 10 \text{ k}\Omega,$	2.3 V	0.025	
			f _{in} = 1 kHz (sine wave) (see Figure 10)	3 V	0.015	
		5 .	(3.1.1.13)	4.5 V	0.01	0.4
Sine-wave distortion	A or B	B or A		1.65 V	0.15	%
			$C_L = 50 \text{ pF}, R_L = 10 \text{ k}\Omega,$ $f_{in} = 10 \text{ kHz (sine wave)}$ (see Figure 10)	2.3 V	0.025	
				3 V	0.015	
			(1.2.1.3.1.2.1.2)	4.5 V	0.01	

⁽¹⁾ Adjust f_{in} voltage to obtain 0 dBm at input.

Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	V _{CC} = 5 V	UNIT	
PARAMETER		CONDITIONS	TYP	TYP	TYP	TYP	UNIT	
C_{pd}	Power dissipation capacitance	f = 10 MHz	8	9	9.5	11	pF	

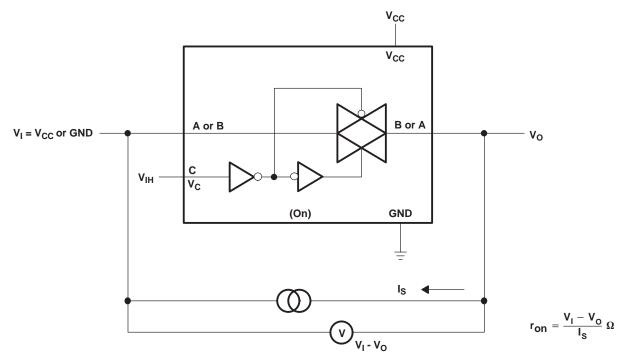


Figure 1. On-State Resistance Test Circuit

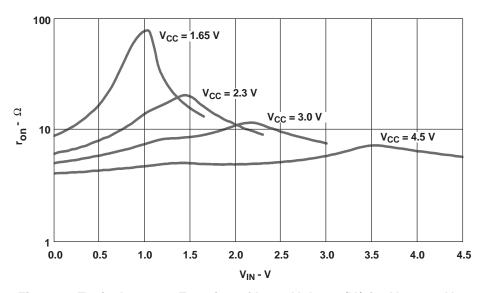


Figure 2. Typical r_{on} as a Function of Input Voltage (V_I) for $V_{I} = 0$ to V_{CC}

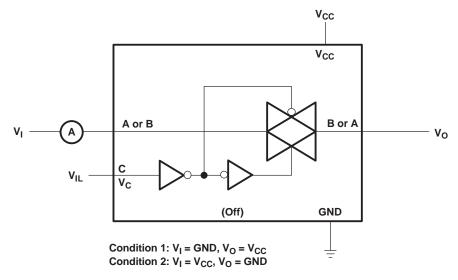


Figure 3. Off-State Switch Leakage-Current Test Circuit

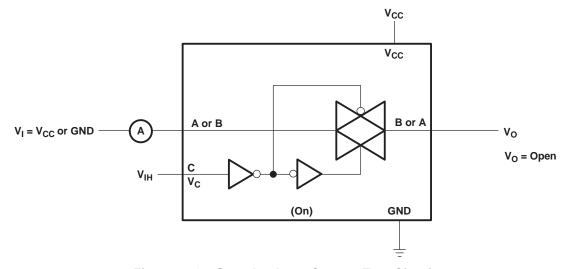
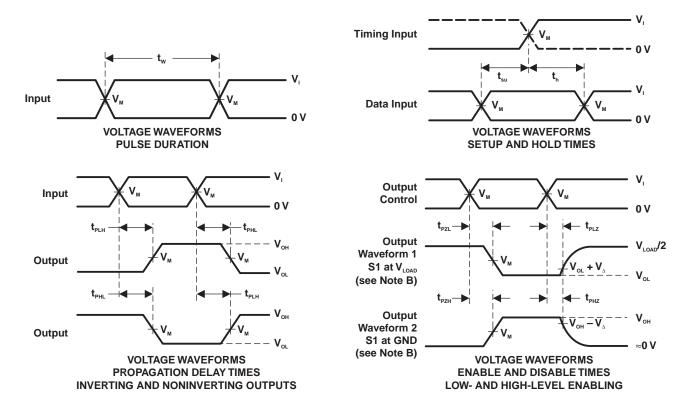



Figure 4. On-State Leakage-Current Test Circuit



TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

- 1	\sim	Λ		CI	D	ш	ıT
_	.u	м	v		т.	ш	

V _{cc}	INF	PUTS	.,	.,		_	.,
	V,	t,/t,	V _M	V _{LOAD}	C	R _∟	$\mathbf{V}_{\scriptscriptstyle \Delta}$
$1.8~\textrm{V}\pm0.15~\textrm{V}$	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	V _{cc}	≤ 2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V
3.3 V \pm 0.3 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V
5 V \pm 0.5 V	V _{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V

NOTES: A. C, includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators have the following characteristics: PRR \leq 10 MHz, $Z_{o} = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and \dot{t}_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

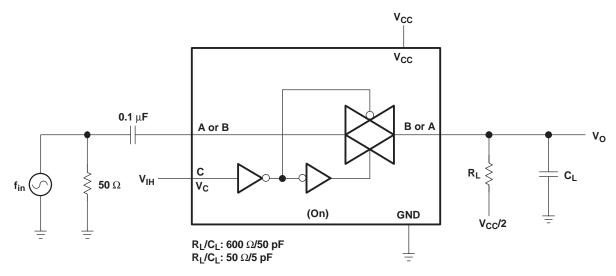


Figure 6. Frequency Response (Switch On)

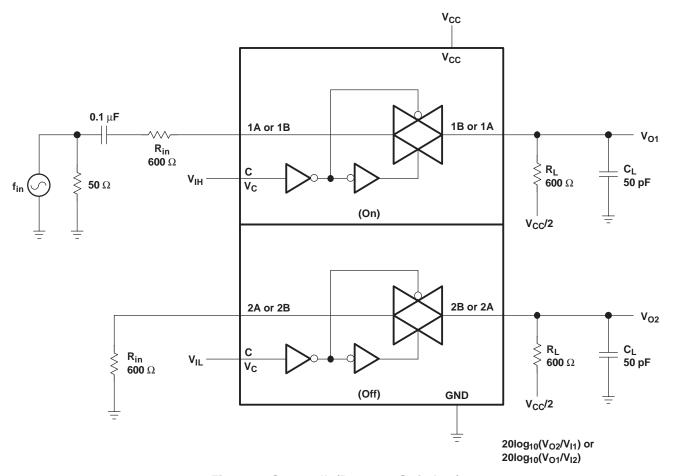


Figure 7. Crosstalk (Between Switches)

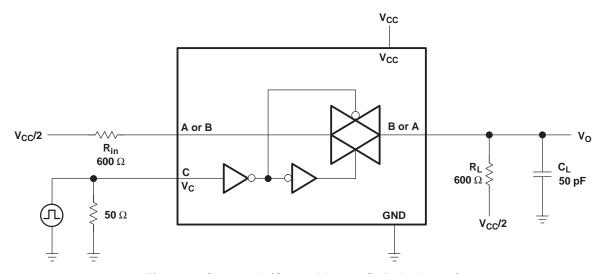


Figure 8. Crosstalk (Control Input, Switch Output)

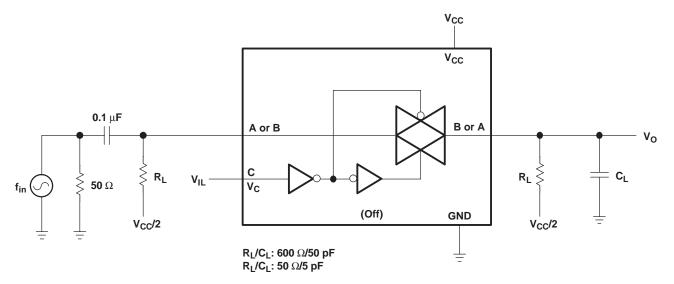


Figure 9. Feedthrough (Switch Off)

SCES325J-JULY 2001-REVISED FEBRUARY 2007

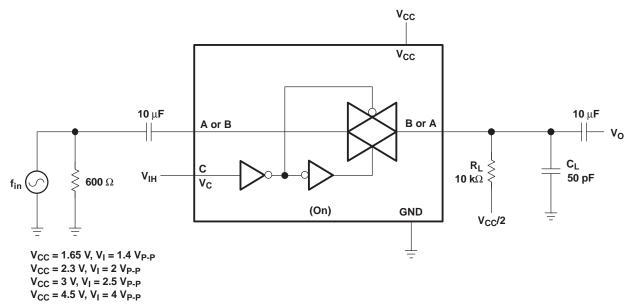


Figure 10. Sine-Wave Distortion

26-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74LVC2G66DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66 Z	Samples
SN74LVC2G66DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66 Z	Samples
SN74LVC2G66DCTRG4	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66 Z	Samples
SN74LVC2G66DCUR	ACTIVE	US8	DCU	8	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	(66 ~ C66R) CZ	Samples
SN74LVC2G66DCURE4	ACTIVE	US8	DCU	8		TBD	Call TI	Call TI	-40 to 85		Samples
SN74LVC2G66DCURG4	ACTIVE	US8	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66R	Samples
SN74LVC2G66DCUT	ACTIVE	US8	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66R	Samples
SN74LVC2G66DCUTE4	ACTIVE	US8	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66R	Samples
SN74LVC2G66DCUTG4	ACTIVE	US8	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C66R	Samples
SN74LVC2G66YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(C62 ~ C67 ~ C6N)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

26-Mar-2013

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

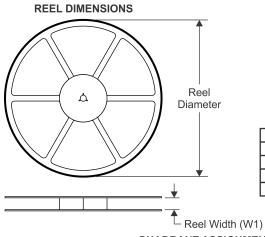
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

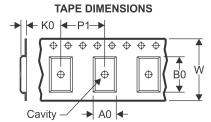
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC2G66:

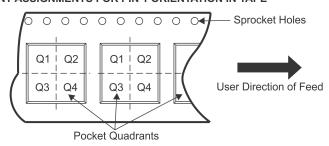
Automotive: SN74LVC2G66-Q1


NOTE: Qualified Version Definitions:

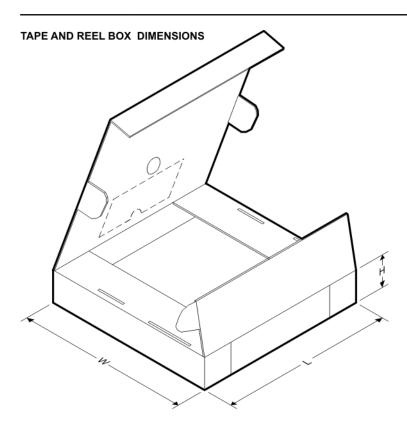

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

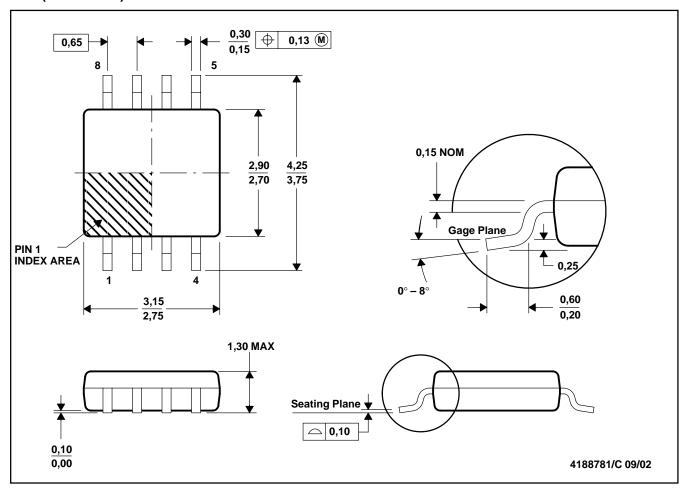
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC2G66DCUR	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G66DCURG4	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC2G66YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

www.ti.com 26-Jan-2013

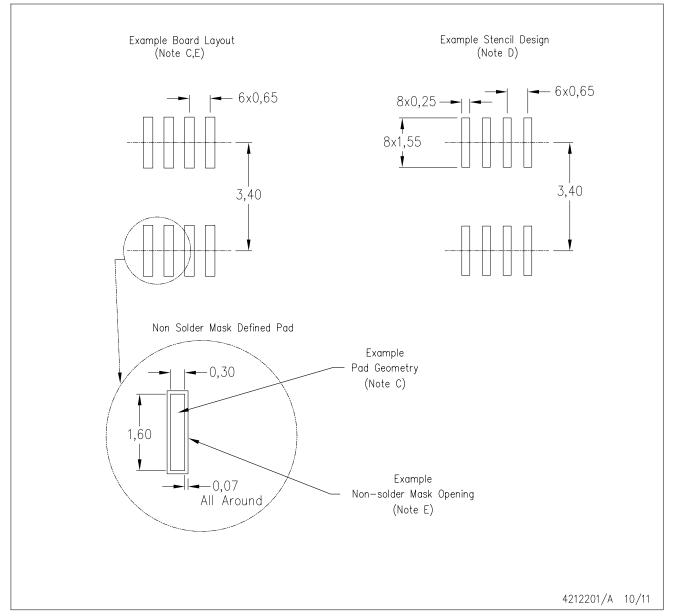


*All dimensions are nominal

7 il dimensione de nomina									
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)		
SN74LVC2G66DCUR	US8	DCU	8	3000	202.0	201.0	28.0		
SN74LVC2G66DCURG4	US8	DCU	8	3000	202.0	201.0	28.0		
SN74LVC2G66YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0		

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

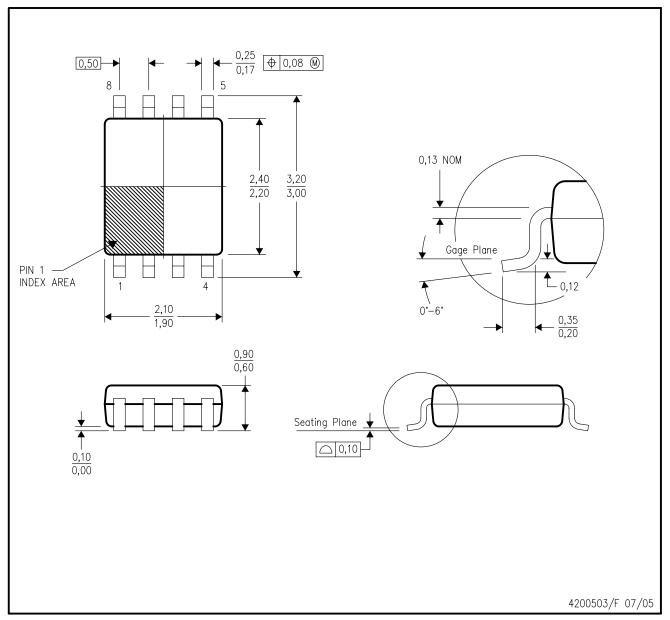


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)

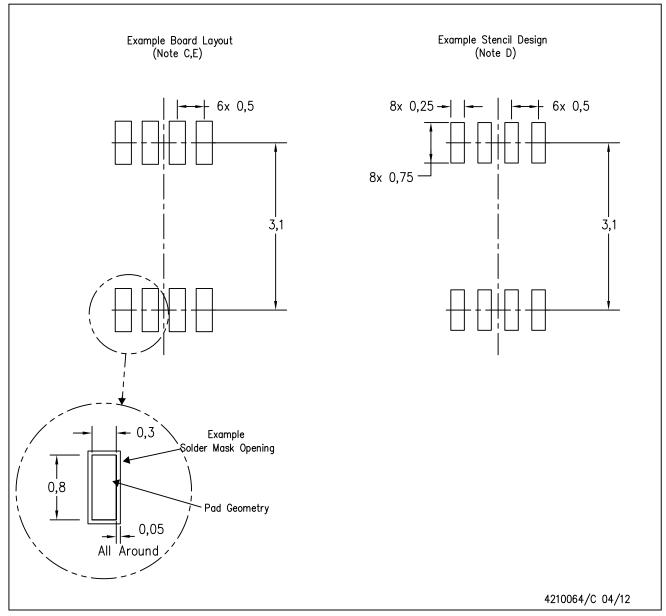
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

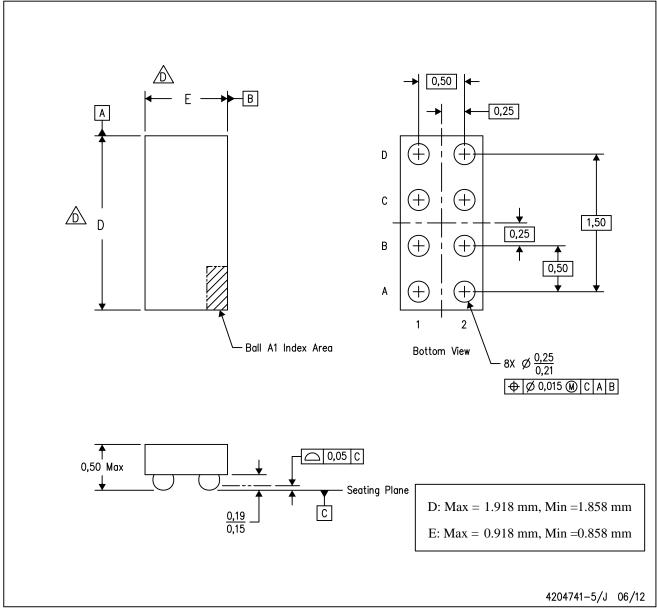
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- NanoFree™ package configuration. Ç.
- ⚠ The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative. E. This package is a Pb-free solder ball design. Refer to the 8 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.