User manual for I2C-bus RTC demo board OM11059A Rev. 4 — 2 November 2015 Use

User manual

Document information

Info	Content
Keywords	PCF85063TP, PCF86063ATL, OM11059A, demoboard, how to get started, I ² C-bus, RTC, Real-Time Clock, tuning
Abstract	User manual for the RTC I ² C-bus demoboard OM11059A which contains PCF85063TP and PCF85063ATL

Revision history

Rev	Date	Description
v.4	20151102	Revised user manual
v.3	20140227	Revised user manual
v.2	20130404	Revised user manual
v.1	20130320	New user manual, first revision

Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10698

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2015. All rights reserved.

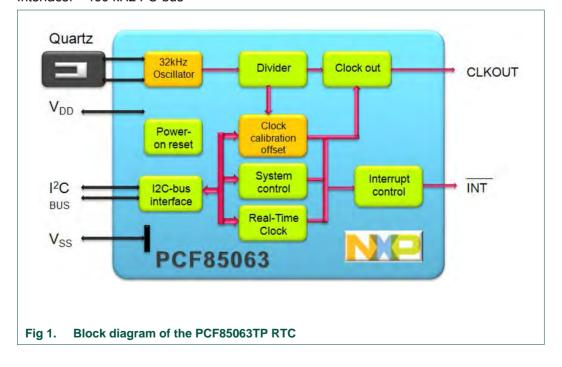
1. Introduction

The PCF85063x are a family of CMOS Real-Time Clocks (RTC) and calendar optimized for low power consumption. Different features sets are available.

The two version of OM11059A are the ideal evaluation/demo boards to use in the design phase of any project, just power and I²C-bus must be hooked up.

A separate demoboard and a user manual are available for the SPI-bus RTC PCF85063BTL: OM11059 and UM10699.

2. Key features


There are two RTC variants of the PCF85063x RTC with I ² C-bus:			
PCF85063TP	basic functionality with I ² C-bus interface		
PCF85063ATL	enhanced functionality with I ² C-bus interface		

2.1 PCF85063TP

The PCF85063TP is a Real-Time Clock with very small form factor, counting seconds, minutes, hours, days, weekdays, months, and years.

Electronic oscillator tuning

RAM:	1 Byte
Package:	HWSON8 package: 2 x 3 x 0.5 mm
Interrupt:	every 30 s or 60 s (e.g. for waking up the microcontroller)
Interface:	400 kHz I ² C-bus

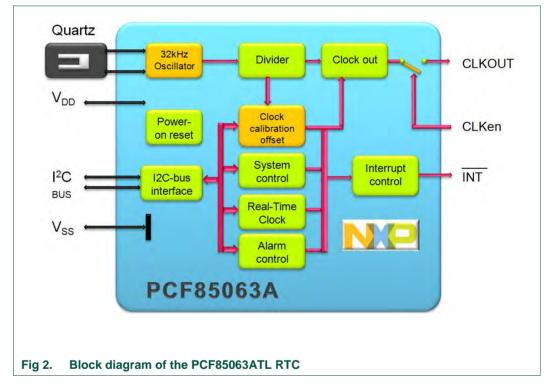
2.2 PCF85063ATL

The PCF85063ATL is a Real-Time Clock with very small form factor, counting seconds, minutes, hours, days, weekdays, months, and years.

Electronic oscillator tuning

RAM: 1 Byte

Package: HXSON10 package: 2.6 x 2.6 x 0.5 mm


Alarm control

Timer

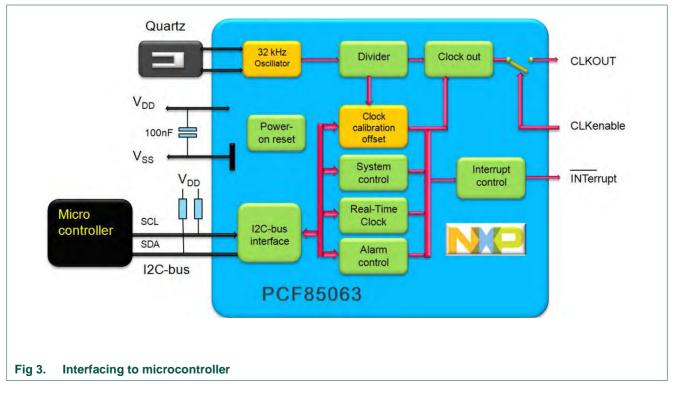
Interrupt: every 30 s or 60 s, alarm, timer

Interface: 400 kHz I²C-bus

Clock out: enabled by pin or by software

3. Hardware set-up

3.1 General requirements for the RTCs PCF85063TP and PCF85063ATL

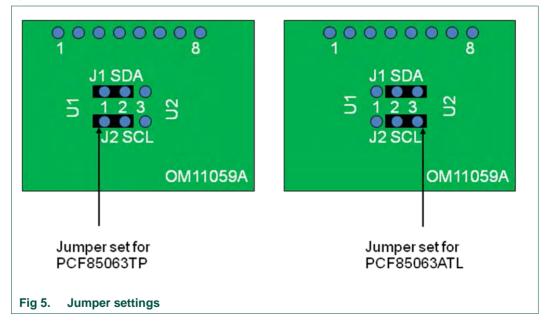

The RTC circuit just requires one external part: a tuning fork quartz as resonator. The oscillation capacitors are integrated and therefore there is no need for external capacitors. The quartz crystal must be placed close to the RTC circuit, avoiding long lines which may pick up noise. Avoid any tracks with high frequency signals (fast edges) close to the RTC, quartz, or quartz interconnect.

The interface is the standard Fast Mode I²C-bus, operating up to 400 kHz. Adjust pull-up values to match the required interface speed keeping them as high impedance as possible for power system saving. Ensure that the specified minimum requirements of the hold times t_{LOW} and t_{HIGH} are fulfilled.

Supply voltage: The RTC is specified from 0.9 V to 5.5 V. The I²C-bus interface is specified from 1.8 V to 5.5 V. It is recommended to have a decoupling capacitor on the VDD-VSS rails close by.

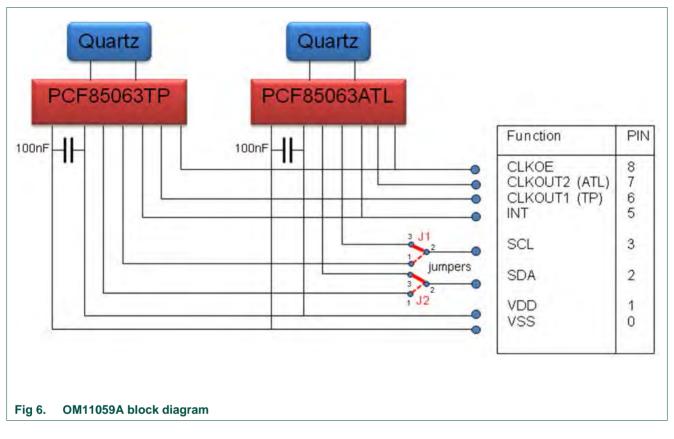
Due to the low power consumption of below 1 $\mu\text{W},$ no precautions for heat dissipations are required.

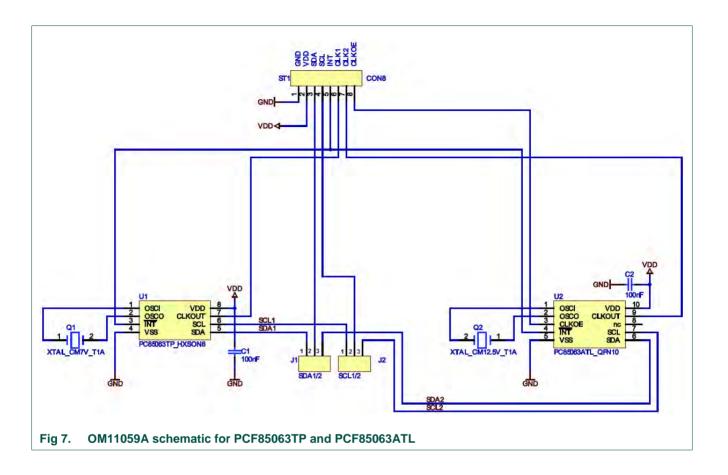
CLKOUT can be used to measure the frequency or be used as reference for frequency generation with a PLL.


UM10698

3.2 Demo board OM11059A (original version)

The original version of OM11059A allows to easily demonstrate the operation of the PCF85063x with l²C-bus interface. No need to solder the tiny package to a breadboard 100 mil connector for straight forward connections.


Both RTCs are on board and can be selected by setting the jumpers J1 and J2 (see Fig 5).


On the market, there are quartzes with different load capacitance C_L . 12.5 pF is most common, 7 pF offers however lower power consumption. To evaluate the difference, the PCF85063TP is connected to a quartz with C_L =7 pF and the PCF85063ATL is connected to a quartz with 12.5 pF. Also the V_{DD} blocking capacitors are mounted (C1, C2).

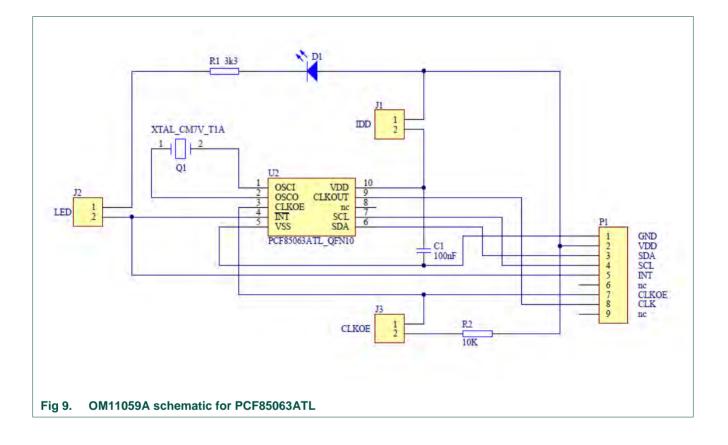
Straight forward interfacing:

- Set jumper to either PCF85063TP or PCF85063ATL
- Connect supply voltage (e.g. 3.3 V): VSS to pin 1, VDD to pin 2
- Connect I²C-bus (pull-up resistor needed): SCL to pin 3, SDA to pin 4
- Communicate to the RTC

UM10698

3.3 Demo board OM11059A (newer version)

The 2nd version of OM11059A allows to easily demonstrate the operation of only the popular PCF85063ATL with I²C-bus interface. No need to solder the tiny package to a breadboard 100 mil connector for straight forward connections.


User manual

UM10698

Straight forward interfacing:

- Set jumper J1 for operation without current meter; jumper J2 & J3 used to invoke INT and CLKOE

- Connect supply voltage (e.g. 3.3 V): VSS (GND) to pin 1, VDD to pin 2
- Connect I²C-bus (pull-up resistor needed): SCA to pin 3, SDL to pin 4
- Communicate to the RTC

4. Software set-up

4.1 Functionality

The RTC PCF85063TP and PCF85063ATL are controlled via standard l²C-bus interface. Common l²C protocol applies. The interface is the standard Fast Mode l²C-bus, operating up to 400 kHz.

Theoretically there is no lower speed limit, however a read or write access to the RTC must be finalized within one second after initiating it, otherwise time counter increments could be lost. During access, the time registers of the RTC are frozen and after the read or write sequence is completed, a seconds increment is executed if required.

The clock tracks the actual time from seconds to year. It must be initially set to the correct time of the actual time zone. The days per month and leap year are corrected automatically. Leap years are assumed whenever the year is dividable by 4.

The RTC can be programmed to generate an interrupt every 30 seconds or every 60 seconds.

All information provided in this document is subject to legal disclaimers.

User manual

UM10698

At address byte 03h is a general purpose RAM byte to store temporary information.

4.2 System testing

There is a fast mode facility to test the functionality of the RTC; it can be activated by setting the EXT_TEST bit in the Control_1 word.

The RTC PCF85063x has a frequency tuning facility; its operation is explained in section RTC tuning.

The RTC can stay switched on all the time. There is no need to restart or reset the clock.

4.3 Software instructions for setting the clock

4.3.1 Setting the time

Setting the clock to 3.45 pm December 15, 2011:

		•			
	•	I ² C-bus	S	Start condition	
	•	Slave address	1010 0010	write bit set	
	•	Register address	0000 0000	address pointer to status word 0	
	•	Status word 0	0000 0011	set 12 hour mode and select option for 12.5 pF quartz (for the PCF85063ATL)	
			0000 0010	set 12 hour mode and select option for 7 pF quartz (for the PCF85063TP)	
•		I ² C-bus	Repeated start condition		
	•	Slave address	1010 0010	write bit set	
	•	Register address	0000 0100	address pointer to seconds register	
	•	Seconds	0000 0000	0 Seconds (clock integrity ok \rightarrow MSB OS = 0)	
	•	Minutes	0100 0101	45 min	
	•	Hours	0010 0011	PM, 3 (clock integrity ok \rightarrow OS = 0)	
	•	Days	0001 0101	15 th	
	•	Weekdays	0000 0100	Thursday (4 th day of the week)	
	•	Month	0001 0010	December	
	•	Year	0001 0001	(20)11	
	•	I ² C-bus	Р	Stop condition	
4.3.2	Readi	ng the clock			
	•	Reading the clock	(2 minutes af	ter writing)	
	•	I ² C bus	9	Start condition	

- I²C-bus S Start condition
- Slave address 1010 0010 write bit set
- Register address 0000 0100 address pointer to seconds byte (4)
 - I²C-bus Sr repeated start condition
 - Slave address 1010 0011 read mode
 - Read register 4, seconds

 e.g. 56 Seconds, (clock integrity ok → OS = 0)

•	Minutes		e.g. 45 (Minutes)
•	Hours		e.g. 03 (PM 03h)
•	Days		e.g. 15 (15 th)
•	Weekdays		e.g. 04 (Thursday)
•	Month		e.g. 12 (December)
٠	Year		e.g. 11 (20)11
٠	I ² C-bus	Р	Stop condition

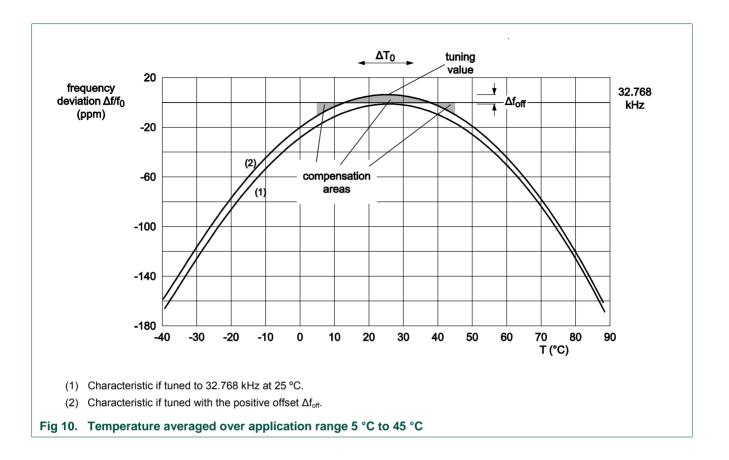
5. RTC tuning

5.1 Frequency tuning

The 32 kHz quartzes are typically sold with a tolerance at room temperature of either ± 10 ppm or ± 20 ppm. 11.5 ppm corresponds to 1 s/day.

The quartzes require a characteristic load capacity of either 7 pF or 12.5 pF. Oscillators utilizing 7 pF quartzes feature slightly lower power consumption, where the quartzes of 12.5 pF have largest production quantities. The tracks between quartz and RTC represent also some parasitic capacitances and must be kept short.

The PCF85063 has a tuning facility where above tolerances can be compensated. Tuning procedure:


- Measure the 32xxx Hz (f) signal at the CLKOUT pin.
- The offset is calculated in ppm as

 $\Delta f_{[ppm]} = 10^6 \times (f - 32768) / 32768$

- Consult the offset table in the data sheet. Take the correction value and write it into the register 02h.
- The correction is done by means of inhibition or addition: the oscillator runs at constant speed, then every 2 hours (mode 0) 1 second is corrected to by making it shorter or longer. This is not easily visible at the CLKOUT.
- Corrections can also be applied every 4 minutes by using mode 1. This mode will consume slightly more power.

The 32 kHz quartzes are of the type tuning fork and feature a parabolic frequency response over temperature. When the application is dominantly used over a limited temperature range, it is often helpful to tune the frequency to be slightly higher at the turn-over point. The error around 25 °C (clock goes too fast) is then compensated during the time when temperature is lower or higher. For example, for operation between 5 °C and 45 °C, tune the clock 8 ppm faster than the value for 25 °C would be. (See Fig 5.)

UM10698

6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

6.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

User manual

7. List of figures

Fig 1.	Block diagram of the PCF85063TP RTC	3
Fig 2.	Block diagram of the PCF85063ATL RTC	4
Fig 3.	Interfacing to microcontroller	5
Fig 4.	Picture of demo board OM11059A	6
Fig 5.	Jumper settings	6
Fig 6.	OM11059A block diagram	7
Fig 7.	OM11059A schematic for PCF85063TP and PCF85063ATL	8
Fig 8.	Picture of PCF85063ATL demo board OM11059A	8
Fig 9.	OM11059A schematic for PCF85063ATL	9
Fig 10.	Temperature averaged over application range 5 °C to 45 °C	

User manual

8. Contents

1.	Introduction	3
2.	Key features	3
2.1	PCF85063TP	3
2.2	PCF85063ATL	4
3.	Hardware set-up	5
3.1	General requirements for the RTCs	
	PCF85063TP and PCF85063ATL	
3.2	Demo board OM11059A (original version)	6
3.3	Demo board OM11059A (newer version)	8
4.	Software set-up	9
4.1	Functionality	
4.2	System testing	
4.3	Software instructions for setting the clock	
4.3.1	Setting the time	
4.3.2	Reading the clock	
5.	RTC tuning	11
5.1	Frequency tuning	11
6.	Legal information	13
6.1	Definitions	13
6.2	Disclaimers	13
6.3	Trademarks	13
7.	List of figures	14
8.	Contents	15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 2 November 2015 Document identifier: UM10698

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: 0M11059A,598 0M11059AUL

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.