

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LC89075W-H — Digital Audio Interface Receiver with Stereo ADC and Audio Selector

1. Overview

The LC89075W-H is a digital audio interface receiver that demodulates signals according to the data transfer format between digital audio devices via IEC60958/61937 and JEITA CPR-1205 and supports demodulation sampling frequencies of up to 192kHz.

The LC89075W-H also incorporates a high performance 24-bit single-end input $\Delta\Sigma$ stereo analog to digital converter that supports sampling frequencies of up to 96kHz, and an audio selector that can support 8-channel data.

The LC89075W-H is a complete analog and digital front-end for use in various systems including AV receivers, digital TVs, and DVD recorders.

2. Features

2.1 ADC

- $\Delta\Sigma$ stereo ADC
- Built-in anti-aliasing digital filter
- Single-end input (3Vp-p)
- Built-in digital HPF for canceling DC offset
- Built-in PGA (-4.5dB to 6dB/1.5dB step)
- Built-in soft mute and attenuator (0dB to -63.5dB/0.25dB step, -∞)
- Sampling frequency: 8kHz to 96kHz
- Master clock: 512fs, 256fs (master/slave)
- Audio data output interface: 24-bit I²S/left justified
- Analog audio data detection (threshold level: -30dB to -60dB/adjustable in 2dB steps)

■ Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

2.2 DIR

- S/PDIF demodulation process according to IEC60958/61937 and JEITA CPR-1205
- Reception frequency: 32kHz to 192kHz (PLL lock range)
- Built-in 15:3 digital data selector enables separate selection of data to be demodulated and data output to pins.
 - S/PDIF input: Up to 15 systems that support TTL (3 systems can support coaxial)
 S/PDIF output: Possible to select two systems of pin outputs, and one system of demodulation data
- Possible to limit the acceptable sampling frequency and set the no-signal input status when the reception range is exceeded.
- Built-in a PLL low clock jitter and an oscillation amplifier.
- Outputs the monitor signal that is switched between PLL and crystal.
- Outputs master clock: 512fs, 256fs and 128fs (with automatic adjustment function)
- Audio data output interface: 24-bit I²S/left justified
- Outputs DTS-CD detection flag.
- Outputs interrupt signal for microcontroller.
- Calculates input sampling frequency.
- Reads IEC61937 burst preamble PC data from microcontroller.
- Reads first 40 bits of channel status from microcontroller.
- Outputs bit 1 (non-PCM data delimiter bit) and main bits of channel status to the pin.

2.3 Other

- Built-in audio selector supports up to 8-channel data.
 - Selector configuration to support 2-ch data: Selector configuration to support 6-ch and 2-ch data: Selector configuration to support 8-ch and 2-ch data:

4-line input \times 6 and 4-line output \times 2

- a: 6-line input ×1, 4-line input ×5 and 6-line output ×1
 a: 7-line input ×1, 4-line input ×4 and 7-line output ×1
- Possible to take in external error flag, non-PCM flag, and mute flag
- PCM digital audio data detection (threshold level: -30dB to -60dB/adjustable in 2dB steps)
- SPI microcontroller interface (with automatic increment function)
- Built-in power-on reset circuit
- Input pin reverse bias control during power-off
- Supply voltages:
 - ADC analog: 4.5 to 5.5V (3.0 to 3.6V possible when not using the ADC)
 - PLL analog: 3.0 to 3.6V
 - Digital: 3.0 to 3.6V
- Operation guarantee temperature: -30 to 85°C
- Package: SQFP64 (lead-free and halogen-free)

Package Dimensions

unit : mm (typ) 3190A

4. Pin Assignment

Figure 4.1 LC89075W-H Pin Assignment

5. Pin Functions

Table 5.1 Pin Functions

No	Name	I/O	Function	n
1	LPF	0	PLL: Loop filter connection pin	
2	PGND		PLL: Analog GND	
3	MCKIN	I	Group A : Master clock input pin	to [MCKOUT], [MPOUT1]
Ŭ			Group A+B : Master clock input pin	to [MCKOUT]
4	BCKIN	I	Group A : Bit clock input pin	to [BCKOUT], [MPOUT2]
-	Donny		Group A+B : Bit clock input pin	to [BCKOUT]
5	LRCKIN	I	Group A : LR clock input pin	to [LRCKOUT], [MPOUT3]
J		•	Group A : DSD data input pin	to [LRCKOUT], [MPOUT3]
			Group A+B : LR clock input pin	to [LRCKOUT]
6	DATAIN	I	Group A : 2ch audio data input pin	to [DATAOUT], [MPOUT4]
Ŭ			Group A : DSD data input pin	to [DATAOUT], [MPOUT4]
			Group A+B : 1, 2ch/8ch audio data input pin	to [DATAOUT]
7	MPIN1	1	Group B : Master clock input pin	to [MCKOUT], [MPOUT1]
'				
8	MPIN2	1		
0	IVIP IINZ	1		to [BCKOUT], [MPOUT2]
9				
9	MPIN3	I	Group B : LR clock input pin	
			Group B : DSD data input pin	to [LRCKOUT], [MPOUT3]
40	MDINIA		Group A+B : 7, 8ch/8ch audio data input pin	
10	MPIN4	I	Group B : 2ch audio data input pin	
			Group B : DSD data input pin	
			Group B : 1, 2ch/6ch audio data input pin	to [DATAOUT]
			Group A+B : External error signal input pin	to [ERRF]
11	MPIN5	I	Group B : 3, 4ch/6ch audio data input pin	to [MPOUT1]
10			Group A+B : External data mute signal input pin	to [MUTEB]
12	MPIN6	I	Group B : 5, 6ch/6ch audio data input pin	to [MPOUT2]
			Group A+B : External non-PCM signal input pin	to [NPCMF]
13	MCKOUT	0	Master clock output pin	from ADC, DIR, [MCKIN], [MPIN1], [MPIO1], [RXIN8]
14	BCKOUT	0	Bit clock output pin	from ADC, DIR, [BCKIN], [MPIN2], [MPIO2], [RXIN7]
15	LRCKOUT	0	LR clock output pin	from ADC, DIR, [LRCKIN], [MPIN3], [MPIO3], [RXIN6]
		_	DSD data output pin	from [LRCKIN], [MPIN3], [MPIO3], [RXIN6]
16	DATAOUT	0	2ch audio data output pin	from ADC, DIR, [DATAIN], [MPIN4], [MPIO4], [RXIN5]
			DSD data output pin	from [DATAIN], [MPIN4], [MPIO4], [RXIN5]
			1, 2ch/6ch audio data output pin	from [MPIN4]
			1, 2ch/8ch audio data output pin	from [DATAIN]
17	DGND		Digital GND	
18	DVDD		Digital power supply (3.3V)	
19	MPOUT1	0	Master clock output pin	from ADC, [MCKIN], [MPIN1], [MPIO1], [RXIN8]
			3, 4ch/6ch audio data output pin	from [MPIN5]
			3, 4ch/8ch audio data output pin	from [MPIN1]
20	MPOUT2	0	Bit clock output pin	from ADC, [BCKIN], [MPIN2], [MPIO2], [RXIN7]
			5, 6ch/6ch audio data output pin	from [MPIN6]
			5, 6ch/8ch audio data output pin	from [MPIN2]
21	MPOUT3	0	LR clock output pin	from ADC, [LRCKIN], [MPIN3], [MPIO3], [RXIN6]
			DSD data output pin	from [LRCKIN], [MPIN3], [MPIO3], [RXIN6]
			7, 8ch/8ch audio data output pin	from [MPIN3] Continued on next page

Continued on next page.

No	Name	I/O	Fun	ction
22	MPOUT4	0	2ch audio data output pin	from ADC, [DATAIN], [MPIN4], [MPIO4], [RXIN5]
			DSD data output pin	from [DATAIN], [MPIN4], [MPIO4], [RXIN5]
			Input S/PDIF through output pin	
23	ERRF	0	PLL lock error, data error flag output pin	
20		Ū	External error signal output pin	from [MPIN4]
24	MUTEB	0	Clock switching period data mute signal output pin	
		Ū	External data mute signal output pin	from [MPIN5]
25	NPCMF	0	Channel status data delimiter bit (bit 1) output pin	
20		Ū	External non-PCM signal output pin	from [MPIN6]
26	MPIO1	0	Channel status data delimiter bit (bit 1) output pin	
			Microcontroller extended register output pin	
		-	Master clock input pin (ADC slave operation)	to ADC, [MPOUT1]
			Group C : Master clock input pin	to [MCKOUT], [MPOUT1]
			3.3V tolerance TTL-compatible S/PDIF input pin	
27	MPIO2	0	Channel status copy bit output pin	
21	INIF IQZ	Ŭ	Microcontroller extended register output pin	
			Bit clock input pin (ADC slave operation)	
			Group C : Bit clock input pin	to [BCKOUT], [MPOUT2]
00	MBIOS	-	3.3V tolerance TTL-compatible S/PDIF input pin	
28	MPIO3	0	Channel status emphasis information output pin	
			Microcontroller extended register output pin	
		I	LR clock input pin (ADC slave operation)	
			Group C : LR clock input pin	to [LRCKOUT], [MPOUT3]
			Group C : DSD data input pin	to [LRCKOUT], [MPOUT3]
			3.3V tolerance TTL-compatible S/PDIF input pin	
29	MPIO4	0	Channel status age bit output pin	
			Microcontroller extended register output pin	
			2ch audio data output pin (ADC slave operation)	from ADC
			Group C : 2ch audio data input pin	to [DATAOUT], [MPOUT4]
			Group C : DSD data input pin	to [DATAOUT], [MPOUT4]
			3.3V tolerance TTL-compatible S/PDIF input pin	
30	XMCK	0	Oscillation amplifier clock output pin	
31	XOUT	0	Crystal resonator connection output pin	
32	XIN	I	Crystal resonator connection or external clock input pin	
			(12.288MHz or 24.576MHz)	
33	DGND		Digital GND	
34	DVDD		Digital power supply (3.3V)	
35	XMODE	I	System reset input pin	
			(when power-on reset is used: fixed at "H")	
36	CSB	I	SPI microcontroller I/F, chip enable input pin	
37	SCK	I	SPI microcontroller I/F, shift clock input pin	
38	SI	I	SPI microcontroller I/F, write data input pin	
39	SO	0	SPI microcontroller I/F, read data output pin	
40	INTB	0	SPI microcontroller I/F, interrupt signal output pin	
	DSTATE	0	Analog or digital data detection flag output pin	
41	DOIME			

Continued on next page.

No	Name	I/O	Fun	iction
44	ADINR	I ₅	ADC: Analog Rch data input pin	
45	ADINL	I5	ADC: Analog Lch data input pin	
46	AV _{DD}		ADC: Analog power supply (5V)	
47	AGND		ADC: Analog GND	
48	VREF	0	ADC: Common voltage output pin	
49	RXIN3A		3.3V tolerance TTL-compatible S/PDIF input pin	
		I	Coaxial-compatible S/PDIF input pin	
50	RXIN2A		3.3V tolerance TTL-compatible S/PDIF input pin	
		I	Coaxial-compatible S/PDIF input pin	
51	RXIN1A		3.3V tolerance TTL-compatible S/PDIF input pin	
		I	Coaxial-compatible S/PDIF input pin	
52	DGND		Digital GND	
53	RXOUT	0	Input S/PDIF through output pin	
54	DV _{DD}		Digital power supply (3.3V)	
55	DGND		Digital GND	
56	RXIN8	I5	5V tolerance TTL-compatible S/PDIF input pin	
		.5	Group D : Master clock input pin	to [MCKOUT], [MPOUT1]
57	RXIN7	15	5V tolerance TTL-compatible S/PDIF input pin	
		.5	Group D : Bit clock input pin	to [BCKOUT], [MPOUT2]
58	RXIN6		5V tolerance TTL input level S/PDIF input pin	
		I5	Group D : LR clock input pin	to [LRCKOUT], [MPOUT3]
			Group D : DSD data input pin	to [LRCKOUT], [MPOUT3]
59	RXIN5		5V tolerance TTL-compatible S/PDIF input pin	
		I5	Group D : 2ch audio data input pin	to [DATAOUT], [MPOUT4]
			Group D : DSD data input pin	to [DATAOUT], [MPOUT4]
60	RXIN4	I5	5V tolerance TTL-compatible S/PDIF input pin	
61	RXIN3	۱ ₅	5V tolerance TTL-compatible S/PDIF input pin	
62	RXIN2	I5	5V tolerance TTL-compatible S/PDIF input pin	
63	RXIN1	I5	5V tolerance TTL-compatible S/PDIF input pin	
64	PVDD		PLL: Analog power supply (3.3V)	

* Input tolerance: I = -0.3 to 3.6V, $I_5 = -0.3$ to 5.5V, Output tolerance: O = -0.3 to 3.6V

* Pin 35: it has a built-in power-on reset circuit.

* Pin 32: power-off reverse bias control is supported only when a resonator is connected.

* Pins 26, 27, 28 and 29: power-off reverse bias control are supported only when "L" level input during power-off.

* Pin 46: 3.3V can be supplied when not using the ADC. In this case, making the power-down setting is recommended.

* Each AV_{DD}, PV_{DD} and DV_{DD} power supply must be turned on and off at the same timing to prevent latch-up.

6. Block Diagram

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Table 7.1 Absolute Maximum Ratings at AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	AV _{DD} max	7.1.1	-0.3 to 6.0	V
Maximum supply voltage	DV _{DD} max	7.1.2	-0.3 to 4.6	V
Input voltage 1	V _{IN} 1	7.1.3	-0.3 to AV _{DD} max+0.3 (max.6.0Vp-p)	V
Input voltage 2	V _{IN} 2	7.1.4	-0.3 to DV _{DD} max+0.3 (max.4.6Vp-p)	V
Output voltage	VOUT	7.1.5	-0.3 to DV _{DD} max+0.3 (max.4.6Vp-p)	V
Storage ambient temperature	Tstg		-55 to 125	°C
Operating ambient temperature	Topr		-30 to 85	°C
Allowable power dissipation	Pd max	7.1.6	559	mW
Maximum input/output current	I _{IN} , IOUT	7.1.7	±20	mA

7.1.1: AV_{DD} pin

7.1.2: PVDD and DVDD pins

7.1.3: ADINL, ADINR, RXIN1, RXIN2, RXIN3, RXIN4, RXIN5, RXIN6, RXIN7, and RXIN8 pins

7.1.4: MCKIN, BCKIN, LRCKIN, DATAIN, MPIN1, MPIN2, MPIN3, MPIN4, MPIN5, and MPIN6 pins

XIN, MPIO1, MPIO2, MPIO3, MPIO4, XMODE, CSB, SCK, SI, RXIN1A, RXIN2A, and RXIN3A pins

7.1.5: MCKOUT, BCKOUT, LRCKOUT, DATAOUT, MPOUT1, MPOUT2, MPOUT3, MPOUT4, and ERRF pins MUTEB, NPCMF, XMCK, XOUT, MPIO1, MPIO2, MPIO3, MPIO4, SO, INTB, DSTATE, and RXOUT pins

7.1.6: Ta≤85°C

7.1.7: Per input/output pin

7.2 Allowable Operating Range

Table 7.2 Recommended Operating Conditions at AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage 1	AV _{DD} 1	7.2.1	4.5	5.0	5.5	V
Supply voltage 2	AV _{DD} 2	7.2.2	3.0	3.3	3.6	V
Supply voltage 3	DVDD	7.2.3	3.0	3.3	3.6	V
Input voltage range 1	V _{IN} 1	7.2.4	0		5.5	V
Input voltage range 2	V _{IN} 2	7.2.5	0		3.6	V
Output load capacitance 1	CL1	7.2.6			20	pF
Output load capacitance 2	CL2	7.2.7			30	pF
Operating temperature	Vopr		-30	25	85	°C

7.2.1: AVDD pin (when ADC is used)

7.2.2: AV_{DD} pin (ADC must be set to power-down mode at all times. "ADCOPR[1:0]=11")

7.2.3: PVDD and DVDD pins

On/off of AV_{DD}, PV_{DD}, and DV_{DD} should desirably be done at the same timing. If that is not possible, PV_{DD} and DV_{DD} must be turned on earlier than AV_{DD}. AV_{DD} must also be turned off after PV_{DD} and DV_{DD}.

7.2.4: ADINL, ADINR, RXIN1, RXIN2, RXIN3, RXIN4, RXIN5, RXIN6, RXIN7, and RXIN8 pins

7.2.5: MCKIN, BCKIN, LRCKIN, DATAIN, MPIN1, MPIN2, MPIN3, MPIN4, MPIN5, and MPIN6 pins

XIN, MPIO1, MPIO2, MPIO3, MPIO4, XMODE, CSB, SCK, SI, RXIN1A, RXIN2A, and RXIN3A pins 7.2.6: MCKOUT pin

7.2.7: Output pins other than MCKOUT

7.3 Analog to Digital Converter Characteristics

Table 7.3 ADC Characteristics at Ta=25°C, AVDD=5.0V, PVDD=DVDD=3.3V, AGND=PGND=DGND=0V
fs=48k: 96kHz, input=1kHz: 24-bit data, measurement=20Hz to 20kHz

Parameter	Conditions	min	typ	max	Unit
Resolution				24	bits
Sampling frequency	7.3.1	8	48	96	kHz
System clock frequency		2.048	12.288	24.576	MHz
Input voltage	7.3.2		3.0		Vp-p
PGA range	7.3.3	-4.5	0	6	dB
PGA step	7.3.3		1.5		dB
THD+N	7.3.4 (48kHz)		-92	-80	dB
	7.3.5 (96kHz)		-88		dB
S/N	7.3.6 (48kHz)	94	101		dB
	7.3.7 (96kHz)		103		dB
Dynamic range	7.3.8 (48kHz)	94	101		dB
	7.3.9 (96kHz)		103		dB
Input impedance			27		kΩ
Channel-to-channel crosstalk		90	100		dB
Channel gain error			0.2	0.5	dB
Pass band				0.45fs	Hz
Stop band		0.545fs			Hz
Pass band ripple				±0.041	dB
Stop band attenuation		-58.5			dB
Group delay	7.3.10		24.5		1/fs
HPF frequency response	7.3.11		0.0385fs/1000		

7.3.1: Sampling frequency is 6kHz when "ADCOPR[1:0]=10" and "SDMODE=1".

7.3.2: Proportional to AVDD voltage with a full scale value (0dB) of analog input voltage (VIN=0.6×AVDD)

7.3.3: -4.5dB to 6dB/1.5dB steps

7.3.4: fs=48kHz, -1dBFS, except when "ADCOPR[1:0]=10"

7.3.5: fs=96kHz, -1dBFS, except when "ADCOPR[1:0]=10"

7.3.6: fs=48kHz, A-weighted, except when "ADCOPR[1:0]=10"

7.3.7: fs=96kHz, A-weighted, except when "ADCOPR[1:0]=10"

7.3.8: fs=48kHz, -60dBFS, A-weighted

7.3.9: fs=96kHz, -60dBFS, A-weighted

7.3.10: Delay calculation for the digital filter

7.3.11: -3dB

7.4 DC Characteristics

Table 7.4 DC Characteristics at Ta=-30 to 85°C,

AVDD=4.5 to 5.5V, PVDD=DVDD=3.0 to 3.6V, AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input, High	VIH	7.4.1	0.7 DV _{DD}			V
Input, Low	VIL				0.2 DV _{DD}	V
Input, High	VIH	7.4.2	2.0			V
Input, Low	VIL				0.8	V
Output, High	VOH	7.4.3	V _{DD} -0.8			V
Output, Low	VOL				0.4	V
Input amplitude	V _{P-P}	7.4.4	200			mV
Input impedance	Z _{in}	7.4.4	40		65	kΩ

7.4.1: CMOS-compatible: XIN input pin

7.4.2: TTL-compatible: Input pins other than XIN, ADINL, and ADINR pins

7.4.3: I_{OH}=-6mA, I_{OL}=6mA: MCKOUT, and MPOUT1 output pins I_{OH}=-4mA, I_{OL}=4mA: BCKOUT, LRCKOUT, DATAOUT, MPOUT[4:2], XMCK, and RXOUT output pins I_{OH}=-2mA, I_{OL}=2mA: ERRF, MUTEB, NPCMF, MPIO[4:1], SO, INTB, and DSTATE output pins

7.4.4: Before capacitance of RXIN1A, RXIN2A, and RXIN3A pins (when coaxial input is set to RXIN1A, RXIN2A, and RXIN3A)

7.5 Supply Current Characteristics

Table 7.5 DC Characteristics at Ta=25°C,

AVDD=5V, PVDD=DVDD=3.3V, AGND=PGND=DGND=0V, Minimum load on output pins

Parameter	Symbol	Conditions	min	typ	max	Unit
AV _{DD} Supply Current	I _{ADD}	7.5.1		0.1	4	μΑ
PV _{DD} , DV _{DD} Supply Current	IDDD			7	10	mA
AV _{DD} Supply Current	IADD	7.5.2		28	36	mA
PV_{DD} , DV_{DD} Supply Current	IDDD			15	20	mA
AVDD Supply Current	I _{ADD}	7.5.3		28	36	mA
PV _{DD} , DV _{DD} Supply Current	IDDD			22	29	mA
AVDD Supply Current	IADD	7.5.4		28	36	mA
PV _{DD} , DV _{DD} Supply Current	IDDD			31	40	mA
AV _{DD} Supply Current	IADD	7.5.5		3	4	mA
PV_{DD} , DV_{DD} Supply Current	IDDD			6	8	mA
AVDD Supply Current	IADD	7.5.6		3	4	mA
PV _{DD} , DV _{DD} Supply Current	IDDD]		7	9	mA

7.5.1: XMODE=L, XIN=12.288MHz

- 7.5.3: XIN=24.576MHz, MCKOUT=256fs, fs=96kHz/DIR, fs=48kHz/ADC, ADINL=ADINR=1kHz/Sine, "SW2SEL[2:0]=001", "SW1SEL[2:0]=000", "RXDSEL[3:0]=0000"
- 7.5.4: XIN=24.576MHz, MCKOUT=128fs, fs=192kHz/DIR, fs=96kHz/ADC, ADINL=ADINR=1kHz/Sine, "SW2SEL[2:0]=001", "SW1SEL[2:0]=000", "RXDSEL[3:0]=0000"
- 7.5.5: Analog audio data detection setting standby current, "ADCOPR[1:0]=10", "SDMODE=1", XIN=24.576MHz, fs=6kHz/ADC, when Figure 9.6 setting ADINL=ADINR=No signal
- 7.5.6: Analog and digital audio data detection setting standby current, "ADCOPR[1:0]=10", "SDMODE=1", "DSTASEL=1", XIN=24.576MHz, fs=6kHz/ADC, when Figure 9.6 setting, however "DIROPR=0", "RXDSEL[3:0]=0000" ADINL=ADINR=No signal, S/PDIF dose not input

^{7.5.2:} XIN=24.576MHz, MCKOUT=512fs, fs=44.1kHz/DIR, ADC=Reset status

7.6 AC Characteristics 1

Table 7.6 AC Characteristics at Ta=-30 to 85°C,

AVDD=4.5 to 5.5V, PVDD=DVDD=3.0 to 3.6V, AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	min	typ	max	Unit
RXIN1 to 8, RXIN1A to 3A MPIO[4:1] input receive frequency	^f RFS		28		195	kHz
RXIN1 to 8, RXIN1A to 3A MPIO[4:1] input duty factor	^t RXDUY		40	50	60	%
XIN clock input frequency	fXF	7.6.1		12.288		MHz
		7.6.2		24.576		MHz
XIN clock input duty factor	fxduy		40	50	60	%
MCKOUT clock output frequency	fMCK1		4		50	MHz
MCKOUT clock output duty factor	^f MCKDUY		40	50	60	%
MCKOUT clock jitter	Тj	7.6.3		50		ps RMS
MPOUT1 clock output frequency	fMCK2		2		25	MHz
BCKOUT, MPOUT2 clock output frequency	^f BCK 1		0.5		12.5	MHz
LRCKOUT, MPOUT3 clock output frequency	^f LRCK 1		8		192	kHz
MCKOUT-BCKOUT output delay	^t MBO		-10		10	ns
BCKOUT-LRCKOUT output delay	^t BLO	7.6.4	-10		10	ns
BCKOUT-DATAOUT output delay	^t BDO	7.6.4	-10		10	ns
BCKOUT-MPOUT[3:1](6ch, 8ch) output delay		7.6.5	-10		10	ns
LRCKOUT-DATAOUT output delay	^t LDO		-10		10	ns
LRCKOUT-MPOUT[3:1](6ch, 8ch) output delay		7.6.5	-10		10	ns

7.6.1: "XINSEL[1:0]=00"

7.6.2: Other than "XINSEL[1:0]=00"

7.6.3: Period jitter value

7.6.4: This also applies to the output when DSD data is input.

7.6.5: "SW1SEL[1:0]=010 or 011", "SW2SEL[1:0]=110 or 111"

Figure 7.1 AC Characteristics 1

7.7 AC Characteristics 2

Table 7.7 AC Characteristics at Ta=-30 to 85°C,

AVDD=4.5 to 5.5V, PVDD=DVDD=3.0 to 3.6V, AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	min	typ	max	Unit
Master clock input/output frequency	fMCKIN1	7.7.1	2		25	MHz
Bit clock input/output frequency	^f BCKIN	7.7.2	0.5		12.5	MHz
LR clock input/output frequency	^f LRCKIN	7.7.3	8		195	kHz
Input delay	^t IDLY	7.7.4	0		40	ns
Setup/hold	^t BDSH	7.7.5	25			ns
Master clock input/output delay	^t MMO	7.7.6			25	ns
Bit clock input/output delay	^t BBO	7.7.7			25	ns
LR clock input/output delay	^t LLO	7.7.8			25	ns
Data input/output delay	^t DDO	7.7.9			25	ns

7.7.1: MCKIN, MPIN1, MPIO1, and RXIN8 input pins, MCKOUT and MPOUT1 output pins

7.7.2: BCKIN, MPIN2, MPIO2, and RXIN7 input pins, BCKOUT and MPOUT2 output pins

7.7.3: LRCKIN, MPIN3, MPIO3, and RXIN6 input pins, LRCKOUT and MPOUT3 output pins

- 7.7.4: MPIO2 to MPIO3 input pin-to-pin delay when in ADC slave operation
- 7.7.5: DATAIN, MPIN1, MPIN2, MPIN3, MPIN4, MPIN5, MPIN6, MPIO4, and RXIN5 input pins
- 7.7.6: MCKIN-MCKOUT, MPIN1-MCKOUT, MPIO1-MCKOUT, and RXIN8-MCKOUT I/O pin-to-pin delay MCKIN-MPOUT1, MPIN1-MPOUT1, MPIO1-MPOUT1, and RXIN8-MPOUT1 I/O pin-to-pin delay
- 7.7.7: BCKIN-BCKOUT, MPIN2-BCKOUT, MPIO2-BCKOUT, and RXIN7-BCKOUT I/O pin-to-pin delay BCKIN-MPOUT2, MPIN2-MPOUT2, MPIO2-MPOUT2, and RXIN7-MPOUT2 I/O pin-to-pin delay
- 7.7.8: LRCKIN-LRCKOUT, MPIN3-LRCKOUT, MPIO3-LRCKOUT, and RXIN6-LRCKOUT I/O pin-to-pin delay LRCKIN-MPOUT3, MPIN3-MPOUT3, MPIO3-MPOUT3, and RXIN6-MPOUT3 I/O pin-to-pin delay
- 7.7.9: DATAIN-DATAOUT, MPIN4-DATAOUT, MPIO4-DATAOUT, and RXIN5-DATAOUT I/O pin-to-pin delay DATAIN-MPOUT4, MPIN4-MPOUT4, MPIO4-MPOUT4, and RXIN5-MPOUT4 I/O pin-to-pin delay MPIN1-MPOUT1, MPIN2-MPOUT2, and MPIN3-MPOUT3 I/O pin-to-pin delay MPIN5-MPOUT1 and MPIN6-MPOUT2 I/O pin-to-pin delay

7.8 SPI Microcontroller Interface AC Characteristics

Table 7.8 AC Characteristics at Ta=-30 to 85°C,

AVDD=4.5 to 5.5V, PVDD=DVDD=3.0 to 3.6V, AGND=PGND=DGND=0V

Parameter	Symbol	Conditions	min	typ	max	Unit
Power-on reset DV _{DD} slope	^t PORSL	7.8.1			100	ms
XMODE input pulse width (L)	^t RSTdw	7.8.2	200			μs
SCK input frequency	^f SCK				10	MHz
SCK input pulse width (L)	^t SCKdw		40			ns
SCK input pulse width (H)	^t SCKuw		40			ns
CSB input pulse width (H)	^t CSBuw		80			ns
CSB-SCK input delay	^t CSBtoSCK		20			ns
CSB-SCK hold	^t CSBhold		20			ns
SCK-SI setup	^t Slsetup	7.8.3	15			ns
SCK-SI hold	^t Slhold		15			ns
SCK-SO output delay	^t SCKtoSO				25	ns
CSB-SO output delay	^t CSBtoSO				20	ns

7.8.1: Each AVDD, PVDD and DVDD power supply must be turned on and off at the same timing.

7.8.2: XMODE must be fixed to "H" before power is turned on in order to use the power-on reset function.

7.8.3: SI has to set to "L" input when turning the power on.

Figure 7.3 SPI Microcontroller Interface AC Characteristics

8. System Settings (Common to ADC, DIR, and Audio selector)

8.1 Oscillation Amplifier Pin Settings (XIN, XOUT, XMCK)

- The LC89075W-H features a built-in oscillation amplifier. Connect a quartz resonator, feedback resistor, and load capacitance to XIN and XOUT to configure an oscillation circuit. The figure below shows the connection diagram. When connecting a quartz resonator, use one with a fundamental wave, and be aware that the load capacitance depends on the quartz resonator characteristics, so thorough investigation should be made.
- If the built-in oscillation amplifier is not used and an oscillation module is used as the clock source instead, connect the output of an external clock supply source to XIN. At this time, it is not necessary to connect a feedback resistor between XIN and XOUT.
- Always supply a 12.288MHz or 24.576MHz clock to XIN.
- The clock frequency is set with the XINSEL[1:0] register. The clock frequency set with the XINSEL[1:0] register and the clock frequency input to XIN must match.
- The clock set with the XINSEL[1:0] register is defined as the ADC operation clock and the MCKOUT, BCKOUT, and LRCKOUT output clocks when ADC data output is selected. Complete the XINSEL[1:0] register setting prior to bi-phase data input.
- XMCK outputs the XIN clock. The XMCK output is set with the XMSEL[1:0] register. 1/1, 1/2 or 1/4 of the XIN clock, or "L" output can be set.

(a) XIN/XOUT Quartz Resonator Connection Diagram

(b) XIN External Clock Input Diagram

Figure 8.1 XIN/XOUT External Circuit Connection Diagram

8.2 ADC Common Voltage Output Pin Setting (VREF)

- VREF is used as the ADC analog signal common voltage and outputs the 1/2AVDD voltage.
- Connect 10µF and 0.1µF capacitors between VREF and AGND, as close to the pins as possible. In addition, do not position clock or digital signal wiring close to these capacitors to avoid coupling to the converter.

Figure 8.2 VREF External Circuit Connection Diagram

8.3 DIR Loop Filter Pin Setting (LPF)

- The DIR incorporates a VCO (Voltage Controlled Oscillator) that synchronizes with sampling frequencies from 32kHz to 192kHz and with the data with a transfer rate from 4MHz to 25MHz.
- The PLL is locked at 512fs.
- LPF is a pin for the PLL loop filter. Connect the resistor and capacitors shown in the right figure, as close to the pin as possible.

Figure 8.3 LPF External Circuit Connection Diagram

8.4 System Reset (XMODE)

- The LC89075W-H features a built-in power-on reset circuit, and constantly monitors the power supply status.
- When XMODE is set to "H" and the power is turned on, the system is reset by this power-on reset circuit.
- When not using the power-on reset circuit, always set XMODE to "L" to reset the system during power-on. The system operates correctly when XMODE is set to "H" after the reset sequence. When XMODE is set to "L" again thereafter, the system is reset.

Figure 8.4 Power-on Reset and XMODE Reset Timing Chart

Table 8.1 Functional Block States When XMODE Is Reset (XMODE="L")

Functional Block	State
ADC Stopped, power-down mode	
DIR Stopped, power-down mode (PLL stopped)	
Oscillation amplifier Running	
Microcontroller registers	Initial Value

Table 8.2 Output Pin States When XMODE Is Reset (XMODE="L")

				<u>`</u>	ĺ
Pin No.	Pin Name	Output State	Pin No.	Pin Name	Output State
13	MCKOUT	Output (XIN)	26	MPIO1	Hi-Z
14	BCKOUT	L	27	MPIO2	Hi-Z
15	LRCKOUT	L	28	MPIO3	Hi-Z
16	DATAOUT	L	29	MPIO4	Hi-Z
19	MPOUT1	L	30	XMCK	Output
20	MPOUT2	L	31	XOUT	Output
21	MPOUT3	L	39	SO	Hi-Z
22	MPOUT4	L	40	INTB	Н
23	ERRF	н	41	DSTATE	L
24	MUTEB	L	53	RXOUT	L
25	NPCMF	L			

8.5 Output Data Format (Common to the ADC and DIR Blocks)

- The DATAOUT and MPOUT[4:1] output data format is set with the DAFORM register.
- The initial value of the output format is I²S. Data is output synchronized with the BCKOUT falling edge.

"DFORM=1": MSB First Left-Justified Output

Figure 8.5 ADC and DIR Data Output Timing Chart

8.6 Handling of Unused Pins

- Leave unused output pins open, and set unused input pins as shown in the table below.
- Always set input pins not noted in the table below as described in these specifications.

Pin No.	Pin Name	Input Setting	Pin No.	Pin Name	Input Setting
3	MCKIN	Connect to DGND (Pin No. 14)	44	ADINR	Open
4	BCKIN	Connect to DGND (Pin No. 14)	45	ADINL	Open
5	LRCKIN	Connect to DGND (Pin No. 14)	49	RXIN3A	Connect to DGND (Pin No. 52)
6	DATAIN	Connect to DGND (Pin No. 14)	50	RXIN2A	Connect to DGND (Pin No. 52)
7	MPIN1	Connect to DGND (Pin No. 14)	51	RXIN1A	Connect to DGND (Pin No. 52)
8	MPIN2	Connect to DGND (Pin No. 14)	56	RXIN8	Connect to DGND (Pin No. 55)
9	MPIN3	Connect to DGND (Pin No. 14)	57	RXIN7	Connect to DGND (Pin No. 55)
10	MPIN4	Connect to DGND (Pin No. 14)	58	RXIN6	Connect to DGND (Pin No. 55)
11	MPIN5	Connect to DGND (Pin No. 14)	59	RXIN5	Connect to DGND (Pin No. 55)
12	MPIN6	Connect to DGND (Pin No. 14)	60	RXIN4	Connect to DGND (Pin No. 55)
37	CSB	Connect to DGND (Pin No. 43)	61	RXIN3	Connect to DGND (Pin No. 55)
38	SCK	Connect to DGND (Pin No. 43)	62	RXIN2	Connect to DGND (Pin No. 55)
39	SI	Connect to DGND (Pin No. 43)	63	RXIN1	Connect to DGND (Pin No. 55)

• The MPIO[4:1] pins can be set to input or output. In the initial status, these pins are set to output of Hi-Z. When not using these pins, use the initial setting and leave the pins open.

9. Description of Analog to Digital Converter (ADC)

9.1 Operation Settings

• ADC operation can be selected from the automatic stop mode that follows DIR operation, continuous operation mode, low sampling rate operation mode, and power-down mode. The initial value is set to the automatic stop mode that follows DIR operation.

Mode Setting	ADC State			
Automatic stop mode (initial value)	When PLL is unlocked: Operating			
	When PLL is locked: Reset (ADC also resets when ERRF is "H" and PLL is locked)			
Continuous operation mode	Always operating			
Low sampling rate operation mode	Operating (ADC's rate fixed at 6kHz)			
Power-down mode	Complete stop			

Table 9.1 ADC Operation Mode Comparison

9.1.1 Automatic Stop Mode

- The automatic stop mode function sets ADC operation with priority on the DIR status, and controls ADC operation according to the PLL locked status and ERRF output status. ("ADCOPR[1:0]=00")
- The ADC is automatically set to the reset status in the PLL locked status. When the PLL changes to the unlocked status, the reset is canceled and the ADC restarts analog to digital conversion. However, ADC is set to the reset status when ERRF is "H" and PLL is locked. (when "RXRESEL=1" or "RXRESTA=1")
- When setting the ADC to automatic stop mode, it is recommended to simultaneously make the oscillation amplifier stop setting. The oscillation amplifier can be automatically stopped while the PLL is locked, by "AMPOPR[1:0]=01". This eliminates the possibility of coexistence of the XIN clock and PLL clock, enabling reduction of interference between the clocks. However, this excludes cases when the XIN clock cannot be stopped, such as when the oscillation amplifier clock output XMCK is constantly supplied to the DSP, etc.

9.1.2 Continuous Operation Mode

- The ADC can be set to the continuous operation mode that constantly continues analog to digital conversion operation regardless of the DIR status.
- Continuous operation mode can be set in the following states. This setting has priority over automatic stop mode. - When the ADC clock and data are set to constant output: "SW1SEL[2:0]=001" or "SW2SEL[2:0]=001"
 - When ADC slave operation is set: "MPSEL[1:0]=10 or 11"

9.1.3 Low Sampling Rate Operation Mode

(Analog Audio Data Detection in Power Save Operation Mode)

- The low sampling rate operation mode performs analog audio data detection with low power consumption.
- To set this mode, both "ADCOPR[1:0]=10" and "SDMODE=1" must be set. These registers need to detect the existence of analog audio data in power save operation. When only the ADCOPR[1:0] register or the SDMODE register is set, this function does not operate.
- Low sampling rate operation mode operates only when set to master mode. When the ADC is operated in slave mode, low sampling rate operation cannot be set.
- After this mode is set, the ADC performs analog to digital conversion at a sampling rate of 6kHz.
- Current consumption can be further reduced by simultaneously setting to stop the DIR function and fix the output clock pin outputs to suppress current consumption other than the ADC. See below for further details, "9.6 Analog Audio Data Detection".

9.1.4 Power-down Mode

- The ADC is set to power-down mode by "ADCOPR[1:0]=11". In power-down mode, VREF is set to the AGND voltage.
- Power-on reset when turning the power on and system start-up from power-down mode are both executed via the ADC initialization cycle. Reset by power-on-reset or ADC initialization after power-down mode is canceled require a period of 85ms.
- The ADC advances the reset cancel when initialization is complete. Normally, 16384/fs period needs for the reset cancel. The offset generated in initial data of ADC is removed for this period. When the reset cancel period dose not need, it sets by the ADBMOD register. ("ADBMOD=1")
- DATAOUT outputs data "0" during power-down mode and reset cancel period.
- The ADC starts analog to digital conversion after reset is canceled. The digital data is output after fade-in processing by the digital volume. In addition, switching from normal operation to power-down mode is executed after fade-out processing.
- In cases such as when slave mode or an oscillation module is not used and an external clock is supplied instead, the clock may be disrupted when switching to power-down mode, and noise may be generated. In these cases, set power-down mode after performing soft mute processing. See below for further details, "9.5 Soft Mute/Attenuator".

Figure 9.1 Timing Chart for Power-down Mode and When the Mode is Canceled

9.1.5 When Not Using the ADC

- When not using the built-in ADC, 3.3V can be supplied to the AVDD pin that normally requires a 5V supply.
- The ADC can operate even when 3.3V is supplied, but the characteristics are not guaranteed. Therefore, it is recommended to set the power-down mode when not using the ADC.

9.2 Clock Input Settings (XIN, XOUT, XMCK)

• The ADC normally operates in master mode, and can be switched to slave mode by the register setting.

9.2.1 Master Mode 1 (Continuous Operation Mode and Automatic Stop Mode)

- In master mode, the sampling frequency operates at 48kHz or 96kHz.
- Master mode operates using the 12.288MHz or 24.576MHz clock input to the XIN pin.
- The clock set with the XINSEL[1:0] register is supplied to the ADC.
- The clock supplied to the ADC is output from MCKOUT, BCKOUT, LRCKOUT and MPOUT[3:1] when ADC data output is selected.

Table 9.2: ADC Supplied Clock and Output Clocks in Master Mode (Initial Value: "XINSEL[1:0]=00")

		XIN Pin	ADC	Output Pin Clock Frequency (Hz)		/ (Hz)
XINSE	EL[1:0]	Input Clock	Sampling	MCKOUT	BCKOUT	LRCKOUT
		Frequency (Hz)	Frequency (Hz)	MPOUT1	MPOUT2	MPOUT3
0	0	12.288M	48k	12.288M	3.072M	48k
0	1	24.576M	48k	12.288M	3.072M	48k
1	0	24.576M	48k	24.576M	3.072M	48k
1	1	24.576M	96k	24.576M	6.144M	96k

9.2.2 Master Mode 2 (Low Sampling Rate Operation Mode)

• Operation is performed at the 12.288MHz or 24.576MHz clock input to the XIN pin, but analog to digital conversion is performed at a sampling frequency of 6kHz. See below for further details, "9.6 Analog Audio Data Detection".

9.2.3 Slave Mode

- Slave mode sets clock input and data output pins exclusively for the ADC, and performs analog to digital conversion unaffected by other functions. However, the clock (resonator or external input) must be supplied to XIN even when slave mode is set.
- In slave mode, the sampling frequency operates at 8kHz to 96kHz.
- The master clock operates at 512fs or 256fs.
- Slave mode and the master clock are set with the MPSEL[1:0] register.
- In slave mode, the following functions are assigned to MPIO[4:1].
 - MPIO1: ADC master clock (512fs or 256fs) input pin
 - MPIO2: ADC bit clock (64fs) input pin
 - MPIO3: ADC channel clock (fs) input pin
 - MPIO4: ADC audio data output pin

Pin Name	MPIO1	MPIO2	MPIO3
Usage	Master clock	Bit clock	LR clock
Input clock	512fs or 256fs	64fs	fs
Input clock range	2.048MHz to 24.576MHz	512kHz to 6.144MHz	8kHz to 96kHz

Table 9.3 Clocks That Can Be Input to MPIO[3:1] in Slave Mode

- In slave mode, the ADC clocks output from MCKOUT, BCKOUT, LRCKOUT and MPOUT[3:1] are the signals input to MPIO[3:1]. The system doesn't operate normally when there is no clock input to MPIO[3:1]. Therefore, must be supply the clock to MPIO[3:1] in slave mode.
- The data that has been analog to digital converted according to the DAFORM register setting is output from MPIO4 and MPOUT4. These output data are not affected by MUTEB.

9.3 Digital HPF

- The ADC incorporates a digital HPF to cancel the DC offset.
- The HPF cutoff frequency is 1.85Hz when fs=48kHz. The frequency response is proportional to fs.

9.4 PGA

- The LC89075W-H incorporates an analog PGA (Programmable Gain Amplifier).
- The PGA can be set to -4.5dB to +6dB in 1.5dB steps with the ADPGA[2:0] register.
- The input impedance is $27k\Omega$, and the ADC full-scale input is proportional to the AV_{DD} voltage. V_{IN}=0.6×AV_{DD}

 $Zi = Rin + R1 = 27k + 27k = 54k\Omega$

Figure 9.2 Internal PGA Analog Input Configuration Diagram

9.5 Soft Mute/Attenuator

- The LC89075W-H incorporates a digital volume that can adjust from 0dB to -63.5dB and -∞dB.
- The digital volume is set with the ADVOL[7:0] register. When the ADVOL[7:0] register setting is changed, the volume changes according to the ADFDSP[2:0] register setting. The volume changes the gain in 0.25dB steps.
- When "ADSMUTE=1", soft mute operation is performed to attenuate the volume from the ADVOL[7:0] register setting value to -63.5dB according to the ADFDSP[2:0] register setting, and then to $-\infty$ dB (0 data). The gain changes in 0.25dB steps during soft mute operation.
- When mute is canceled during mute execution, the process is stopped and the gain returns to 0dB in 0.25dB steps.
- When mute is set again during mute canceled, the cancel process is stopped and the mute process is performed to ∞dB .

Figure 9.3 Soft Mute Timing Chart

Table 9.4 ADC Output Volume Gain Setting	<u></u> s

1 0
Gain [dB]
0 (initial value)
-0.25
-0.50
•••
-63.5
-∞

Table 9.5 ADC Output V	Volume Fade Slope Settings
------------------------	----------------------------

ADFDSP[2:0]	Fade Slope	0dB to -∞dB Transition Time (Reference)*1	
000	1/fs (initial value)	256/fs	
001	2/fs	512/fs	
010	4/fs	1024/fs	
011	8/fs	2048/fs	
100	16/fs	4096/fs	
101	Reserved	-	
110	Reserved	-	
111	Direct	1/fs	

*1: The time required to attenuate from 0dB to -∞dB when "ADVOL[7:0]=00h".

9.6 Analog Audio Data Detection (DSTATE)

- The LC89075W-H can detect the existence ('Sound' or 'Silence') of analog audio data. 'Sound' has the audio data above threshold level. 'Silence' has the audio data below threshold level.
- The 'Sound' detection can be performed in normal operation mode or low sampling rate operation mode.
- The 'Silence' detection can be performed in normal operation mode.
- These detections can be performed on the analog data while the ADC is operating. They cannot be performed while the ADC is in the reset or the power-down status.

Figure 9.4 Analog Audio Data Detection Timing

9.6.1 'Sound' Detection

9.6.1.1 Detection in Normal Operation Mode

- To perform detection in normal operation mode, "SDMODE=1" is set.
- Analog to digital conversion is performed at a sampling frequency of 48kHz or 96kHz in master mode, or at the clock frequency input to MPIO[3:1] in slave mode.

9.6.1.2 Detection in Low Sampling Rate Operation Mode

- Low sampling rate operation mode can be used only when set to master mode. (See section 9.1.3)
- To perform detection in low sampling rate operation mode, "SDMODE=1" and "ADCOPR[1:0]=10" must be set.
- In this mode, analog to digital conversion is performed at a sampling frequency of 6kHz.
- In this operation mode, the following register settings are recommended to reduce current consumption other than by the ADC.

Adr	Register Name	Register Description	Recommended Value	Remarks
00h	ADCOPR[1:0]	ADC operation setting	10	Power save mode operation
00h	DIROPR	DIR operation setting	1	Stop
01h	SDMODE	Analog or digital audio data detection setting	1	'Sound' detection
02h	XMSEL[1:0]	XMCK pin output setting	11	"L" output
05h	OUTMUT	Clock and data output setting	1	"L" output
06h	SW2SEL[2:0]	MPOUT[4:1] pin output setting	000	"L" output
0Bh	RXTHR1[3:0]	RXOUT output data setting	1111	"L" output
0Bh	RXDSEL[3:0]	DIR data demodulation input setting	1111	Connected to GND
0Ch	RXTHR2[3:0]	MPOUT4 output data setting	1111	"L" output

Table 9.6 Recommended Register Settings for the ADC Power Save Mode Operation

9.6.1.3 Threshold and Output

- The 'Sound' threshold level is set with YLEVEL[3:0] register.
- The YLEVEL[3:0] register can adjust the level from -60dBFS to -30dBFS in 2dBFS steps.
- At YLEVEL[3:0] register initial value, 'Sound' is judged when the signal is larger than -60dBFS.
- The results of judging the data after passing through the HPF are output from DSTATE pin and ODATAM register.
- When a signal that is larger than the threshold level set by YLEVEL[3:0] register is detected, DSTATE outputs "H."

9.6.2 'Silence' Detection

- The 'Silence' detection operates in normal operation mode, and "SDMODE=0" is set.
- The 'Silence' threshold level is set with NLEVEL[3:0] register.
- The NLEVEL[3:0] register can adjust the level from -60dBFS to -30dBFS in 2dBFS steps.
- At NLEVEL[3:0] register initial value, 'Silence' is judged when the signal is smaller than -60dBFS.
- The results of judging the data after passing through the HPF are output from DSTATE pin and ODATAM register.
- When a signal that is smaller than the threshold level set by NLEVEL[3:0] register is detected, DSTATE outputs "L."

9.6.3 DSTATE Output

- The DSTATE output polarity can be changed with DSTATEP.
- The DSTATE pin status can also be read from ODATAM register.
- When ADC operation is stopped, DSTATE outputs "L."

Table 9.7 Analog Data and DSTATE Pin Output Status (When "DSTATEP=0")

DSTATE Output	SDMODE=0 ('Silence' detection)	SDMODE=1 ('Sound' detection)
L	Smaller than the value set by the NLEVEL register or the ADC is reset	Smaller than the value set by the YLEVEL register or the ADC is reset
Н	Larger than the value set by the NLEVEL register	Larger than the value set by the YLEVEL register

• 'Sound' or 'Silence' detection can be performed for digital audio data in addition to analog audio data. See below for further details, "12. Digital Audio Data Detection".

9.7 Reset Process

- When the PLL is locked by setting "SYSRST=1" or "ADCOPR[1:0]=00", the ADC is in the reset status. When "ADBMOD=0" is set, 16384/fs period is normally necessary for the reset cancel. If "ADBMOD=1" is set, it has not wait time. The digital data is output after fade-in processing after reset cancel.
- 'Sound' or 'Silence' detection flag DSTATE after reset cancel is output after progress 32768/fs.

Figure 9.5 ADC Reset Processing Timing (When "ADBMOD=0")

10. Description of Digital Audio Interface Receiver (DIR)

10.1 Clocks

• When the PLL is unlocked, the DIR operates at the clock input to XIN. When the PLL is locked, the DIR operates at the internal VCO (PLL) clock.

10.1.1 PLL Source Master Clock

- The PLL synchronizes with the input S/PDIF and outputs a 512fs clock.
- The PLL clock is controlled by the RXCKAT, RXCKDV[1:0] and RXMCK[1:0] register settings.
- Normally, "RXCKAT=0" is set and a PLL clock is output for each input sampling frequency band. At this setting, output clock frequency fluctuation by varying the sampling frequency is kept to a narrow band, such as 512fs output when fs=32kHz to 48kHz, 256fs output when fs=64kHz to 96kHz, and 128fs output when fs=128kHz to 192kHz.
- When "RXCKAT=0" is set, the PLL clock is set by the RXCKDV[1:0] register
- To set an output clock that does not depend on the S/PDIF input sampling frequency, "RXCKAT=1" is set. At this setting, the clock frequency is always multiplied by a constant and output, such as output at 256fs for all sampling frequencies from 32kHz to 192kHz.
- When "RXCKAT=1" is set, the PLL clock is set by the RXMCK[1:0] register.
- When the PLL is locked, switching is not performed even when the RXCKAT, RXCKDV[1:0] and RXMCK[1:0] registers setting are changed. These registers switching are executed when the PLL is in unlocked status. This setting becomes valid after the PLL is locked again. And, only when "RXCKAT=1" is set, RXMCK[1:0] register can be changed by setting "RXCKMU=1" even PLL lock state. However, the change is not reflected in MUTEB.
- The PLL output clock setting flow is shown below. Note that the PLL can be stopped with the DIROPR register.

Figure 10.1 PLL Output Clock Flow Diagram

• The PLL clock output frequencies are shown below.

• When "RXCKAT=1" and "RXMCK[1:0]=01" are set (512fs), 128kHz, 176.4kHz and 192kHz S/PDIF reception results in a PLL output frequency that exceeds 50MHz, so direct output to MCKOUT is not guaranteed.

	PLL Output (MHz)							
S/PDIF		"RXCKAT=0"				"RXCKAT=1"		
fs	(Fix	(Fixed multiple outputs for each input fs band)			(Fixed multiple outputs of input fs)			
(kHz)	"RXCKDV=00"	"RXCKDV=01"	"RXCKDV=10"	"RXCKDV=11"	"RXMCK=00" (256fs)	"RXMCK=01" (512fs)	"RXMCK=10" (128fs)	
32	16.38	8.19	16.38	8.19	8.19	16.38	4.09	
44.1	22.57	11.28	22.57	11.28	11.28	22.57	5.64	
48	24.57	12.28	24.57	12.28	12.28	24.57	6.14	
64	16.38	16.38	32.76	32.76	16.38	32.76	8.19	
88.2	22.57	22.57	45.15	45.15	22.57	45.15	11.28	
96	24.57	24.57	49.15	49.15	24.57	49.15	12.28	
128	16.38	16.38	16.38	16.38	32.76	65.54 *	16.38	
176.4	22.57	22.57	22.57	22.57	45.15	90.32 *	22.57	
192	24.57	24.57	24.57	24.57	49.15	98.30 *	24.57	

Table 10.2 PL	L Clock Out	put Frequenc	ies (Bold settings	s are initial values.)
---------------	-------------	--------------	--------------------	------------------------

*: Direct output to the MCKOUT pin is not guaranteed.

10.1.2 XIN Source Master Clock (XIN, XOUT, XMCK)

- The DIR uses clock supply to XIN for the following applications.
 - 1) Clock source when the PLL is unlocked
 - 2) PLL lock-in support
 - 3) Calculation of the input data sampling frequency
- A clock must always be supplied to XIN.
- Normally, the oscillation amplifier always operates regardless of the PLL status, but operation that automatically stops the oscillation amplifier while the PLL is locked can also be set. This is set by the AMPOPR[1:0] register. The AMPOPR[1:0] register must be set before S/PDIF input, or the setting must be completed while the PLL is unlocked. In addition, when the oscillation amplifier is automatically stopped, the XMCK clock is not output.
- When "SW1SEL[2:0]=001", "SW2SEL[2:0]=001" or slave mode "MPSEL[1:0] =10 or 11", the oscillation amplifier is set to continuous operation mode. This has higher priority than the AMPOPR[1:0] register setting.

10.1.3 DIR Clock System Diagram (XIN, XOUT, XMCK)

- The relationship between the two types of master clock (PLL source, XIN source) and the switching and frequency division functions is shown below.
- The characters noted with quotation marks near the switches and function blocks correspond to the write register names.
- Lock/unlock is switched automatically according to the PLL locked/unlocked status.

Figure 10.2 Clock Output System Diagram

• The clocks output from the DIR block are input to the output selector and output to MCKOUT, BCKOUT and LRCKOUT.

Table 10.3 DIR Outpu	t Clock Frequency Table
----------------------	-------------------------

DIR Output The characters in	Source Clock (XIN) When PLL Is Unlocked		Source Clock (PLL) When PLL Is Locked
parenthesis are output pins.	12.288MHz	24.576MHz	512fs
Master clock		24.576MHz	512fs
(MCKOUT)	12.288MHz		256fs
	12.2001012	128fs	
Bit clock	6.144MHz		64fs
(BCKOUT)	3.072MHz		0415
L/R clock	96kHz		<i>to</i>
(LRCKOUT)	48kHz		fs

10.1.4 Mute Signal Output During the Clock Switching Period (MUTEB)

- MUTEB outputs a pulse when the output clocks change due to the PLL locked/unlocked status.
- The MUTEB pulse output polarity can be changed with the DIRMUTP register. The description below assumes that DIRMUTP is 0.
- In the lock-in process, after input data is detected, MUTEB falls at the word clock generated from the XIN clock after the PLL is locked, and then rises at the same timing as ERRF once a certain period of time has passed.
- In the unlock process, MUTEB falls at the same timing as the PLL lock detection signal ERRF, and then rises after the word clock generated from the XIN clock is counted for a certain number of times.
- Changes in the PLL locked status and the timing of clock changes can be seen by detecting the MUTEB pulse and rising and falling edges.
- The clocks switch after the PLL lock judgment, and this switching timing can be set with the RXCKWT[1:0] register. At the initial setting, the clocks switch approximately 2.7ms after MUTEB falls. However, this value depends on the condition that the oscillation amplifier is set to the constantly operating status. When set so that the oscillation amplifier stops after the PLL is locked, the start-up time required until the oscillation amplifier stabilizes after the PLL is unlocked is added to the value.
- The clock output pins output free-running clocks immediately after the PLL is unlocked.
- In the unlock process, MUTEB is changed by ADBMOD register. See below for further details, "14. Microcontroller Interface".

10.1.5 Output Clocks Generated When Input S/PDIF Reception is Limited

• The input S/PDIF reception range can be set with the RXLIM[1:0] register.

• If an S/PDIF input that exceeds the reception range limit is supplied, the same processing is performed as when the PLL is unlocked. The clock source is then switched to the XIN clock, and clocks are output from respective clock pins.

Figure 10.4 Output Clocks Generated When Input Data Reception Is Limited

10.2 S/PDIF Input/Output

10.2.1 S/PDIF Input Reception Range

• The input data reception range is shown below.

Table 10.4 S/PDIF Reception Range ("RXLIM[1:0]=00")

PLL Output Clock Setting	Input Data Reception Range
512fs	32kHz to 192kHz

- The PLL output clock is output to each pin according to the RXCKAT, RXCKDV[1:0] and RXMCK[1:0] register settings.
- The fs reception range of input data can be limited to within the above PLL output clock setting range. This setting is carried out with the RXLIM[1:0] register. When this function is used, input data exceeding the set range is considered as an error, and the clock source is automatically switched to the XIN source.

10.2.2 S/PDIF Input/Output Pins (RXIN1 to RXIN8, RXIN1A to RXIN3A, MPIO[4:1], RXOUT, MPOUT4)

- Up to 15 digital data input pins are provided. In addition, two S/PDIF output pins are provided.
- RXIN[8:1] pins are TTL level compatible input pins with 5V tolerance voltage.
- MPIO[4:1] are TTL level compatible input pins with 3.3V tolerance voltage.
- MPIO[4:1] must be set to input with the MPSEL[1:0] register.
- RXIN[3:1]A are TTL level with 3.3V tolerance voltage or coaxial compatible input pins.
- Each RXIN[3:1]A change the function by the RX1ASEL, RX2ASEL and RX3ASEL registers.
- In the initial status, RXIN[3:1]A are set to TTL level compatible input pins.
- When RXIN[3:1]A are used for coaxial input, RXIN[3:1]A must connect terminator and DC cutting capacity.
- All the S/PDIF input pins can receive 32kHz to 192kHz data.
- RXOUT and MPOUT4 are input selector output pins, and output the S/PDIF through data.
- The demodulated data and the through output data can be selected separately.
- The demodulated data is selected with the RXDSEL[3:0] register.
- The RXOUT pin output data is selected with the RXTHR1[3:0] register.
- The MPOUT4 pin output data is selected with the RXTHR2[3:0] register.
- The S/PDIF through data output from the MPOUT4 pin is set with the SW2SEL[2:0] register.
- The RXDSEL[3:0] register can also be set so that all input digital data is deselected. This enables input data switching via the no-signal input status.
- The RXTHR1[3:0] and RXTHR2[3:0] registers are initially set so that RXOUT and MPOUT4 output "L."
- When not using RXOUT and MPOUT4, muting these pins is recommended.

Figure 10.5 S/PDIF Input Circuit Example

10.3 Output Data Switching (DATAOUT)

• In the initial setting status, demodulated data is output to DATAOUT when the PLL is locked, and ADC data is output to DATAOUT when the PLL is unlocked. This output switching is performed automatically according to the PLL locked/unlocked status.

Figure 10.6 Timing Chart of DATAOUT Output Data Switching

10.4 Error Output Processing

10.4.1 Lock Error and Data Error Output (ERRF)

- ERRF outputs an error flag when a PLL lock error or a data error occurs.
- It is possible to treat non-PCM data reception as an error by setting up the RXRESEL register.
- The ERRF output conditions are set with the RXRESTA register.

10.4.2 PLL Lock Error

- The PLL gets unlocked for input data that lost bi-phase modulation regularity, or input data for which preambles B, M, and W cannot be detected.
- ERRF turns to "H" upon occurrence of a PLL lock error, and returns to "L" when data demodulation returns to normal and "H" is held for somewhere between 3ms to 144ms. This hold time is determined by the setting of the RXERWT[1:0] register.
- ERRF pulse output polarity can be changed with the DIRERRP register.
- ERRF is output in synchronization with LRCKOUT.

10.4.3 Input Data Parity Error

- An odd number of errors among parity bits in input data and input parity errors are detected.
- If an input parity error occurs 9 or more times in succession, ERRF turns to "H" indicating that the PLL is locked, and after holding "H" for somewhere between 3ms to 144ms, it returns to "L."
- The error flag output format can be selected with the RXREDER register when an input parity error is output 8 or fewer times in succession.

10.4.4 Other Errors

- Even if ERRF turns to "L," the channel status bits of 24 to 27 (sampling frequency information) are always fetched and the data of the previous block is compared with the current data. Moreover, the input data sampling frequency is calculated from the fs clock extracted from the input data, and the fs calculated value is compared in the same way as described above. If any difference is detected in these data, ERRF is instantly made "H" and the same processing as for PLL lock errors is carried out. In this case, the clock source is switched to XIN and processing is restarted at lock status identification processing.
- In order to support sources with a variable fs (for example, a CD player with a variable pitch function), any change in fs made after ERRF is reset is not reflected on ERRF unless such change exceeds the PLL capture range.
- To have the change in fs made after the resetting of ERRF reflected on ERRF, set the "RXREFSJ=1".
- If a setting which regards non-PCM data input as an error is made with the RXRESEL register, ERRF turns to "H" when non-PCM data input is detected. At this time, the PLL locked status and respective output clocks are subject to the input data, but the output data is muted. The non-PCM data is the information that is output from NPCMF and subject to the NPSEL register setting.
- The PLL is set to the unlock state when the ADC clock and the data output have been selected by "SW1SEL[2:0]=001" and ERRF outputs the error flag.

10.4.6 Data Processing Upon Occurrence of Errors (Lock Error, Parity Error)

- The data processing upon occurrence of an error is described below. If 8 or fewer input parity errors occur in succession and transfer data is PCM audio data, the data is replaced by the one saved each in L-ch and R-ch in the previous frame. However, if the transfer data is non-PCM data, the error data is output as it is.
- Non-PCM data is the data of when bit 1 (non-PCM data detection bit) of the channel status turns to "H" based on the data detected prior to the occurrence of the input parity error.
- Output data is muted when a PLL lock error occurs or a parity error occurs 9 or more times in succession.
- As for the channel status data, the data of the previous block held in 1-bit units is output when a parity error occurs 8 or fewer times in succession.

	10010 10.5 Du	the Processing upon Life	1 Occurrence	
Data	PLL Lock Error	Input Parity Error (a)	Input Parity Error (b)	Input Parity Error (c)
Demodulation data	"L"	"L"	Previous value data	Output
fs calculation result	Out of range	Output	Output	Output
Channel status	"L"	"L"	Previous value data	Previous value data

Table 10.5 Data Processing upon Error Occurrence
--

Input parity error (a): If occurs 9 or more times in succession

Input parity error (b): If occurs 8 or fewer times in succession in case of audio data

Input parity error (c): If occurs 8 or fewer times in succession in case of non-PCM burst data

10.4.7 Processing During Error Recovery

- When preambles B, M, and W are detected, the PLL becomes locked and data demodulation begins.
- The demodulation data is output from the LRCKOUT edge after ERRF turns to "L."

Output starts from LRCKOUT edge immediately after ERRF is lowered.

Figure 10.8 Data Processing When Data Demodulation Starts

10.5 Data Delimiter Bit 1 Output (NPCMF)

- NPCMF outputs the channel status data delimiter bit information.
- NPCMF outputs bit 1 of the channel status that indicates whether the input bi-phase data is PCM audio data. NPCMF is immediately output upon detection of ERRF even during the "H" output period.
- The IEC61937 and the DTS-CD detection flags can be output to NPCMF according to the NPSEL register.

Table 10.6 NPCMF Output		
NPCMF	Output Conditions	
L	PCM audio data (bit 1 = "L")	
Н	Non-PCM audio data (bit 1 = "H")	

10.6 IEC61937 and DTS-CD Detection Flag Output

- A function to output IEC61937 and DTS-CD detection flags for non-PCM data are provided.
- When bit 1 of the channel status is non-PCM data, the IEC61937 sync signal is detected and detection flag is output. If bit 1 is PCM data, detection flag is not output.
- The DTS-CD detection is compatible with "14-bit format" and it is done based on the sync pattern and the base frequency. The sync pattern is checked every 4096th frame, and the detection status is held until the sync pattern is no longer verified.
- The IEC61937 and DTS-CD detection flags can be readout with the microcontroller interface in addition to output to NPCMF by the NPSEL register. When the UNPCM register of non-PCM signal output setting is selected through the INTB output contents setting, an interrupt signal is output from INTB detecting an IEC61937 or DTS-CD sync signal. This information is used to read out the output register and identify the details of the non-PCM signal.
- The detection flags are cleared when fs changes or when a PLL lock error or data error occurs.

10.7 Calculation of digital input data sampling frequency

- The input data sampling frequency is calculated using the XIN clock.
- If the oscillation amplifier is in a continuous operation mode, calculation is repeated constantly. Even if sampling changes within the PLL capture range for input data whose channel status sampling information does not change, the calculation results that follow the input data can be read.
- In the mode where the oscillation amplifier automatically stops according to the lock status of the PLL, the input data sampling frequency is calculated during the ERRF error period and completed when the oscillation amplifier stops with holding the value. Therefore, the value remains unchanged until the PLL becomes unlocked.
- The calculation results can be readout with the microcontroller interface. (RXFSC[3:0] register readout)
- The input data sampling frequency calculation value and channel status fs information are compared and if the sampling frequency is a same deal, "1" is read from the RXFSFLG register.

11. Description of Input/Output Audio Selector

- The LC89075W-H incorporates a peripheral circuit audio selector.
- The audio selector can select the following configurations.
 - 1) 2-channel data support

(4-line input $\times 6$, 4-line output $\times 2$)

2) 6-channel data and 2-channel data support (6-line input $\times 1$, 4-line input $\times 5$, 6-line output $\times 1$) (7-line input $\times 1$, 4-line input $\times 4$, 7-line output $\times 1$)

3) 8-channel data and 2-channel data support

11.1 2-channel Data Support

(Input pins: MCKIN, BCKIN, LRCKIN, DATAIN, MPIN[4:1], MPIO[4:1], RXIN[8:5]) (Output pins: MCKOUT, BCKOUT, LRCKOUT, DATAOUT, MPOUT[4:1], MUTEB, NPCMF)

- This selector configuration can process six systems of 2-channel data. The output can use two separate systems.
- The selector output is set with the MUXMOD, SW1SEL[2:0] and SW2SEL[2:0] registers.
- Immediately after power-on, MCKOUT, BCKOUT, LRCKOUT and DATAOUT output the ADC or DIR block clocks and data according to the PLL status, and MPOUT[4:1] is set to "L" output.
- DATAOUT and MPOUT4 can be muted with the DATAMUT and MPO4MUT registers.
- The MPIN5 and MPIN6 input signals can be output from MUTEB and NPCMF with the FLGOUT register.
- DSD data I/O is also possible. However, mute processing cannot be performed for both DSD channels.

Table 11.1 Clock and Data Input/Output Configuration in 2-channel Data Selector Setting
(MCKOUT, BCKOUT, LRCKOUT, and DATAOUT output pins)

SW1SEL Register	Selector Input	Selector Output	I/O Contents
000	DIR-MCK \rightarrow	MCKOUT (13)	Master clock output
	DIR-BCK \rightarrow	BCKOUT (14)	Bit clock output
	DIR-LRCK \rightarrow	LRCKOUT (15)	LR clock output
	DIR-DATA \rightarrow	DATAOUT (16)	2ch data output
000	ADC-MCK \rightarrow	MCKOUT (13)	Master clock output
001	ADC-BCK \rightarrow	BCKOUT (14)	Bit clock output
	ADC-LRCK \rightarrow	LRCKOUT (15)	LR clock output
	ADC-DATA \rightarrow	DATAOUT (16)	2ch data output
010	MCKIN (3) \rightarrow	MCKOUT (13)	Master clock input/output
	BCKIN (4) \rightarrow	BCKOUT (14)	Bit clock input/output
	LRCKIN (5) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	DATAIN (6) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
011	MPIN1 (7) \rightarrow	MCKOUT (13)	Master clock input/output
	MPIN2 (8) \rightarrow	BCKOUT (14)	Bit clock input/output
	MPIN3 (9) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	MPIN4 (10) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
100 ("MPSEL[1:0]=01")	MPIO1 (26) \rightarrow	MCKOUT (13)	Master clock input/output
	MPIO2 (27) \rightarrow	BCKOUT (14)	Bit clock input/output
	MPIO3 (28) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	MPIO4 (29) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
101	RXIN8 (56) \rightarrow	MCKOUT (13)	Master clock input/output
	RXIN7 (57) \rightarrow	BCKOUT (14)	Bit clock input/output
	RXIN6 (58) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	RXIN5 (59) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
110	-	MCKOUT (13)	"L" output
111		BCKOUT (14)	"L" output
(Mute output)		LRCKOUT (15)	"L" output
		DATAOUT (16)	"L" output

• The format of the audio data input to DATAIN, MPIN4, MPIO4 and RXIN5 should match the ADC and DIR output data format (DAFORM register setting).

Table 11.2 Clock and Data Input/Output Configuration in 2-channel Data Selector Setting
(MPOUT1, MPOUT2, MPOUT3, and MPOUT4 output pins)

		, MPOUTS, and MPOUT			
SW2SEL Register	Selector Input	Selector Output	I/O Contents		
000	-	MPOUT1 (19)	"L" output		
(Mute output)		MPOUT2 (20)	"L" output		
		MPOUT3 (21)	"L" output		
	S/PDIF input \rightarrow	MPOUT4 (22)	Input S/PDIF select output		
001	ADC-MCK \rightarrow	MPOUT1 (19)	Master clock output		
	ADC-BCK \rightarrow	MPOUT2 (20)	Bit clock output		
	ADC-LRCK \rightarrow	MPOUT3 (21)	LR clock output		
	ADC-DATA \rightarrow	MPOUT4 (22)	2ch data output		
010	MCKIN (3) \rightarrow	MPOUT1 (19)	Master clock input/output		
	BCKIN (4) \rightarrow	MPOUT2 (20)	Bit clock input/output		
	LRCKIN (5) \rightarrow	MPOUT3 (21)	LR clock or DSD data input/output		
	DATAIN (6) \rightarrow	MPOUT4 (22)	2ch data or DSD data input/output		
011	MPIN1 (7) \rightarrow	MPOUT1 (19)	Master clock input/output		
	MPIN2 (8) \rightarrow	MPOUT2 (20)	Bit clock input/output		
	MPIN3 (9) \rightarrow	MPOUT3 (21)	LR clock or DSD data input/output		
	MPIN4 (10) \rightarrow	MPOUT4 (22)	2ch data or DSD data input/output		
100	MPIO1 (26) \rightarrow	MPOUT1 (19)	Master clock input/output		
("MPSEL[1:0]=01")	MPIO2 (27) \rightarrow	MPOUT2 (20)	Bit clock input/output		
	MPIO3 (28) \rightarrow	MPOUT3 (21)	LR clock or DSD data input/output		
	MPIO4 (29) \rightarrow	MPOUT4 (22)	2ch data or DSD data input/output		
101	RXIN8 (56) \rightarrow	MPOUT1 (19)	Master clock input/output		
	RXIN7 (57) \rightarrow	MPOUT2 (20)	Bit clock input/output		
	RXIN6 (58) \rightarrow	MPOUT3 (21)	LR clock or DSD data input/output		
	RXIN5 (59) \rightarrow	MPOUT4 (22)	2ch data or DSD data input/output		
110	For 6ch data process (See	For 6ch data process (See 11.2)			
111	For 8ch data process (See	For 8ch data process (See 11.3)			

• The format of the audio data input to DATAIN, MPIN4, MPIO4 and RXIN5 should match the ADC and DIR output data format (DAFORM register setting).

• The DIR demodulated data and clocks are not output from MPOUT[4:1].

Table 11.3 External Flag Input/Output Configuration in 2-channel Data Selector Setting (MUTEB and NPCMF output pins)

FLGOUT Register	Selector Input	Selector Output	I/O Contents
1	MPIN5 (11) \rightarrow	MUTEB (24)	Mute flag
	MPIN6 (12) \rightarrow	NPCMF (25)	Non-PCM flag
11.2 6-channel Data and 2-channel Data Support

(Input pins: MCKIN, BCKIN, LRCKIN, DATAIN, MPIN[6:1], MPIO[4:1], RXIN[8:5]) (Output pins: MCKOUT, BCKOUT, LRCKOUT, DATAOUT, MPOUT[2:1])

- This selector configuration can process one system of 6-channel data and five systems of 2-channel data.
- The selector output is set with the MUXMOD, SW1SEL[2:0] and SW2SEL[2:0] registers.
- The 2-channel data is output from DATAOUT. This output can be muted with the DATAMUT register.
- The 6-channel data is output from DATAOUT and MPOUT[2:1]. This output can be muted with the D6CHMUT register.
- The S/PDIF signal can be output from MPOUT4. This is set with the RXTHR2[3:0] register.
- DSD data I/O is also possible. However, mute processing cannot be performed for both DSD channels.

Figure 11.2 6-channel Data and 2-channel Data Support Audio Selector Configuration (Clock & Data MUX: 6-bits×1 input, 4-bits×5 inputs, 6-bits×1 output)

Table 11.4 Clock and Data Input/Output Configuration in 6-channel Data Selector Setting	5
(MCKOUT, BCKOUT, LRCKOUT, DATAOUT and MPOUT[4:1] output pins)	

SW1SEL Register	SW2SEL Register	Selector Input	Selector Output	I/O Contents
011	110	MPIN1 (7) \rightarrow	MCKOUT (13)	Master clock input/output
		MPIN2 (8) \rightarrow	BCKOUT (14)	Bit clock input/output
		MPIN3 (9) \rightarrow	LRCKOUT (15)	LR clock input/output
		MPIN4 (10) \rightarrow	DATAOUT (16)	1, 2/6ch data input/output
		MPIN5 (11) \rightarrow	MPOUT1 (19)	3, 4/6ch data input/output
		MPIN6 (12) \rightarrow	MPOUT2 (20)	5, 6/6ch data input/output
		-	MPOUT3 (21)	"L" output
		S/PDIF input \rightarrow	MPOUT4 (22)	Input S/PDIF select output

- The format of the audio data input to MPIN4, MPIN5 and MPIN6 should match the ADC and DIR output data format (DAFORM register setting).
- In the 6-channel data selector configuration, MPOUT3 is fixed to "L" output and the MPOUT4 output is subject to the RXTHR2 register setting.

SW1SEL Register	Selector Input	Selector Output	I/O Contents
000	DIR-MCK \rightarrow	MCKOUT (13)	Master clock output
	DIR-BCK \rightarrow	BCKOUT (14)	Bit clock output
	DIR-LRCK \rightarrow	LRCKOUT (15)	LR clock output
	DIR-DATA \rightarrow	DATAOUT (16)	2ch data output
000	ADC-MCK \rightarrow	MCKOUT (13)	Master clock output
001	ADC-BCK \rightarrow	BCKOUT (14)	Bit clock output
	ADC-LRCK \rightarrow	LRCKOUT (15)	LR clock output
	ADC-DATA \rightarrow	DATAOUT (16)	2ch data output
010	MCKIN (3) \rightarrow	MCKOUT (13)	Master clock input/output
	BCKIN (4) \rightarrow	BCKOUT (14)	Bit clock input/output
	LRCKIN (5) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	DATAIN (6) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
100	MPIO1 (26) \rightarrow	MCKOUT (13)	Master clock input/output
("MPSEL[1:0]=01")	MPIO2 (27) \rightarrow	BCKOUT (14)	Bit clock input/output
	MPIO3 (28) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	MPIO4 (29) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
101	RXIN8 (56) \rightarrow	MCKOUT (13)	Master clock input/output
	RXIN7 (57) \rightarrow	BCKOUT (14)	Bit clock input/output
	RXIN6 (58) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	RXIN5 (59) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
110		MCKOUT (13)	"L" output
111		BCKOUT (14)	"L" output
(Mute output)		LRCKOUT (15)	"L" output
		DATAOUT (16)	"L" output

Table 11.5 Clock and Data Input/Output Configuration When Switching from 6-channel to 2-channel (MCKOUT, BCKOUT, LRCKOUT, and DATAOUT output pins)

• The format of the audio data input to DATAIN, MPIO4 and RXIN5 should match the ADC and DIR output data format (DAFORM register setting).

11.3 8-channel Data and 2-channel Data Support

(Input pins: MCKIN, BCKIN, LRCKIN, DATAIN, MPIN[3:1], MPIN[6:4], MPIO[4:1], RXIN[8:5]) (Output pins: MCKOUT, BCKOUT, LRCKOUT, DATAOUT, MPOUT[4:1], ERRF, MUTEB, NPCMF)

- This selector configuration can process one system of 8-channel data and four systems of 2-channel data.
- The selector output is set with the MUXMOD, SW1SEL[2:0] and SW2SEL[2:0] registers.
- The 2-channel data is output from DATAOUT. This output can be muted with the DATAMUT register.
- The 8-channel data is output from DATAOUT and MPOUT[3:1]. This output can be muted with the D8CHMUT register.
- The S/PDIF signal can be output from MPOUT4. This is set with the RXTHR2[3:0] register.
- ERRF, MUTEB and NPCMF can output the MPIN4, MPIN5 and MPIN6 input signals according to the FLGERR and FLGOUT register settings.
- DSD data I/O is also possible. However, mute processing cannot be performed for both DSD channels.

Figure 11.3 8-channel Data and 2-channel Data Support Audio Selector Configuration (Clock & Data MUX: 7-bits×1 input, 4-bits×4 inputs, 7-bits×1 output)

• In the 8-channel data selector configuration, the MPOUT4 output is subject to the RXTHR2 register setting.

Table 11.6 Clock and Data Input/Output Configuration in 8-channel Data Selector Setting
(MCKOUT, BCKOUT, LRCKOUT, DATAOUT, and MPOUT[4:1] output pins)

SW1SEL Register	SW2SEL Register	Selector Input	Selector Output	I/O Contents		
010	111	MCKIN (3) \rightarrow	MCKOUT (13)	Master clock input/output		
		BCKIN (4) \rightarrow	BCKOUT (14)	Bit clock input/output		
	LRCKIN (5)		$CKIN\ (5) \rightarrow \qquad LRCKOUT\ (15) \qquad LR\ clock\ input/output$			
		DATAIN (6) \rightarrow	DATAOUT (16)	1, 2/8ch data input/output		
		MPIN1 (7) \rightarrow	MPOUT1 (19)	3, 4/8ch data input/output		
		MPIN2 (8) \rightarrow	MPOUT2 (20)	5, 6/8ch data input/output		
		MPIN3 (9) \rightarrow	MPOUT3 (21)	7, 8/8ch data input/output		
		S/PDIF input \rightarrow	MPOUT4 (22)	Input S/PDIF select output		

• The format of the audio data input to DATAIN, MPIN1, MPIN2 and MPIN3 should match the ADC and DIR output data format (DAFORM register setting).

Table 11.7 Clock and Data Input/Output Configuration When Switching from 8-channel to 2-channel (MCKOUT, BCKOUT, LRCKOUT, and DATAOUT output pins)

SW1SEL	Selector Input	Selector Output	I/O Contents
Register	Selector Input	Selector Output	1/O Contents
000	DIR-MCK \rightarrow	MCKOUT (13)	Master clock output
	DIR-BCK \rightarrow	BCKOUT (14)	Bit clock output
	$DIR ext{-LRCK} \rightarrow$	LRCKOUT (15)	LR clock output
	$DIR ext{-}DATA o$	DATAOUT (16)	2ch data output
000	ADC-MCK \rightarrow	MCKOUT (13)	Master clock output
001	ADC-BCK \rightarrow	BCKOUT (14)	Bit clock output
	ADC-LRCK \rightarrow	LRCKOUT (15)	LR clock output
	ADC-DATA \rightarrow	DATAOUT (16)	2ch data output
100	MPIO1 (26) \rightarrow	MCKOUT (13)	Master clock input/output
("MPSEL[1:0]=01")	MPIO2 (27) \rightarrow	BCKOUT (14)	Bit clock input/output
	MPIO3 (28) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	MPIO4 (29) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
101	RXIN8 (56) \rightarrow	MCKOUT (13)	Master clock input/output
	RXIN7 (57) \rightarrow	BCKOUT (14)	Bit clock input/output
	RXIN6 (58) \rightarrow	LRCKOUT (15)	LR clock or DSD data input/output
	RXIN5 (59) \rightarrow	DATAOUT (16)	2ch data or DSD data input/output
110	-	MCKOUT (13)	"L" output
111		BCKOUT (14)	"L" output
(Mute output)		LRCKOUT (15)	"L" output
		DATAOUT (16)	"L" output

 Table 11.8 External Flag Input/Output Configuration in 8-channel Data Selector Setting (ERRF, MUTEB, and NPCMF output pins)

FLGERR Register	FLGOUT Register	Selector Input	Selector Output	I/O Contents
1	×	MPIN4 (10) \rightarrow	ERRF (23)	Error flag
×	1	MPIN5 (11) \rightarrow	MUTEB (24)	Mute flag
		MPIN6 (12) \rightarrow	NPCMF (25)	Non-PCM flag

- The initial status of each ERRF, MUTEB and NPCMF output is shown below.
- When the polarities differ from the externally supplied signals, the polarities can be changed with the MPIN4P, MPIN5P and MPIN6P registers or the DIRERRP, DIRMUTP and DIRPCMP registers.

	Tuble 11.11 Initial Search Sounds of the Erkiki, Wo TED, and Wi Shiput Tins									
Output	ERRF Pin	MUTEB Pin	NPCMF Pin							
Output	"DIRERRP=0"	"DIRMUTP=0"	"DIRPCMP=0"							
"L"	PLL lock error cancelled	Output data mute processing	PCM data output							
"Н"	PLL unlock state	Data output	Non-PCM data output							

Table 11.11 Initial Setting Status of the ERRF, MUTEB, and NPCMF Output Pins

11.4 Clock and Data Switching and Mute Process

- Selector switching with the SW1SEL[2:0] and SW2SEL[2:0] registers is normally processed immediately after these registers are set, but this switching can be synchronized to LRCKOUT with the MUXMOD register. However, note that in this case the switching process cannot be performed when LRCKOUT is not output. In addition, the LR clock is not input in systems that handle DSD data, so the MUXMOD register must not be used with these systems.
- Output data mute is set with the DATAMUT, D6CHMUT and D8CHMUT registers. When these mute-setting registers are set, MUTEB is muted with the MUTREF register. However, at the initial setting, the DATAMUT, D6CHMUT and D8CHMUT register settings are not reflected. However, mute processing cannot be performed for both DSD channels.
- MUTEB is output according to changing DIR and ADC blocks. Therefore, when the selector is used, MUTEB is changed according to the state of DIR and ADC. To process the mute with MUTEB when the selector is used, the signal output to MUTEB is changed to MPIN5. However, when MPIN[6:1] is used for clock and 6ch data input, the mute signal cannot be output from MUTEB.

12. Digital Audio Data Detection

- In addition to analog audio data detection, the LC89075W-H can also detect the existence of digital audio data (2channel data only) that are output from DATAOUT. It is set by DSTASEL register. ("DSTASEL=1")
- The DATAOUT audio data detection process differs for PCM data and non-PCM data. The data is delimited by the channel status bit 1 information, the DTS-CD non-PCM detection flag, and also the MPIN6 input signal when "FLGOUT=1" is set. The 'Sound' or 'Silence' detection can be selected with the SDMODE register.
- The 'Sound' or 'Silence' detection for PCM data is the same as that for analog audio data. The judgment levels are set with the YLEVEL[3:0] and NLEVEL[3:0] registers. The output data format conforms to the UDFORM register. The detection results are output from the DSTATE pin and the ODATAM register.
- The 'Sound' or 'Silence' detection for non-PCM data is judged by whether the mute status (0 data) is established. The 'Silence' is detected when all 24-bit of channel data are 0 data, and the 'Sound' is detected in all other cases. When performing detection for non-PCM data, the YLEVEL[3:0] and NLEVEL[3:0] register settings are not reflected.
- The DSTATE output is delayed by 1/2 frame relative to the DATAOUT output data. Moreover, the audio data detection doesn't operate when the output clock selected with SW1SEL[2:0] register has stopped. At this time, DSTATE is continuously output the result before and becomes wrong information. Therefore, do not select the source without the clock supply.
- The digital audio data detection does not support DSD data. Note that when "DSTASEL=1" is set and DSD data is output, DSTATE outputs incorrect results.

13. Microcontroller Register Output (Expanded Output)

- The serial data input from the microcontroller interface is converted to parallel data and output from MPIO[4:1] pins. This function operates when "MPSEL[1:0]=00" and "MPSTA[1:0]=11" are set.
- Set the data to be output to MPIO[4:1] pins in the PI[3:0] register (address 03h).
- The data written to the PI[3:0] register is output to MPIO[4:1] pins.

[•] The format of the audio data input to DATAIN, MPIN[3:1], MPIN[6:4] and MPIO4 is subject to the DAFORM register setting. The initial value is I²S output format.

14. Microcontroller Interface (CSB, SCK, SI, SO, INTB)

- The LC89075W-H is controlled via SPI (Serial Peripheral Interface, Modes 0 & 3).
- This interface consists of CSB: chip select, SCK: serial clock input, SI: data input, and SO: data output.
- SI consists of read/write (R/W), "0" data (2 bits), register address (A[4:0]), and control data (8 bits × n, [MSB:LSB]). R/W is written when "0", or read when "1".
- SI has to set to "L" input when turning the power on.

- Data read is performed by R/W=1 and the data is output from SO after the register address is set.
- SO outputs high impedance when R/W=0 or when CSB is "H".
- The LC89075W-H incorporates an address counter, and is controlled in the current address access mode that performs read/write while automatically incrementing the address, or in the random address access mode that reads/writes the data for an arbitrary address.

14.1 Current Address Access Mode

- This mode holds the A[4:0] address value in the address counter for both read and write, and increments the address value by "+1" at the timing when D0 is loaded to the register. D[7:0] data write is executed at this same timing, and data write is performed in byte units thereafter (at the timing indicated by ↑ in Fig. 14.2).
- The increment function is executed while CSB is "L", but when the write address exceeds 0Eh or the read address exceeds 17h, write stops and "0" data is output as the read data.

14.2 Random Address Access Mode

- Random address access mode reads and writes the data for an arbitrary address.
- A single address is processed for each command.
- The write data is loaded at the rising edge of the SCK immediately prior to the rising edge of CSB.
- A total of two bytes of address and data are executed for each input command, but when the SCK serial clock is input for 3 bytes or more, write is executed in the same manner as the previously described current address access mode. Note that in this case, the address is incremented and data is rewritten.
- Eight bits of data are read after the address setting for each output command. Like the input command, when SCK input continues while CSB is "L", read is executed in the same manner as current address access mode.

Figure 14.4 Random Address Access Mode Input Timing Diagram

Figure 14.5 Random Address Access Mode Output Timing Diagram

14.3 Interrupt Output (INTB)

- Interrupts are output when a change has occurred in the PLL locked status or the output data information, etc.
- Interrupt output consists of the register for selecting the interrupt source, the INTB that outputs the state transition, and the registers that store the interrupt source data.
- When "INTBP=1" (initial value), INTB outputs "L" upon occurrence of an interrupt while "H" is output. Following this "L" output, INTB is cleared when the interrupt source output register is read, and returns to "H" output.
- The interrupt sources can be selected from among the following items. Multiple sources can be selected at the same time with the contents of address 0Eh. INTB outputs the OR calculation result of the selected interrupt sources.

INTB output = (Selected source 1) + (Selected source 2) + \cdots + (Selected source n)

No.	Address 0Eh		Description				
1	D0	ERROR	Output when ERRF pin status has changed.				
2	2 D1 FSCHG		Output when input fs calculation result has changed.				
3	D2 CSRNW		D2 CSRNW Output when channel status data of the first 40 bits has been updated.				
4	D3	UNPCM	Output when NPCMF pin status has changed.				
5	D4	PCRNW	Output when burst preamble Pc has been updated.				
6	D5	EMPHA	Output when emphasis information has changed.				
7	D7	DATAM	Output when DSTATE pin status has changed.				

Table 14.1 Interrupt Source Setting Contents

- The contents of the set interrupt sources are written in address 0Fh when the source occurs. However, when the contents of source items 1, 4 and 7 are read, the ERRF, NPCMF and DSTATE pin statuses are output, respectively.
- Source item 2 uses the oscillator amplifier clock, so when monitoring source item 2 even while the PLL is locked, the oscillation amplifier must be set to the continuous operation mode.
- INTB outputs "L" when a source occurs, and is cleared ("H") immediately after address 0Fh read is set.
- INTB is not cleared other than when the reset process is performed with XMODE or the address 0Fh is set.

Figure 14.6 INTB Output Timing Example (when "INTBP=0")

14.4 Registers

14.4.1 Register Map

		-	-	Ta	able 14.2 Re	gister Map				
Setting Item	R/W	Adr	D7	D6	D5	D4	D3	D2	D1	D0
System	R/W	00h	0	DIROPR	ADCOPR1	ADCOPR0	AMPOPR1	AMPOPR0	DAFORM	SYSRST
	R/W	01h	RXCKMU	INTBP	MCKOUTP	DSTATEP	0	0	DSTASEL	SDMODE
	R/W	02h	NPSEL	RX3ASEL	RX2ASEL	RX1ASEL	XMSEL1	XMSEL0	XINSEL1	XINSEL0
	R/W	03h	PI3	Pl2	PI1	PI0	MPSTA1	MPSTA0	MPSEL1	MPSEL0
	R/W	04h	0	MPIN6P	MPIN5P	MPIN4P	0	DIRPCMP	DIRMUTP	DIRERRP
Selector	R/W	05h	0	OUTMUT	MUXMOD	MUTREF	MPO4MUT	D8CHMUT	D6CHMUT	DATAMUT
	R/W	06h	FLGOUT	SW2SEL2	SW2SEL1	SW2SEL0	FLGERR	SW1SEL2	SW1SEL1	SW1SEL0
	R/W	07h	NLEVEL3	NLEVEL2	NLEVEL1	NLEVEL0	YLEVEL3	YLEVEL2	YLEVEL1	YLEVEL0
ADC	R/W	08h	ADBMOD	ADPGA2	ADPGA1	ADPGA0	ADSMUTE	ADFDSP2	ADFDSP1	ADFDSP0
	R/W	09h	ADVOL7	ADVOL6	ADVOL5	ADVOL4	ADVOL3	ADVOL2	ADVOL1	ADVOL0
DIR	R/W	0Ah	RXCKWT1	RXCKWT0	RXMCK1	RXMCK0	RXCKDV1	RXCKDV0	0	RXCKAT
	R/W	0Bh	RXDSEL3	RXDSEL2	RXDSEL1	RXDSEL0	RXTHR13	RXTHR12	RXTHR11	RXTHR10
	R/W	0Ch	0	0	0	0	RXTHR23	RXTHR22	RXTHR21	RXTHR20
	R/W	0Dh	RXERWT1	RXERWT0	RXLIM1	RXLIM0	RXREFSJ	RXRESTA	RXREDER	RXRESEL
	R/W	0Eh	DATAM	0	EMPHA	PCRNW	UNPCM	CSRNW	FSCHG	ERROR
	R	0Fh	ODATAM	0	OEMPHA	OPCRNW	OUNPCM	OCSRNW	OFSCHG	OERROR
	R	10h	RXDTSES	RXDTS51	RX61937	RXFSFLG	RXFSC3	RXFSC2	RXFSC1	RXFSC0
	R	11h	RXCS7	RXCS6	RXCS5	RXCS4	RXCS3	RXCS2	RXCS1	RXCS0
	R	12h	RXCS15	RXCS14	RXCS13	RXCS12	RXCS11	RXCS10	RXCS9	RXCS8
	R	13h	RXCS23	RXCS22	RXCS21	RXCS20	RXCS19	RXCS18	RXCS17	RXCS16
	R	14h	RXCS31	RXCS30	RXCS29	RXCS28	RXCS27	RXCS26	RXCS25	RXCS24
	R	15h	RXCS39	RXCS38	RXCS37	RXCS36	RXCS35	RXCS34	RXCS33	RXCS32
	R	16h	RXPC7	RXPC6	RXPC5	RXPC4	RXPC3	RXPC2	RXPC1	RXPC0
	R	17h	RXPC15	RXPC14	RXPC13	RXPC12	RXPC11	RXPC10	RXPC9	RXPC8

Table 14.2 Register Map

• "0" is a reserved bit. Always must be set to "0".

14.4.2 Details of Registers

Address.	00h; Systen	Satting	(Satting of	Various	Functions)
Address.	Juli, System	1 Setting	(Setting of	various	runctions)

00h	D7	D6	D5	D4	D3	D2	D1	D0
Register name	0	DIROPR	ADCOPR1	ADCOPR0	AMPOPR1	AMPOPR0	DAFORM	SYSRST
Initial value	0	0	0	0	0	0	0	0
Setting	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SYSRST	System reset	t
	0:	Don't reset. (initial value)
	1:	Reset all circuits other than registers.
DAFORM	ADC and D	R audio data output format setting
	0:	I ² S data output (initial value)
	1:	24-bit MSB first, left-justified data output
	0 11	

AMPOPR[1:0] Oscillation amplifier operation setting

- 00: Continuous operation (initial value)
- 01: Stop automatically when the PLL is locked. Operate when the PLL is unlocked.
- 10: Reserved
- 11: Stop

ADCOPR[1:0] ADC operation setting

- 00: Reset stop when the PLL is locked. Operate when the PLL is unlocked (initial value).
- 01: Reserved
- 10: Low sampling rate operation (when "SDMODE=1")
- 11: Power down stop

DIROPR DIR operation setting

- 0: Continuous operation (initial value)
- 1: Stop
- When "SYSRST=1" is set, the register settings are held and the circuits other than the registers are reset. However, the output clocks do not stop and the XIN clock is output.
- When either "SW1SEL[2:0]=001" or "SW2SEL[2:0]=001" is set, the oscillation amplifier is set to the continuous operation mode regardless of the "AMPOPR[1:0]" setting. However, when "AMPOPR[1:0]=11" is set, it is excluded.
- When "MPSEL[1:0]=10 or 11" is set or "SW1SEL[2:0]=001" and "SW2SEL[2:0]=001" are set, the ADC is set to the continuous operation mode regardless of the PLL status or the "AMPOPR[1:0]" setting.
- The ADC low sampling rate operation mode performs analog to digital conversion at 6kHz, and is set during analog audio data 'Sound' detection. The condition (required) for this mode is that "ADCOPR[1:0]=10" and "SDMODE=1" are set.
- When "DIROPR=1" is set while the PLL is locked, this setting is executed after the clock source is switched to XIN.

01h	D7	D6	D5	D4	D3	D2	D1	D0				
Register name	RXCKMU	INTBP	MCKOUTP	DSTATEP	0	0	DSTASEL	SDMODE				
Initial value	0	0	0	0	0	0	0	0				
Setting	R/W	R/W	R/W	R/W	R	R	R/W	R/W				
SDMODE	Digital dat	a detection s	setting									
	0: Detect 'Silence' (initial value).											
	1			,								
DSTASEL	DSTATE 1	oin output se	etting									
~	-	0: Output the result of 'Sound' or 'Silence' detection processing performed on the analog										
	audio data (initial value).											
	1: Output the result of 'Sound' or 'Silence' detection processing performed on the digital audio data selected by the SW1SEL[2:0] register.											
		audio dat	a selected by	the SW1SEI	[2:0] registe	er.						
DSTATEP	DSTATE pin output polarity setting											
	0: Output "L" when reset or 'Silence' is detected. Output "H" when 'Sound' is detected											
	(initial value).1: Output "H" when reset or 'Silence' is detected. Output "L" when 'Sound' is detected.											
	1	: Output "	H" when rese	et or 'Silence'	is detected.	Output "L" v	when 'Sound'	is detected				
MCKOUTP	MCKOUT pin output polarity setting											
	0: Output master clock to MCKOUT (initial value).											
	1	1: Invert the mater clock and output to MCKOUT.										
INTBP	INTB pin output polarity setting											
	0	: "H": No	interrupt sour	ce present, "l	L": Interrupt	source prese	nt (initial valu	ie)				
	1	 0: "H": No interrupt source present, "L": Interrupt source present (initial value) 1: "L": No interrupt source present, "H": Interrupt source present 										
RXCKMU	RXMCK[1	:0] register	setting when	RXCKAT is	set to 1							
	0					PLL is locke	d (initial valu	e).				
	 0: RXMCK[1:0] register can not be changed after PLL is locked (initial value). 1: RXMCK[1:0] register can be changed at any time. 											

- The 'Sound' and 'Silence' judgment levels can be adjusted separately with the SDMODE register and the YLEVEL[3:0] and NLEVEL[3:0] registers that set the detection level.
- When "DSTASEL=1" and analog audio data is selected (when "SW1SEL[2:0]=000" and the PLL is unlocked, or when "SW1SEL[2:0]=001"), the 'Sound' and 'Silence' detection is performed on the data before passing through the ADC output volume. In addition, when the non-PCM data flag is output from NPCMF, the judgment levels set by YLEVEL[2:0] and NLEVEL[2:0] are ignored, and 0 data detection is executed. When all 24-bit of data of each channel are "0", this is judged to be 'Silence' status, and "L" is output from DSTATE. Note that digital audio data 'Sound' and 'Silence' detection is not performed on the MPOUT[4:1] output (SW2SEL[2:0] register setting).
- Note that the detector circuit doesn't operate when the clock that is set "DSTASEL=1" and is selected by SW1SEL 2:0 register is not output from MCKOUT, BCKOUT, and LRCKOUT pins. Therefore, the DSTATE is not changed from the result before.

02h	D7	D6	D5	D4	D3	D2	D1	D0
0211	Di	D0	DJ	D4	D3	DZ		D0
Register name	NPSEL	RX3ASEL	RX2ASEL	RX1ASEL	XMSEL1	XMSEL0	XINSEL1	XINSEL0
Initial value	0	0	0	0	0	0	0	0
Setting	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 02h; System Setting (I/O Pin Setting 1)

XINSEL[1:0] Setting of the XIN pin input clock frequency, ADC control clock, and the output clock to be used when the ADC is selected.

00:	XIN pin input clock =	12.288MHz (init	ial value)	
	ADC master clock:	12.288MHz	MCKOUT output clock:	12.288MHz
	ADC bit clock:	3.072MHz	BCKOUT output clock:	3.072MHz
	ADC channel clock:	48kHz	LRCKOUT output clock:	48kHz
01:	XIN pin input clock = 2	24.576MHz		
	ADC master clock:	12.288MHz	MCKOUT output clock:	12.288MHz
	ADC bit clock:	3.072MHz	BCKOUT output clock:	3.072MHz
	ADC channel clock:	48kHz	LRCKOUT output clock:	48kHz
10:	XIN pin input clock = 2	24.576MHz	-	
	ADC master clock:	12.288MHz	MCKOUT output clock:	24.576MHz
	ADC bit clock:	3.072MHz	BCKOUT output clock:	3.072MHz
	ADC channel clock:	48kHz	LRCKOUT output clock:	48kHz
11:	XIN pin input clock = 2	24.576MHz	-	
	ADC master clock:	24.576MHz	MCKOUT output clock:	24.576MHz
	ADC bit clock:	6.144MHz	BCKOUT output clock:	6.144MHz
	ADC channel clock:	96kHz	LRCKOUT output clock:	96kHz

XMSEL[1:0] XMCK pin output setting

00:	1/1 of XIN	pin input	frequency	output	(initial	value)
-----	------------	-----------	-----------	--------	----------	--------

- 01: 1/2 of XIN pin input frequency output
- 10: 1/4 of XIN pin input frequency output
- 11: "L" output

RX1ASEL RXIN1A input function setting

- 0: TTL input level compatible input (initial value)
- 1: Coaxial input level compatible input

RX2ASEL RXIN2A input function setting

- 0: TTL input level compatible input (initial value)
- 1: Coaxial input level compatible input

RX3ASEL RXIN3A input function setting

- 0: TTL input level supported input (initial value)
- 1: Coaxial input level compatible input

NPSEL NPCMF pin output contents setting

- 0: Output only channel status, bit 1 (initial value).
- 1: Output channel status, bit 1, IEC61937, and DTS-CD detection flag.

	D7	D6	D5	D4	D3	D2	D1	D0				
Register name	PI3	Pl2	Pl1	PI0	MPSTA1	MPSTA0	MPSEL1	MPSEL0				
Initial value	0	0	0	0	0	0	0	0				
Setting	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
MPSEL[1:0]	MPIO[4:1]	oin I/O setting										
	00: All of the MPIO[4:1] pins are subject to the MPSTA[1:0] register setting (initial value).											
	01:	All MPIO[4	1:1] pins are	input.								
	10:	ADC slave	mode 512fs	clock input (See 9.2.3, "S	lave mode.")						
	11:	ADC slave	mode 256fs	clock input (See 9.2.3, "S	lave mode.")						
MPSTA[1:0]	MPIO[4:1]	oin output set	ting when "N	MPSEL[1:0]=	=00" is set							
	00: MPIO1: Hi-Z output (initial value)											
		MPIO2: Hi	-Z output									
		MPIO3: Hi	-Z output									
		MPIO4: Hi	Z output									
	01:	MPIO1: Ch	annel status,	bit 1 output								
		MPIO2: Ch	annel status,	copy bit out	put							
		MPIO3: Channel status, pre-emphasis information output										
	MPIO4: Channel status, L-bit output											
	10:	MPIO1: PI		1								
		MPIO2: PI	-									
		MPIO3: PI2 output										
	MPIO4: PI3 output											
	11:	MPIO1: "L	-									
	11.	MPIO2: "L	-									
		MPIO3: "L	-									
		MPIO4: "L	-									
PI0	MPIO1 outp	out setting wh	en "MPSEL	[1:0]=00" an	d "MPSTA[]	1:0]=10"						
	0:	"L" output	(initial value)								
	1:	"H" output										
PI1	-	out setting wh			d "MPSTA[1:0]=10"						
		0: "L" output (initial value)										
	1:	"H" output										
PI2	-	out setting wh			d "MPSTA[1:0]=10"						
		"L" output	(initial value)								
	1:	"H" output										
PI3	MPIO4 outp	out setting wh	en "MPSEL	[1:0]=00" an	d "MPSTA[1:0]=10"						
	0:	"L" output	(initial value)								
		-										
		1										
Switching to th	e MPIO[4:1]	input setting	"MPSEL[1:	0]=01") mus	t be performe	ed from the N	1PIO[4:1] hi	eh				

Address: 03h; System Setting (I/O Pin Setting 2)

• MPSTA[1:0] can be set only when "MPSEL[1:0]=00" is set.

0.41	D7			etting (Outpu			D4	Da		
04h	D7	D6	D5	D4	D3	D2	D1	D0		
Register name	0	MPIN6P	MPIN5P	MPIN4P	0	DIRPCMP	DIRMUTP	DIRERRP		
Initial value	0	0	0	0	0	0	0	0		
Setting	R	R/W	R/W	R/W	R	R/W	R/W	R/W		
DIRERRP	•	-	-		-	e DIR error fla l (initial value	-	RF pin		
	1	: "L": PLL	lock error, "	H": PLL lock	error cance	1				
DIRMUTP	MUTEB p	in	-			ing the DIR/A	ADC mute s	ignal to the		
	0: "H": Data output state, "L": Data mute state (initial value)									
	1: "L": Data output state, "H": Data mute state									
DIRPCMP	Polarity setting of the data type signal to be used when sending the DIR data type signal to the NPCMF pin									
	0: "L": PCM data, "H": Non-PCM data (initial value)									
	1	: "H": PCN	M data, "L": 1	Non-PCM dat	a					
MPIN4P	Polarity setting of MPIN4 to be used when sending the MPIN4 pin input signal to the ERRF pin (when "FLGERR=1" is set)									
	0: The MPIN4 input signal is output directly (initial value).									
	1: The MPIN4 input signal is inverted and output.									
MPIN5P	•	etting of MP LGOUT=1" i		ed when send	ing the MPI	N5 pin input s	signal to the	MUTEB pin		
	0	0: The MPIN5 input signal is output directly (initial value).								
	1: The MPIN5 input signal is inverted and output.									
MPIN6P	•	tting of MPI GOUT=1" i		d when sendi	ng the MPIN	6 pin input si	gnal to the N	PCMF pin		
	0	: The MPI	N6 input sigr	al is output d	irectly (initia	al value).				
	1	. The MDI	N6 input sign	1 • • • • • •	1					

Address: 04h: System Setting (Output Pin Polarity Setting)

Adjust the MPIN4, MPIN5 and MPIN6 input signals with the MPIN4P, MPIN5P and MPIN6P registers so that the signals output from ERRF, MUTEB and NPCMF match the DIRERRP, DIRMUTP and DIRPCMP register conditions.
Non-PCM data is data detected according to the NPSEL register setting.

Setting	0 0 R DATAOU	OUTMUT 0 R/W	MUXMOD 0	MUTREF	MPO4MUT	D8CHMUT	DOOLINALIT	DATAMUT			
U	R		0			200	D6CHMUT	DATAMUT			
Setting DATAMUT		R/W		0	0	0	0	0			
DATAMUT	DATAOU		R/W	R/W	R/W	R/W	R/W	R/W			
	0	: Data outp	setting (2ch out (initial va "output	-	upported)						
D6CHMUT	DATAOU	τ μροιιτί	and MPOL	T2 nin outpu	t setting (6ch	data output s	upported)				
Docimie	DATAOUT, MPOUT1, and MPOUT2 pin output setting (6ch data output supported)0: Data output (initial value)										
		: Mute, "L		iuc)							
	1		ouipui								
D8CHMUT	DATAOU	T, MPOUTI	, MPOUT2,	and MPOUT	3 pin output s	setting (8ch da	ata output sup	ported)			
	0	: Data outp	out (initial va	lue)							
	1	: Mute, "L	" output								
MPO4MUT	MPOUT4 pin output setting										
	0	-	out (initial va	lue)							
	1	: Mute, "L	"output								
MUTREF	MUTEB pin output setting										
	0: The DATAMUT register is not reflected to MUTEB (initial value).										
	 Place MUTEB in mute state when "DATAMUT=1" is set. 										
					COLIT						
MUXMOD	SW1SEL[2:0], FLGERR, SW2SEL[2:0], and FLGOUT register switching timing setting										
	0: Processed immediately after register is switched (initial value)1: Processed in sync with LRCKOUT										
	1	. 11000350	a ili syne witi	ILICIOUI							
OUTMUT	MCKOUT	, BCKOUT,	LRCKOUT,	and DATAC	OUT pins outp	out setting (Po	ower save ope	eration			
		hen 'Sound'	,								
			d data output	(initial value	2)						
	1	: Mute, "L	" output								

- The MUTREF register setting outputs the data mute status in accordance with the DIRMUTP register setting.
- The D6CHMUT and D8CHMUT registers are not reflected to MUTEB.
- When "MUXMOD=1", the SW1SEL[2:0], FLGERR, SW2SEL[2:0] and FLGOUT registers are switched at the rising edge of the LRCKOUT output. Note that the MUXMOD register must not be used when LR clock select the source without the LRCKOUT clock output or when DSD data is input, there is no LR clock input, to avoid the possibility of errors in operation.
- OUTMUT register is set, when the 'Sound' detection of analog or digital audio data is executed with low current consumption.

06h	D7	D6	D5	D4	D3	D2	D1	D0
Register name	FLGOUT	SW2SEL2	SW2SEL1	SW2SEL0	FLGERR	SW1SEL2	SW1SEL1	SW1SEL0
Initial value	0	0	0	0	0	0	0	0
Setting	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 06h; Selector Setting (Output Signal Setting)

SW1SEL[2:0] MCKOUT, BCKOUT, LRCKOUT, and DATAOUT output setting

000:	ADC/DIR automatically selected output setting (initial value)
	When PLL is unlocked: When ADC master mode clocks are set
	MCKOUT: ADC master clock output
	BCKOUT: ADC bit clock output
	LRCKOUT: ADC channel clock output
	DATAOUT: ADC audio data output
	When PLL is unlocked: When ADC slave mode clocks are set
	MCKOUT: MPIO1 pin input master clock output
	BCKOUT: MPIO2 pin input bit clock output
	LRCKOUT: MPIO3 pin input channel clock output
	DATAOUT: ADC audio data output
	When PLL is locked: DIR output
	MCKOUT: DIR master clock output
	BCKOUT: DIR bit clock output
	LRCKOUT: DIR channel clock output
	DATAOUT: DIR audio data output
001:	ADC output (master mode/slave mode)
	MCKOUT: ADC master/MPIO1 pin input clock output
	BCKOUT: ADC bit/MPIO2 pin input clock output
	LRCKOUT: ADC channel/MPIO3 pin input clock output
	DATAOUT: ADC audio data output
010:	MCKIN, BCKIN, LRCKIN, and DATAIN pin input signal output (2ch/8ch data supported)
	MCKOUT: MCKIN pin input master clock output
	BCKOUT: BCKIN pin input bit clock output
	LRCKOUT: LRCKIN pin input channel clock output
	DATAOUT: DATAIN pin input 2ch/8ch supported audio data output
011:	MPIN[4:1] pin input signal output (2ch/6ch data supported)
	MCKOUT: MPIN1 pin input master clock output
	BCKOUT: MPIN2 pin input bit clock output
	LRCKOUT: MPIN3 pin input channel clock output
	DATAOUT: MPIN4 pin input 2ch/6ch supported audio data output
100:	MPIO[4:1] pin input signal output ("MPSEL[1:0]=01" setting)
	MCKOUT: MPIO1 pin input master clock output
	BCKOUT: MPIO2 pin input bit clock output
	LRCKOUT: MPIO3 pin input channel clock output
	DATAOUT: MPIO4 pin input 2ch supported audio data output
101:	RXIN[8:5] pin input signal output
	MCKOUT: RXIN8 pin input master clock output
	BCKOUT: RXIN7 pin input bit clock output
	LRCKOUT: RXIN6 pin input channel clock output
	DATAOUT: RXIN5 pin input 2ch supported audio data output

Continued on next page.

Continued from prece	ding page.	
SW1SEL[2:0]	110:	"L" output (OUTMUT register must be used 'Sound' detection when operates with low
		current consumption setting)
		MCKOUT: "L" output ("H" output when "MCKOUTP=1" is set)
		BCKOUT: "L" output
		LRCKOUT: "L" output
		DATAOUT: "L" output
	111:	"L" output (OUTMUT register must be used 'Sound' detection when operates with low
		current consumption setting)
		MCKOUT: "L" output ("H" output when "MCKOUTP=1" is set)
		BCKOUT: "L" output
		LRCKOUT: "L" output
		DATAOUT: "L" output
FLGERR	ERRF outpu	t setting
	-	Output according to the RXRESEL, RXREDER, and RXRESTA register settings
		(initial value).
	1:	The MPIN4 pin input signal is output (polarity can be inverted using the MPIN4P
		register)
SW2SEL[2:0]	ΜΡΟΙΙΤΓΛ·1	loutput setting
5 W 25LL[2.0]	-	"L" output (initial value)
		MPOUT1: "L" output
		MPOUT2: "L" output
		MPOUT3: "L" output
		MPOUT4: S/PDIF output (initial value is "L", subject to RXTHR2[3:0] register)
	001:	ADC output (master mode/slave mode)
		MPOUT1: ADC master/MPIO1 pin input clock output
		MPOUT2: ADC bit/MPIO2 pin input clock output
		MPOUT3: ADC channel/MPIO3 pin input clock output
		MPOUT4: ADC audio data output
	010:	MCKIN, BCKIN, LRCKIN, and DATAIN pin input signal output (2ch data supported)
		MPOUT1: MCKIN pin input master clock output
		MPOUT2: BCKIN pin input bit clock output
		MPOUT3: LRCKIN pin input channel clock output
		MPOUT4: DATAIN pin input 2ch supported audio data output
	011:	MPIN[4:1] pin input signal output (2ch data supported)
		MPOUT1: MPIN1 pin input master clock output
		MPOUT2: MPIN2 pin input bit clock output
		MPOUT3: MPIN3 pin input channel clock output
		MPOUT4: MPIN4 pin input 2ch supported audio data output
	100:	MPIO[4:1] pin input signal output ("MPSEL[1:0]=01" setting)
		MPOUT1: MPIO1 pin input master clock output
		MPOUT2: MPIO2 pin input bit clock output
		MPOUT3: MPIO3 pin input channel clock output
		MPOUT4: MPIO4 pin input 2ch supported audio data output
	101:	RXIN[8:5] pin input signal output
		MPOUT1: RXIN8 pin input master clock output
		MPOUT2: RXIN7 pin input bit clock output
		MPOUT3: RXIN6 pin input channel clock output
		MPOUT4: RXIN5 pin input 2ch supported audio data output
		Continued on next page.

Continued from prece	ding page.	
SW2SEL[2:0]	110:	MPIN[6:5] pin input signal output (6ch data supported)
		MPOUT1: MPIN5 pin input 6ch supported audio data output
		MPOUT2: MPIN6 pin input 6ch supported audio data output
		MPOUT3: "L" output
		MPOUT4: S/PDIF output (initial value is "L", subject to RXTHR2[3:0] register)
	111:	MPIN[3:1] pin input signal output (8ch data supported)
		MPOUT1: MPIN1 pin input 8ch supported audio data output
		MPOUT2: MPIN2 pin input 8ch supported audio data output
		MPOUT3: MPIN3 pin input 8ch supported audio data output
		MPOUT4: S/PDIF output (initial value is "L", subject to RXTHR2[3:0] register)
FLGOUT	MUTEB and	NPCMF output setting
	0:	MUTEB: Mute signal generated by the DIR (initial value).
		NPCMF: Non-PCM information generated by the DIR (initial value).
	1:	MUTEB: MPIN5 pin input signal is output (polarity is inverted by MPIN5P register).
		NPCMF: MPIN6 pin input signal is output (polarity is inverted by MPIN6P register).

- The SW1SEL[2:0], FLGERR, SW2SEL[2:0] and FLGOUT register settings are processed according to the MUXMOD register. When "MUXMOD=1", the SW1SEL[2:0], FLGERR, SW2SEL[2:0] and FLGOUT register settings must be made in the LR clock constantly supplied status. When LR clock supply is stopped, these register settings are not executed.
- The change of MPIO[4:1] pins to the input terminal is set to "MPSEL[1:0]=01".
- When "SW1SEL[2:0]=001" is set, the DIR is unlocked regardless of whether there is digital data, and the error flag is output from ERRF. When switched from the PLL locked status, the ADC data is output after mute processing (MUTEB pulse output period).
- The setting and the release of "SW2SEL[2:0]=001" are executed via the reset processing of ADC. When the ADC data is output from DATAOUT by "SW1SEL[2:0]=000" or "SW1SEL[2:0]=001", MUTEB is changed by "SW2SEL[2:0]=001". And, DATAOUT is muted while ADC is being reset. "SW2SEL[2:0]=001" is recommended to be set or release after DATAOUT output data is muted. When the demodulation data of DIR is output from DATAOUT by "SW1SEL[2:0]=000", setting or release of "SW2SEL[2:0]=001" dose not influence DATAOUT because the reset processing of ADC is not reflected in MUTEB at this time. When the slave of ADC is set, these are similar.
- 6-channel data and 8-channel data processing are set as follows.
 6-channel data processing: "SW1SEL[2:0]=011" and "SW2SEL[2:0]=110"
 8-channel data processing: "SW1SEL[2:0]=010" and "SW2SEL[2:0]=111"
- In order to switch the ERRF, MUTEB and NPCMF outputs to the MPIN4, MPIN5 and MPIN6 input signals when switching to 8-channel data, also change the FLGERR and FLGOUT register settings at the same time as the SW1SEL[2:0] and SW2SEL[2:0] settings.
- When "DSTATE=1", the 'Sound' or 'Silence' detection is executed for the output data selected with SW1SEL[2:0] register. When the output buffer function of the clock and data are stopped and current consumption is decreased, the OUTMUT register is set. Note that 'Sound' detection dose not function when the output function of the clock and data are stopped with "SW1SEL[2:0]=110 or 111" ("L" output).

07h	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	NLEVEL3	NLEVEL2	NLEVEL1	NLEVEL0	YLEVEL3	YLEVEL2	YLEVEL1	YLEVEL0	
Initial value	0	0	0	0	0	0	0	0	
Setting	R/W								

Address: 07h; ADC 'Sound' or 'Silence' Detection Level Setting

YLEVEL[3:0] PCM data 'Sound' detection setting ('Sound' is judged when the signal is larger than the set value). 0000: -60dBFS (initial value)

0000:	-60dBFS (i
0001:	-58dBFS
0010:	-56dBFS
0011:	-54dBFS
0100:	-52dBFS
0101:	-50dBFS
0110:	-48dBFS
0111:	-46dBFS
1000:	-44dBFS
1001:	-42dBFS
1010:	-40dBFS
1011:	-38dBFS
1100:	-36dBFS
1101:	-34dBFS
1110:	-32dBFS
1111:	-30dBFS

NLEVEL[3:0] PCM data 'Silence' detection setting ('Silence' is judged when the signal is smaller than the set value). 0000: -60dBFS (initial value)

- 0000: -60dBFS (1 0001: -58dBFS 0010: -56dBFS 0011: -54dBFS 0100: -52dBFS 0101: -50dBFS 0110: -48dBFS 0111: -46dBFS 1000: -44dBFS 1001: -42dBFS 1010: -40dBFS
- 1010. -40dBFS 1011: -38dBFS
- 1011. -360DFS
- 1100: -36dBFS
- 1101: -34dBFS
- 1110: -32dBFS
- 1111: -30dBFS
- 0dBFS = 0.6AVDD
- The judgment levels can be adjusted from -30dBFS to -60dBFS in 2dBFS steps with the YLEVEL[3:0] and NLEVEL[3:0] registers.
- When performing detection on analog data, the judgment level variations can be increased by also using the ADPGA[2:0] register that sets the PGA. However, care should be taken for the ADPGA[2:0] register setting, as it affects the normal ADC operation.

08h	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	ADBMOD	ADPGA2	ADPGA1	ADPGA0	ADSMUTE	ADFDSP2	ADFDSP1	ADFDSP0	
Initial value	0	0	0	0	0	0	0	0	
Setting	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	
ADFDSP[2:0	 ADC soft 000 001 010 011 100 101 110 111 	 1/fs (init 2/fs (Re 4/fs (Re 8/fs (Re 16/fs (Re Reserved Reserved 	tial value) (R ference: Tran ference: Tran ference: Tran ference: Tran	nsition time fr nsition time fr nsition time fr nsition time fr	nsition time f om $0dB \Rightarrow -$ om $0dB \Rightarrow -$ om $0dB \Rightarrow -$ om $0dB \Rightarrow -$ om $0dB \Rightarrow -$	∞ is 1024/fs) -∞ is 2048/fs ∞ is 4096/fs)	,		
ADSMUTE	0	 Direct (Reference: Transition time from 0dB => -∞ is 1/fs) tput mute function setting 0: Cancel the soft mute mode (initial value). 1: Start the soft mute. 							
ADPGA[2:0]	ADC inpu 000 001 010 011 100 101 110 111	: -1.5dB : -3dB : -4.5dB : +1.5dB : +3dB : +4.5dB	-						
ADBMOD	Audio da 0 1	: The audio	o data is outp	ting when AE ut after 1638 ut immediate	4/fs (initial va	alue).			

08h: ADC Data Control Setti Add

The ADC soft mute and attenuator gain changes in 0.25dB steps.

• The transition time is calculated from the following formula. Other than when "ADFDSP[2:0]=000" or "ADVOL[7:0]=FFh" is set.

Transition time from the ADVOL[7:0] register setting value to $-\infty$

- = (256-ADVOL[7:0]) × ADFDSP[2:0]
- = (256-(0, 0.25, 0.5, 0.75 ··· 63.5dB/0.25dB) × (1/fs, 2/fs, 4/fs, 8/fs, 16/fs)

Address: 09h; ADC Output Attenuator Setting

09h	D7	D6	D5	D4	D3	D2	D1	D0
Register name	ADVOL7	ADVOL6	ADVOL5	ADVOL4	ADVOL3	ADVOL2	ADVOL1	ADVOL0
Initial value	0	0	0	0	0	0	0	0
Setting	R/W							

ADVOL[7:0] ADC output volume setting (initial value: 0000_0000: 0dB)

ADC output vo	nume setting (in	itial value: 0000	_0000:0aB)		
0000_0000:	0dB,	0010_1000:	-10.00dB,	0101_0000:	-20.00dB
0000_0001:	-0.25dB,	0010_1001:	-10.25dB,	0101_0001:	-20.25dB
0000_0010:	-0.50dB,	0010_1010:	-10.50dB,	0101_0010:	-20.50dB
0000_0011:	-0.75dB,	0010_1011:	-10.75dB,	0101_0011:	-20.75dB
0000_0100:	-1.00dB,	0010_1100:	-11.00dB,	0101_0100:	-21.00dB
0000_0101:	-1.25dB,	0010_1101:	-11.25dB,	0101_0101:	-21.25dB
0000_0110:	-1.50dB,	0010_1110:	-11.50dB,	0101_0110:	-21.50dB
0000_0111:	-1.75dB,	0010_1111:	-11.75dB,	0101_0111:	-21.75dB
0000_1000:	-2.00dB,	0011_0000:	-12.00dB,	0101_1000:	-22.00dB
0000_1001:	-2.25dB,	0011_0001:	-12.25dB,	0101_1001:	-22.25dB
0000_1010:	-2.50dB,	0011_0010:	-12.50dB,	0101_1010:	-22.50dB
0000_1011:	-2.75dB,	0011_0011:	-12.75dB,	0101_1011:	-22.75dB
0000_1100:	-3.00dB,	0011_0100:	-13.00dB,	0101_1100:	-23.00dB
0000_1101:	-3.25dB,	0011_0101:	-13.25dB,	0101_1101:	-23.25dB
0000_1110:	-3.50dB,	0011_0110:	-13.50dB,	0101_1110:	-23.50dB
0000_1111:	-3.75dB,	0011_0111:	-13.75dB,	0101_1111:	-23.75dB
0001_0000:	-4.00dB,	0011_1000:	-14.00dB,	0110_0000:	-24.00dB
0001_0001:	-4.25dB,	0011_1001:	-14.25dB,	0110_0001:	-24.25dB
0001_0010:	-4.50dB,	0011_1010:	-14.50dB,	0110_0010:	-24.50dB
0001_0011:	-4.75dB,	0011_1011:	-14.75dB,	0110_0011:	-24.75dB
0001_0100:	-5.00dB,	0011_1100:	-15.00dB,	0110_0100:	-25.00dB
0001_0101:	-5.25dB,	0011_1101:	-15.25dB,	0110_0101:	-25.25dB
0001_0110:	-5.50dB,	0011_1110:	-15.50dB,	0110_0110:	-25.50dB
0001_0111:	-5.75dB,	0011_1111:	-15.75dB,	0110_0111:	-25.75dB
0001_1000:	-6.00dB,	0100_0000:	-16.00dB,	0110_1000:	-26.00dB
0001_1001:	-6.25dB,	0100_0001:	-16.25dB,	0110_1001:	-26.25dB
0001_1010:	-6.50dB,	0100_0010:	-16.50dB,	0110_1010:	-26.50dB
0001_1011:	-6.75dB,	0100_0011:	-16.75dB,	0110_1011:	-26.75dB
0001_1100:	-7.00dB,	0100_0100:	-17.00dB,	0110_1100:	-27.00dB
0001_1101:	-7.25dB,	0100_0101:	-17.25dB,	0110_1101:	-27.25dB
0001_1110:	-7.50dB,	0100_0110:	-17.50dB,	0110_1110:	-27.50dB
0001_1111:	-7.75dB,	0100_0111:	-17.75dB,	0110_1111:	-27.75dB
0010_0000:	-8.00dB,	0100_1000:	-18.00dB,	0111_0000:	-28.00dB
0010_0001:	-8.25dB,	0100_1001:	-18.25dB,	0111_0001:	-28.25dB
0010_0010:	-8.50dB,	0100_1010:	-18.50dB,	0111_0010:	-28.50dB
0010_0011:	-8.75dB,	0100_1011:	-18.75dB,	0111_0011:	-28.75dB
0010_0100:	-9.00dB,	0100_1100:	-19.00dB,	0111_0100:	-29.00dB
0010_0101:	-9.25dB,	0100_1101:	-19.25dB,	0111_0101:	-29.25dB
0010_0110:	-9.50dB,	0100_1110:	-19.50dB,	0111_0110:	-29.50dB
0010_0111:	-9.75dB,	0100_1111:	-19.75dB,	0111_0111:	-29.75dB
					Continued on

Continued on next page.

LC89075W-H

Continued from preced	ing page.					
ADVOL[7:0]	0111_1000:	-30.00dB,	1010_1000:	-42.00dB,	1101_1000:	-54.00dB
	0111 1001:	-30.25dB,	1010 1001:	-42.25dB,	1101 1001:	-54.25dB
	0111_1010:	-30.50dB,	1010_1010:	-42.50dB,	1101_1010:	-54.50dB
	0111_1011:	-30.75dB,	1010_1011:	-42.75dB,	1101_1011:	-54.75dB
	0111_1100:	-31.00dB,	1010_1100:	-43.00dB,		-55.00dB
	0111 1101:	-31.25dB,	1010 1101:	-43.25dB,	1101_1101:	-55.25dB
	0111_1110:	-31.50dB,	1010_1110:	-43.50dB,	1101_1110:	-55.50dB
	0111_1111:	-31.75dB,	1010_1111:	-43.75dB,	1101_1111:	-55.75dB
	1000_0000:	-32.00dB,	1011_0000:	-44.00dB,	1110_0000:	-56.00dB
	1000_0001:	-32.25dB,	1011_0001:	-44.25dB,	1110_0001:	-56.25dB
	1000_0010:	-32.50dB,	1011_0010:	-44.50dB,	1110_0010:	-56.50dB
	1000_0011:	-32.75dB,	1011_0011:	-44.75dB,	1110_0011:	-56.75dB
	1000_0100:	-33.00dB,	1011_0100:	-45.00dB,	1110_0100:	-57.00dB
	1000_0101:	-33.25dB,	1011_0101:	-45.25dB,	1110_0101:	-57.25dB
	1000_0110:	-33.50dB,	1011_0110:	-45.50dB,	1110_0110:	-57.50dB
	1000_0111:	-33.75dB,	1011_0111:	-45.75dB,	1110_0111:	-57.75dB
	1000_1000:	-34.00dB,	1011_1000:	-46.00dB,	1110_1000:	-58.00dB
	1000_1001:	-34.25dB,	1011_1001:	-46.25dB,	1110_1001:	-58.25dB
	1000_1010:	-34.50dB,	1011_1010:	-46.50dB,	1110_1010:	-58.50dB
	1000_1011:	-34.75dB,	1011_1011:	-46.75dB,	1110_1011:	-58.75dB
	1000 1100:	-35.00dB,	1011 1100:	-47.00dB,	1110 1100:	-59.00dB
	1000_1101:	-35.25dB,	1011_1101:	-47.25dB,		-59.25dB
	1000_1110:	-35.50dB,	1011_1110:	-47.50dB,		-59.50dB
	1000_11111:	-35.75dB,	1011_1111:	-47.75dB,	1110_1111:	-59.75dB
	1001_0000:	-36.00dB,	1100_0000:	-48.00dB,	1111_0000:	-60.00dB
	1001_0001:	-36.25dB,	1100_0001:	-48.25dB,	1111_0001:	-60.25dB
	1001_0010:	-36.50dB,	1100_0010:	-48.50dB,	1111_0010:	-60.50dB
	1001_0011:	-36.75dB,	1100_0011:	-48.75dB,	1111_0011:	-60.75dB
	1001_0100:	-37.00dB,	1100_0100:	-49.00dB,	1111_0100:	-61.00dB
	1001_0101:	-37.25dB,	1100_0101:	-49.25dB,	1111_0101:	-61.25dB
	1001_0110:	-37.50dB,	1100_0110:	-49.50dB,	1111_0110:	-61.50dB
	1001_0111:	-37.75dB,	1100_0111:	-49.75dB,	1111_0111:	-61.75dB
	1001_1000:	-38.00dB,	1100_1000:	-50.00dB,	1111_1000:	-62.00dB
	1001_1001:	-38.25dB,	1100_1001:	-50.25dB,	1111_1001:	-62.25dB
	1001_1010:	-38.50dB,	1100_1010:	-50.50dB,	1111_1010:	-62.50dB
	1001_1011:	-38.75dB,	1100_1011:	-50.75dB,	1111_1011:	-62.75dB
	1001_1100:	-39.00dB,	1100_1100:	-51.00dB,	1111_1100:	-63.00dB
	1001_1101:	-39.25dB,	1100_1101:	-51.25dB,	1111_1101:	-63.25dB
	1001_1110:	-39.50dB,	1100_1110:	-51.50dB,	1111_1110:	-63.50dB
	1001_1111:	-39.75dB,	1100_1111:	-51.75dB,	1111_1111:	-∞dB
	1010_0000:	-40.00dB,	1101_0000:	-52.00dB,		
	1010_0001:	-40.25dB,	1101_0001:	-52.25dB,		
	1010_0010:	-40.50dB,	1101_0010:	-52.50dB,		
	1010_0011:	-40.75dB,	1101_0011:	-52.75dB,		
	1010_0100:	-41.00dB,	1101_0100:	-53.00dB,		
	1010_0101:	-41.25dB,	1101_0101:	-53.25dB,		
	1010_0110:	-41.50dB,	1101_0110:	-53.50dB,		
	1010_0111:	-41.75dB,	1101_0111:	-53.75dB,		

Address: 0Ah; DIR Clock Setting

0Ah	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	RXCKWT1	RXCKWT0	RXMCK1	RXMCK0	RXCKDV1	RXCKDV0	0	RXCKAT	
Initial value	0	0	0	0	0	0	0	0	
Setting	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	

0: Automatic control (initial value)

1: Manual setting

RXCKDV[1:0] PLL lock time MCKOUT output setting when RXCKAT is set to 0

- 512fs output: When receiving 32kHz, 44.1kHz, 48kHz (initial value)
 256fs output: When receiving 64kHz, 88.2kHz, 96kHz
 128fs output: When receiving 128kHz, 176.4kHz, 192kHz
 - 01: 256fs output: When receiving 32kHz, 44.1kHz, 48kHz 256fs output: When receiving 64kHz, 88.2kHz, 96kHz 128fs output: When receiving 128kHz, 176.4kHz, 192kHz
 - 10: 512fs output: When receiving 32kHz, 44.1kHz, 48kHz
 512fs output: When receiving 64kHz, 88.2kHz, 96kHz
 128fs output: When receiving 128kHz, 176.4kHz, 192kHz
 - 11: 256fs output: When receiving 32kHz, 44.1kHz, 48kHz
 512fs output: When receiving 64kHz, 88.2kHz, 96kHz
 128fs output: When receiving 128kHz, 176.4kHz, 192kHz

RXMCK[1:0] PLL lock time MCKOUT output setting when RXCKAT is set to 1

- 00: 256fs output (initial value)
- 01: 512fs output
- 10: 128fs output
- 11: Reserved

RXCKWT[1:0] Clock switching wait time setting

- 00: The clocks is switched 2.7ms after PLL locked status is judged (initial value).
- 01: The clock is switched 1.3ms after PLL locked status is judged.
- 10: The clock is switched 0.7ms after PLL locked status is judged.
- 11: Reserved
- When input fs calculation cannot be done by "RXCKAT=0", the PLL clock is set to 256fs output.
- Set the RXCKAT,RXCKDEV[1:0] and RXMCK[1:0] register while the PLL is unlocked. This setting is executed after the PLL is locked. However, after PLL is locked, RXMCK[1:0] register can change by RXCKMU register.

Address: 0Bh; DIR Demodulation Data, Through Data Setting

0Bh	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	RXDSEL3	RXDSEL2	RXDSEL1	RXDSEL0	RXTHR13	RXTHR12	RXTHR11	RXTHR10	
Initial value	0	0	0	0	1	1	1	1	
Setting	R/W								

RXTHR1[3:0] RXOUT output data setting

0000:	RXIN1
0001:	RXIN2
0010:	RXIN3
0011:	RXIN4
0100:	RXIN5
0101:	RXIN6
0110:	RXIN7
0111:	RXIN8
1000:	RXIN1A
1001:	RXIN2A
1010:	RXIN3A
1011:	MPIO1
1100:	MPIO2
1101.	MPIO3

- 1101: MPIO3
- 1110: MPIO4
- 1111: Fixed at "L" (initial value).

0000: RXIN1 (initial value)

- 0001: RXIN2
- 0010: RXIN3
- 0011: RXIN4
- 0100: RXIN5
- 0101: RXIN6
- 0110: RXIN7
- 0111: RXIN8
- 1000: RXIN1A
- 1001: RXIN2A
- 1010: RXIN3A
- 1011: MPIO1
- 1100: MPIO2
- 1101: MPIO3
- 1110: MPIO4
- 1111: Connected to GND.
- The MPIO[4:1] data input is used by "MPSEL[1:0]=01".

Address: 0Ch; DIR Through Data Setting

0Ch	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	0	0	0	0	RXTHR23	RXTHR22	RXTHR21	RXTHR20	
Initial value	0	0	0	0	1	1	1	1	
Setting	R	R	R	R	R/W	R/W	R/W	R/W	

RXTHR2[3:0] MPOUT4 output data setting (conforms to SW2SEL[2:0] setting).

	1	0
0000:	RXIN1	
0001:	RXIN2	
0010:	RXIN3	
0011:	RXIN4	
0100:	RXIN5	
0101:	RXIN6	
0110:	RXIN7	
0111:	RXIN8	
1000:	RXIN1A	
1001:	RXIN2A	
1010:	RXIN3A	
1011:	MPIO1	
1100:	MPIO2	
1101:	MPIO3	
1110:	MPIO4	
1111:	Fixed at "L" (initial value).

• The RXTHR2[3:0] register setting contents are output from MPOUT4, but the MPOUT4 setting conforms to the SW2SEL[2:0] register.

Address: 0Dh; DIR System Setting								
0Dh	D7	D6	D5	D4	D3	D2	D1	D0
Register name	RXERWT1	RXERWT0	RXLIM1	RXLIM0	RXREFSJ	RXRESTA	RXREDER	RXRESEL
Initial value	0	0	0	0	0	0	0	0
Setting	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
RXRESEL	(error or data	a error (initial a error or non	/			
RXREDER	(0: Output o	nly when nor	onsecutive pa n-PCM data is e sub-frame i	s recognized	· · · · · · · · · · · · · · · · · · ·	l.	
RXRESTA	(-	-	atus (initial v "H"	alue).			
RXREFSJ	(0: Input fs o	change after e	e to input fs c error is cancel he error is ca	led is not refle		F (initial valu F.	ıe).
RXLIM[1:0]	DIR rece	ive range set	ting					
	00	0: No limita	ation (initial v	value)				
	0	1: fs ≤ 96kH	Iz (When exe	ceeded, data i	s muted and	XIN system c	clock is outpu	t.)
	10 1	0: $fs \le 48kH$ 1: Reserved		ceeded, data i	s muted and	XIN system c	clock is outpu	t.)
RXERWT[1:0] ERRF w	ait time settir	ng after PLL	is locked.				
	0	0: The erro	r is canceled	after 3 occurr	rences of prea	amble B are c	ounted (initia	l value).
	0	1: Error is o	canceled after	r 6 occurrenc	es of preambl	le B are coun	ted.	
	1	0: Error is	canceled after	r 12 occurren	ces of preaml	ble B are cou	nted.	
	1	1: Error is	canceled after	r 24 occurren	ces of preaml	ble B are cou	nted.	
 The non-PCM When an error The RXRESTA When "RXRESTA a change in the "RXREFSJ=1" 	is indicated A register ha FSJ=0", sou capture-ran	in the RXRE is no effect or rces with cha ge of PLL, P	SEL register the data and nging fs (CD LL doe not b	due to non-P l clock output players with ecome a lock	CM data, the t pins. variable pitc error.	h functions, e	etc.) are suppo	

error is output. • The RXERWT[1:0] register setting defines the time after the PLL is locked until ERRF outputs "L" to cancel the error. The demodulated audio data is output after the ERRF error is canceled, so when problems occur such as the start of

the data being cut off, change this setting.

	Address: 0Eh; DIR Interrupt Source Setting							
0Eh	D7	D6	D5	D4	D3	D2	D1	D0
Register name	DATAM	0	EMPHA	PCRNW	UNPCM	CSRNW	FSCHG	ERROR
Initial value	0	0	0	0	0	0	0	0
Setting	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
ERROR	ERRF out	tout status c	hange output	setting				
	0	-	ut (initial val	-				
	1	-	ERRF status c	·				
		1		0				
FSCHG	Setting th	e output of	the input fs ca	lculation resu	ilt update flag	g		
	0	: Not outp	ut (initial val	ue).				
	1	: Output t	he update flag	g of the input	fs calculatior	n result.		
CSRNW	Setting th	e output of	the first 40 bit	ts channel sta	tus data upda	ite flag		
	0		ut (initial val		···· ··· ··			
	1		he update flag	<i>,</i>	0 bits channe	el status data.		
		-						
UNPCM	NPCMF of		change outp	-				
	0	-	ut (initial val	,				
	1	: Output t	he change in I	NPCMF statu	s.			
PCRNW	Burst prea	amble Pc up	date flag outp	out setting				
	0	-	ut (initial val	-				
	1	1	he update flag	,	preamble Pc.			
EMPHA	Emphasia	datastian f	ag output set	ina				
EMFTA	Emphasis 0		ut (initial val	-				
	1	-	he emphasis c	,				
	1	. Output ti	ne empirasis e	ieteenon nag.				
DATAM	DSTATE	output statu	is change out	put setting				
	0	: Not outp	ut (initial val	ue)				
	1	: Output t	he change in l	DSTATE stat	us.			

Address: 0Eh: DIR Interrupt Source Setting

• The channel status update flag process compares the first 40 bits of data of the previous block with the current data. When the data match, the data is considered to have been updated and the update flag is output.

• Likewise, the burst preamble Pc update flag process compares the 16 bits of data of the previous block with the current data. When the data match, the update flag is output.

0Fh	D7	D6	D5	D4	D3	D2	D1	D0	
Register name	ODATAM	0	OEMPHA	OPCRNW	OUNPCM	OCSRNW	OFSCHG	OERROR	
Setting	R	R	R	R	R	R	R	R	
OERROR	 ERRF output status (output the status when read) 0: No transfer error with the PLL locked 1: PLL unlocked state or transfer error exists. 								
OFSCHG	- (): No input	date result (c fs calculation calculation is	-	eadout)				
OCSRNW	(First 40 bits channel status update result (cleared after readout) 0: No update 1: Updated 							
OUNPCM	(): No non-F	` 1		ad)				
OPCRNW	. (eamble Pc upo): No updat 1: Updated		eared after re	adout)				
OEMPF	Detection of channel status emphasis (output the status when read) 0: No pre-emphasis 1: 50/15µs pre-emphasis exists.								
ODATAM	(-	state or ADC	status when r C reset state	read)				

Address: 0Fh; DIR Interrupt Source Readout

• The ERRF, NPCMF and DSTATE pin statuses can be read from the OERROR, OUNPCM and ODATAM registers, regardless of the INTB output setting.

• The channel status information can be read from the OEMPF register, regardless of the INTB output setting.

Address: 10h; DIR Receive Sampling Frequency, Data Type Readout

10h	D7	D6	D5	D4	D3	D2	D1	D0
Register name	RSDTSES	RXDTS51	RX61937	RXFSFLG	RXFSC3	RXFSC2	RXFSC1	RXFSC0
Setting	R	R	R	R	R	R	R	R

RXFSC[3:0] Input data fs calculation result

0000:	44.1kHz
0001:	Out of range
0010:	48kHz
0011:	32kHz
0100:	-
0101:	-
0110:	-
0111:	-
1000:	88.2kHz
1001:	-
1010:	96kHz
1011:	64kHz
1100:	176.4kHz
1101:	128kHz
1110:	192kHz
1111:	-

RXFSFLG Comparison between input data sampling frequency calculation results and channel status fs information

- 0: No match in input sampling frequency information
- 1: Mach in input sampling frequency information

RX61937 IEC61937 burst preamble detection

- 0: Neither Pa nor Pb is detected.
- 1: Pa and Pb are detected.
- RXDTS51 DTS-CD 5.1ch sync signal detection
 - 0: No DTS-CD sync signal detected
 - 1: DTS-CD sync signal detected
- RXDTSES DTS-CD(ES) 6.1ch sync signal detection
 - 0: No DTS-CD(ES) sync signal detected
 - 1: DTS ES-CD(ES) sync signal detected
- The RXFSFLG register compares the calculated sampling frequency value of the input data with the fs information of the channel status, and is output when the sampling frequency results match.
- When the DTS-CD(ES) sync signal of the RXDTSES register is detected, the DTS-CD sync signal of the RXDTS51 register is also detected at the same time.

	Thurses. The Ton, Diff Champer Status Readout (Read only)							
Address	D7	D6	D5	D4	D3	D2	D1	D0
11h	RXCS7	RXCS6	RXCS5	RXCS4	RXCS3	RXCS2	RXCS1	RXCS0
12h	RXCS15	RXCS14	RXCS13	RXCS12	RXCS11	RXCS10	RXCS9	RXCS8
13h	RXCS23	RXCS22	RXCS21	RXCS20	RXCS19	RXCS18	RXCS17	RXCS16
14h	RXCS31	RXCS30	RXCS29	RXCS28	RXCS27	RXCS26	RXCS25	RXCS24
15h	RXCS39	RXCS38	RXCS37	RXCS36	RXCS35	RXCS34	RXCS33	RXCS32

Address: 11h-15h; DIR Channel Status Readout (Read-only)

Table 14.3 Read Register Contents of First 40 Bits of Channel Status

Adr	Reg	CS Bit	Description
11h	RXCS0	bit0	Application
	RXCS1	bit1	Control
	RXCS2	bit2	
	RXCS3	bit3	
	RXCS4	bit4	
	RXCS5	bit5	
	RXCS6	bit6	Not defined
	RXCS7	bit7	
12h	RXCS8	bit8	Category code
	RXCS9	bit9	
	RXCS10	bit10	
	RXCS11	bit11	
	RXCS12	bit12	
	RXCS13	bit13	
	RXCS14	bit14	
	RXCS15	bit15	
13h	RXCS16	bit16	Source number
	RXCS17	bit17	
	RXCS18	bit18	
	RXCS19	bit19	

		Julier Status	
Adr	Reg	CS Bit	Description
13h	RXCS20	bit20	Channel number
	RXCS21	bit21	
	RXCS22	bit22	
	RXCS23	bit23	
14h	RXCS24	bit24	Sampling frequency
	RXCS25	bit25	
	RXCS26	bit26	
	RXCS27	bit27	
	RXCS28	bit32	Clock accuracy
	RXCS29	bit33	
	RXCS30	bit30	Not defined
	RXCS31	bit31	
15h	RXCS32	bit32	Bit width
	RXCS33	bit33	
	RXCS34	bit34	
	RXCS35	bit35	
	RXCS36	bit36	Original sampling frequency
	RXCS37	bit37	
	RXCS38	bit38	
	RXCS39	bit39	

• For details, check the IEC60958 Specifications.

Address: 16h-17h; DIR Burst Preamble Pc Readout (Read-only)

address	D7	D6	D5	D4	D3	D2	D1	D0
16h	RXPC7	RXPC6	RXPC5	RXPC4	RXPC3	RXPC2	RXPC1	RXPC0
17h	RXPC15	RXPC14	RXPC13	RXPC12	RXPC11	RXPC10	RXPC9	RXPC8

Table 14.4 Burst Preamble Pc Read Registers	
Table 14.4 Duist Treamble I C Read Registers	

Adr.	Register	Pc Bit	Description
16h	RXPC0	bit0	Data type
	RXPC1	bit1	
	RXPC2	bit2	
	RXPC3	bit3	
	RXPC4	bit4	
	RXPC5	bit5	Reserved
	RXPC6	bit6	
	RXPC7	bit7	Error
17h	RXPC8	bit8	Data type dependent information
	RXPC9	bit9	
	RXPC10	bit10	
	RXPC11	bit11	
	RXPC12	bit12	
	RXPC13	bit13	Bit stream number
	RXPC14	bit14	
	RXPC15	bit15	

Table 14.5 Burst Preamble Pc Data Type Field

Register	Value	Description	
RXPC[4:0]	0	NULL data	
	1	Dolby AC3 data	
	2	Reserved	
	3	Pause	
	4	MPEG-1, layer 1 data	
	5	MPEG-1, layer 2 or 3 data or non-extended MPEG-2	
	6	Extended MPEG-2 data	
	7	Reserved	
	8	MPEG-2, layer 1, low sampling rate	
	9	MPEG-2, layer 2, 3, low sampling rate	
	10	Reserved	
	11	DTS type 1	
	12	DTS type 2	
	13	DTS type 3	
	14	ATRAC	
	15	ATRAC 2/3	
	16-26	Reserved	
	27	Reserved (MPEG-4, AAC data)	
	28	MPEG-2, AAC data	
	29-31	Reserved	

• For the latest information, check the specifications issued from each license.

15. Application Example

Element Symbol	Recommended Parameter	Application	Remarks
C0	0.1µF	Power supply de-coupling	Ceramic capacitor
R0	1ΜΩ	Oscillation amplifier feedback	
R1	150Ω to 2.2kΩ	Oscillation amplifier current limit	
C1	1pF to 33pF	Quarts resonator load	Ceramic capacitor with NP0 characteristics
R2	10kΩ to 100kΩ	ADC analog input	See 9.4
C2	0.1μF to 10μF	ADC analog input	See 9.4
C3	10μF	ADC common voltage smoothing	See 8.2
C4	0.1µF	ADC common voltage smoothing	See 8.2
R3	75Ω	Coaxial input termination	
C5	0.1μF to 0.01μF	Coaxial input DC cut	Ceramic capacitor
R4	0 to 100Ω	Damping resistor	
R5	100Ω	PLL loop filter	See 8.3
C6	0.068µF	PLL loop filter	See 8.3
C7	0.001µF	PLL loop filter	See 8.3

Figure 15.1 Application Example

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2011. Specifications and information herein are subject to change without notice.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.