

September 2011

ARINC 429 Line Driver

DESCRIPTION

The HI-8585 and HI-8586 are CMOS integrated circuits designed to directly drive the ARINC 429 bus in an 8-pin package. Two logic inputs control a differential voltage between the output pins producing a +10 volt One, a -10 volt Zero, and a 0 volt Null.

The CMOS/TTL control inputs are translated to ARINC specified amplitudes using on board band-gap reference. A logic input is provided to control the slope of the differential output signal. Timing is set by on-chip resistor and capacitor and tested to be within ARINC requirements.

The HI-8585 has 37.5 ohms in series with each line driver output. The HI-8586 provides the option to bypass part of the output resistance so that series resistance can be used in external protection circuitry.

The HI-8585 or the HI-8586 along with the HI-8588 or the Hi-8591 line receivers offer the smallest options available to get on and off the ARINC bus.

FEATURES

- Direct ARINC 429 line driver interface in a small package
- On-chip band-gap reference to set output levels
- On-chip line driver slope control and selection by logic input
- Low current 12 to 15 volt supplies
- CMOS / TTL logic pins
- Plastic and ceramic package options surface mount and DIP
- Thermally enhanced SOIC packages
- Industrial & extended temperature ranges

SLP1.5 1	0	8 V+
TX0IN 2		7 TXBOUT
TX1IN 3		6 TXAOUT
GND 4		5 V-

SUPPLY VOLTAGES

PIN CONFIGURATION

V+ = 12V to 15V V- = -12V to -15V

FUNCTION TABLE

TX1IN	TX0IN	SLP1.5	TXAOUT	TXBOUT	SLOPE
0	0	Х	0V	0V	N/A
0	1	0	-5V	5V	10µs
0	1	1	-5V	5V	1.5µs
1	0	0	5V	-5V	10µs
1	0	1	5V	-5V	1.5µs
1	1	Х	0V	0V	N/A

PIN DESCRIPTION TABLE

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	SLP 1.5	LOGIC INPUT	CMOS OR TTL, V+ IS OK
2	TX0IN	LOGIC INPUT	CMOS OR TTL
3	TX1IN	LOGIC INPUT	CMOS OR TTL
4	GND	POWER	GROUND
5	V-	POWER	-12 TO -15 VOLTS
6	TXAOUT	OUTPUT	LINE DRIVER TERMINAL A
7	TXBOUT	OUTPUT	LINE DRIVER TERMINAL B
8	V+	POWER	+12 TO +15 VOLTS

FUNCTIONAL DESCRIPTION

Figure 1 is a block diagram of the line driver. The +5V and -5V levels are generated internally using a on-chip band-gap reference. Currents for slope control are set by zener voltages across on-chip resistors.

The TX0IN and TX1IN inputs receive logic signals from a control transmitter chip such as the HI-6010, HI-3282 or HI-8282. TXAOUT and TXBOUT hold each side of the ARINC bus at Ground until one of the inputs becomes a One. If for example TX1IN goes high, a charging path is enabled to 5V on an "A" side internal capacitor while the "B" side is enabled to -5V. The charging current is selected by the SLP1.5 pin. If the SLP1.5 pin is high, the capacitor is nominally charged from 10% to 90% in 1.5µs. If SLP1.5 is low, the rise and fall times are 10µs.

A unity gain buffer receives the internally generated slopes and differentially drives the ARINC line. Current is limited by the series output resistors at each pin. There are no fuses at the outputs of the HI-8585 as exists on the Hi-8382.

The HI-8585 has 37.5 ohms in series with each output and the HI-8586 has 2 ohms in series with each output. The HI-8586 is for applications where external series resistance is required, typically for lightning protection devices.

Both the HI-8585 and HI-8586 are built using high-speed CMOS technology. Care should be taken to ensure the V+ and V- supplies are locally decoupled and that the input waveforms are free from negative voltage spikes which may upset the chip's internal slope control circuitry.

APPLICATION INFORMATION

Figure 2 shows a possible application of the HI-8585/86 interfacing an ARINC transmit channel from the HI-6010.

HOLT INTEGRATED CIRCUITS

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground

Supply voltages V+20V V20V
DC current per input pin +10mA
Power dissipation at 25°C plastic DIL1.0W, derate 10mW/°C ceramic DIL0.5W, derate 7mW/°C
Solder Temperature275°C for 10 sec
Storage Temperature65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Suppl	уV	'olta	iges
-------	----	-------	------

V+	+11.4V to +16.5V
V	11.4V to -16.5V

Temperature Range

Industrial-40°C to +85°C Extended-55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Input voltage (TX1IN, TX0IN, SLP1.5) high low	Vih Vil		2.1	-	V+ 0.5	volts volts
Input current (TX1IN, TX0IN, SLP1.5) source sink	Iн IL	VIN = 0V VIN = 5V	-	-	0.1 0.1	μΑ μΑ
ARINC output voltage (Differential) one zero null	Vdiff1 Vdiff0 Vdiffn	no load; TXAOUT - TXBOUT no load; TXAOUT - TXBOUT no load; TXAOUT - TXBOUT	9.00 -11.00 -0.50	10.00 -10.00 0	11.00 -9.00 0.50	volts volts volts
ARINC output voltage (Ref. to GND) one or zero null	Vdout Vnout	no load & magnitude at pin no load	4.50 -0.25	5.00 0	5.50 0.25	volts volts
Operating supply current V+ V-	IDD IEE	SLP1.5 = V+ TX1IN & TX0IN = 0V: no load TX0IN & TX1IN = 0V: no load		6.0 -6.0	14.0 -	mA mA
ARINC output impedence HI-8585 HI-8586	Ζουτ		-	37.5 -	- 2	ohms ohms

AC ELECTRICAL CHARACTERISTICS

V+ = 15.0V, V- = -15V, T_A = Operating Temperature Range (unless otherwise stated)

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Line Driver propagation delay		defined in Figure 3, no load				
Output high to low	t phlx		-	500	-	ns
Output low to high	t plhx		-	500	-	ns
Line Driver transition times						
High Speed		SLP 1.5 = V+				
Output high to low	t _{fx}	pin 1 = logic 1	1.0	1.5	2.0	μs
Output low to high	t _{rx}	pin 1 = logic 1	1.0	1.5	2.0	μs
Low Speed		SLP 1.5 = GND				
Output high to low	t _{fx}	pin 1 = logic 1	5.0	10.0	15.0	μs
Output low to high	t _{rx}	pin 1 = logic 1	5.0	10.0	15.0	μs
Input capacitance (1)						
logic	C _{IN}		-	-	10	pF

Notes:

1. Guaranteed but not tested

PACKAGE THERMAL CHARACTERISTICS

MAXIMUM ARINC LOAD 9, 10

PACKAGE STYLE ¹	ARINC 429	SUPPL	Y CURREN	T (mA) ²	JUNCTI	ON TEMP,	Tj (°C)
FACKAGE STILL	DATA RATE	Ta = 25°C	Ta = 85°C	Ta=125°C	Ta = 25°C	Ta = 85°C	Ta=125°C
8 Lead Plastic DIP	Low Speed ³	16.8	17.2	16.9	58	116	157
o Leau Flashe Dir	High Speed ⁴	27.3	26.7	25.9	75	132	169
8 Lead Plastic ESOIC ⁵	Low Speed	17.4	17.5	16.9	68	126	166
o Leau Plastic ESOIC	High Speed	27.6	27.1	25.9	97	147	186
8 Lead Plastic ESOIC ⁶	Low Speed	17.1	17.2	16.7	52	110	151
o Leau Flaslic ESOIC	High Speed	27.3	27.1	26.2	57	112	157

TXAOUT and TXBOUT Shorted to Ground ^{7, 8, 9, 10}

PACKAGE STYLE ¹	ARINC 429	SUPPL	Y CURREN	T (mA) ²	JUNCTI	ON TEMP,	Tj (°C)
FACKAGE STILL	DATA RATE	Ta = 25°C	Ta = 85°C	Ta=125°C	Ta = 25°C	Ta = 85°C	Ta=125°C
8 Lead Plastic DIP	Low Speed ³	53.6	50.7	52.2	131	181	217
o Leau Flashic DIF	High Speed ⁴	46.9	38.7	42.5	135	181	219
8 Lead Plastic ESOIC ⁵	Low Speed	46.4	47.6	68.1	167	191	221
8 Lead Plastic ESOIC	High Speed	42.1	43.8	67.1	177	212	223
8 Lead Plastic ESOIC ⁶	Low Speed	48.5	45.6	46.1	112	161	186
o Leau Plastic ESUIC	High Speed	46.8	41.1	40.5	116	168	197

Notes:

- 1. All data taken in still air on devices soldered to single layer copper PCB (3" X 4.5" X .062").
- 2. At 100% duty cycle, 15V power supplies. For 12V power supplies multiply all tabulated values by 0.8.
- 3. Low Speed: Data Rate = 12.5 Kbps, Load: R = 400 Ohms, C = 30 nF.
- 4. High Speed: Data Rate = 100 Kbps, Load: R = 400 Ohms, C = 10 nF. Data not presented for C = 30 nF as this is considered unrealistic for high speed operation.
- 5. 8 Lead Plastic ESOIC (Thermally enhanced SOIC with built in heat sink). Heat sink not soldered to the PCB.
- 6. 8 Lead Plastic ESOIC (Thermally enhanced SOIC with built in heat sink). Heat sink soldered to the PCB.
- 7. Similar results would be obtained with TXAOUT shorted to TXBOUT.
- 8. For applications requiring survival with continuous short circuit, operation above Tj = 175°C is not recommended.
- 9. Data will vary depending on air flow and the method of heat sinking employed.
- 10. Current values are per supply.

HEAT SINK - ESOIC PACKAGES

An 8-pin thermally enhanced SOIC package is used for the HI-8585/HI-8586 products. The ESOIC package includes a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board for optimum thermal dissipation. The

heat sink is electrically isolated from the chip and can be soldered to any ground or power plane. However, since the chip's substrate is at V+, connecting the heat sink to this power plane is recommended to avoid coupling noise into the circuit.

ORDERING INFORMATION

HI - <u>85XX xx x</u> x

PART NUMBER Blank F PART NUMBER I T M	LEAD FINISH Tin / Lead (Sn / Pb) 100% Matte Tin (Pb) TEMPERATURE RANGE -40°C TO +85°C -55°C TO +125°C -55°C TO +125°C	FLOW	BURN IN No No
F PART NUMBER I T	100% Matte Tin (Pt TEMPERATURE RANGE -40°C TO +85°C -55°C TO +125°C	FLOW	BURN IN No No
PART NUMBER	TEMPERATURE RANGE -40°C TO +85°C -55°C TO +125°C	FLOW I T	BURN IN No No
I T	RANGE -40°C TO +85°C -55°C TO +125°C	I T	IN No No
I T	RANGE -40°C TO +85°C -55°C TO +125°C	I T	IN No No
•	-55°C TO +125°C		No
•			-
М	-55°C TO +125°C		
		M	Yes
PART NUMBER	PACKAGE DESCRIPTION		
PD	8 PIN PLASTIC DIF	P (8P)	
PS	8 PIN PLASTIC NA	RROW B	ODY ESOIC
CR	8 PIN CERDIP (8D) not ava	ailable Pb-fre
	PS	PS 8 PIN PLASTIC NA	PS 8 PIN PLASTIC NARROW B

PART	OUTPUT SERIES RESISTANCE	
NUMBER	BUILT-IN	REQUIRED EXTERNALLY
8585	37.5 Ohms	0
8586	2 Ohms	35.5 Ohms

Legend: ESOIC - Thermally Enhanced Small Outline Package (SOIC) with built-in heat sink

HI - <u>8585 PS I</u> - <u>N</u> PART LEAD NUMBER **FINISH** Tin / Lead (Sn / Pb) Solder - No heat-sink Ν PART TEMPERATURE **FLOW BURN** NUMBER RANGE IN -40°C TO +85°C I I No PART PACKAGE DESCRIPTION NUMBER PS 8 PIN PLASTIC NARROW BODY SOIC (8HN) PART **OUTPUT SERIES RESISTANCE** NUMBER **BUILT-IN REQUIRED EXTERNALLY** 0 8585 37.5 Ohms

Legend: SOIC - Small Outline Package (No Heat-Sink)

HOLT INTEGRATED CIRCUITS 6

REVISION HISTORY

P/N R	Rev	Date	Description of Change
DS8585	M N	05/08/08 09/09/11	Clarified temperature ranges and added HI-8585PSI-N to Ordering Information Replaced references of setting ARINC output levels with zener diodes to using a band-gap reference circuit.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.