

Programmable RS-232/RS-485 Transceiver

Description

The <u>SP334</u> is a programmable RS-232 and/or RS-485 transceiver IC. The SP334 contains three drivers and five receivers when selected in RS-232 mode; and two drivers and two receivers when selected in RS-485 mode.

The RS-232 transceivers can typically operate at 230kbps while adhering to the RS-232 specifications. The RS-485 transceivers can operate up to 10Mbps while adhering to the RS-485 specifications. The RS-485 drivers can be disabled (High-Z output) by the TXEN enable pin. The RS-232 and RS-485 receiver outputs can be disabled by the RXEN pin.

FEATURES

- +5V Single Supply Operation
- Software Programmable RS-232 or RS-485 Selection
- Three RS-232 Drivers and Five Receivers in RS-232 Mode

SP334

- Two RS-485 Full-Duplex Transceivers in RS-485 Mode
- Full Differential Driver Tri-State (Hi-Z) Control
- Receiver Output Tri-State Control

Ordering Information - Back Page

Typical Applications Circuit

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{CC}		+7V
Input Voltages		
	Logic0.5V to (\	/ _{CC} + 0.5V)
	Drivers0.5V to (V	/ _{CC} + 0.5V)
	Receivers±30V	@ ≤100mA
Driver Outputs		±15V
Maximum Data	Rate	8Mbps ⁽¹⁾

Storage Temperature65°C to +150°C					
Power Dissipation					
28-pin WSOIC 1000mW					
Package Derating					

28-pin WSOIC

Θ_{JA} 40°C/W

NOTE:

1. Exceeding the maximum data rate of 8Mbps at T_A = 85 $^\circ\text{C}$ may permanently damage the device.

Electrical Characteristics

Limits are specified at T_A = 25°C and V_{CC} = +5.0V unless otherwise noted.

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Logic Inputs					
V _{IL}			0.8	V	
V _{IH}	2.0			V	
Logic Outputs		1			
V _{OL}			0.4	V	I _{OUT} = -3.2mA
V _{OH}	2.4			V	I _{OUT} = 1.0mA
Output Tri-state Leakage		10		μA	$0.4V \le V_{OUT} \le +2.4V$
RS-232 Driver	·		·		
DC Characteristics					
HIGH Level Output	+5.0		+15.0	V	$R_L = 3k\Omega$, $V_{IN} = 0.8V$
LOW Level Output	-15.0		-5.0	V	$R_L = 3k\Omega, V_{IN} = 2.0V$
Open Circuit Voltage	-15		+15	V	
Short Circuit Current			±100	mA	V _{OUT} = 0V
Power Off Impedance	300			Ω	V _{CC} = 0V, V _{OUT} = ±2.0V
AC Characteristics					
Slew Rate			30	V/µs	R_L = 3kΩ, C_L = 50pF; V_{CC} = +5.0V, T_A @ 25°C
Transistion Time			1.56	μs	R_L = 3k Ω , C_L = 2500pF; between ±3V, T _A @ +25°C
Maximum Data Rate	120	235		kbps	$R_L = 3k\Omega, C_L = 2500pF$
Propagation Delay t _{PHL}		2	8	μs	Measured from 1.5V of V _{IN} to 50% of V _{OUT} ;
Propagation Delay t _{PLH}		2	8	μs	$R_L = 3k\Omega$
RS-232 Receiver					
DC Characteristics					
HIGH Threshold		1.7	3.0	V	
LOW Threshold	0.8	1.2		V	
Receiver Open Circuit Bias			+2.0	V	
Input Impedance	3	5	7	kΩ	V _{IN} = +15V to -15V

Electrical Characteristics (Continued)

Limits are specified at T_A = 25°C and V_{CC} = +5.0V unless otherwise noted.

		TYP.	MAX.	UNITS	CONDITIONS	
RS-232 Receiver (Continued)						
AC Characteristics						
Maximum Data Rate	120	235		kbps		
Propagation Delay t _{PHL}		0.25	1	μs		
Propagation Delay t _{PLH}		0.25	1	μs	Measured from 50% of V_{IN} to 1.5V of V_{OUT}	
RS-485 Driver	-1	_1		1		
DC Characteristics						
Open Circuit Voltage			6.0	V		
Differential Output	1.5		5.0	V	$R_L = 54\Omega, C_L = 50pF$	
Balance			±0.2	V	$ V_{T} - \overline{V_{T}} $	
Common-Mode Output			3.0	V		
Output Current	28.0			mA	R _L = 54Ω	
Short Circuit Current			±250	mA	Terminated in -7V to +10V	
AC Characteristics		1	1	1		
Maximum Data Rate	10			Mbps	$R_L = 54\Omega$	
Maximum Data Rate			8	Mbps	$R_L = 54\Omega$, $T_A = +85^{\circ}C^{(1)}$	
Output Transition Time		30		ns	Rise/Fall time, 10% - 90%	
Propagation Delay t _{PHL}		80	120	ns	See Figures 3 & 5, R_{DIFF} = 54Ω, C _{L1} = C _{L2} = 100pF	
Propagation Delay t _{PLH}		80	120	ns		
Driver Output Skew		5	20	ns	Per Figure 5, t _{SKEW} = t _{DPHL} - t _{DPLH}	
Enable Timing						
Enable Time (see Figures 4 and 6)						
Enable to LOW		100	150	ns	$C_L = 15 pF, S_1 Closed$	
Enable to HIGH		100	150	ns	$C_L = 15 pF, S_2 Closed$	
Disable Time (see Figures 4 and 6)						
Disable from LOW		100	120	ns	$C_L = 15 pF, S_1 Closed$	
Disable from HIGH		100	120	ns	$C_L = 15 pF, S_2 Closed$	
RS-485 Receiver						
DC Characteristics						
Common Mode Range	-7.0		+12	V		
Receiver Sensitivity			±0.2	V	$-7V \le V_{CM} \le +12V$	
Input Impedance	12	15		kΩ	$-7V \le V_{CM} \le +12V$	
AC Characteristics						
Maximum Data Rate	10			Mbps		
Maximum Data Rate			8	Mbps	$T_{A} = +85^{\circ}C^{(1)}$	
		130	200	ns	See Figures 3 & 7, $R_{DIFF} = 54\Omega$,	
Propagation Delay t _{PHL}					$C_{L1} = C_{L2} = 100 \text{pF}$	
Propagation Delay t _{PHL} Propagation Delay t _{PLH}		130	200	ns	$C_{L1} = C_{L2} = 100 pF$	

Electrical Characteristics, Continued

Limits are specified at T_A = 25°C and V_{CC} = +5.0V unless otherwise noted.

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
RS-485 Receiver (Continued)					
Enable Timing					
Enable Time (see Figures 2 and 8)					
Enable to LOW		100	150	ns	C _L = 15pF, S ₁ Closed
Enable to HIGH		100	150	ns	C _L = 15pF, S ₂ Closed
Disable Time (see Figures 2 and 8)					
Disable from LOW		100	120	ns	C _L = 15pF, S ₁ Closed
Disable from HIGH		100	120	ns	C _L = 15pF, S ₂ Closed
Power Requirements					
Supply Voltage V _{CC}	+4.75		+5.25	V	
Supply Current I _{CC}			•	•	
No Load (T _X Disabled)		12	20	mA	TXEN = 0V
No Load (RS-232 Mode)		20	50	mA	RS232/RS485 = 0V
No Load (RS-485 Mode)		15	50	mA	RS232/RS485 = +5V
Environmental					
Operating Temperature					
Commercial (_C_)	0		70	°C	
Industrial (_E_)	-40		+85	°C	
Storage Temperature	-65		+150	°C	

NOTE:

1. Exceeding the maximum data rate of 8Mbps at $T_A = 85^{\circ}C$ may permanently damage the device.

Receiver Input Graph

Test Circuits

Figure 1. Driver DC Test Load Circuit

Figure 3. Driver / Receiver Timing Test Circuit

Figure 2. Receiver Timing Test Load Circuit

Figure 4. Driver Timing Test Load #2 Circuit

Switching Waveforms

 $t_{SKEW} = |t_{DPLH} - t_{DPHL}|$

Figure 5. Driver Propagation Delays

Figure 6. Driver Enable and Disable Times

Figure 7. Receiver Propagation Delays

Switching Waveforms (Continued)

Figure 9. Typical RS-232 Driver Output

Figure 10. Typical RS-485 Driver Output

Pinout

(in RS-232 Mode)

Figure 11. SP334 Pinout

Typical Operating Circuits

Figure 12. Typical Operating Circuits

Theory of Operation

The SP334 is made up of four separate circuit blocks: the charge pump, drivers, receivers, and decoder. Each of these circuit blocks is described in more detail below.

Charge-Pump

The charge pump is an Exar-patented design (U.S. 5,306,954) and uses a unique approach compared to older less efficient designs. The charge pump still requires four external capacitors. but uses а four-phase voltage shifting technique to symmetrical attain power 10V supplies. Figure 17(a) shows the waveform found on the positive side of capacitor C2, and Figure 17(b) shows the negative side of capacitor C2. There is a free-running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.

Phase 1: V_{SS} Charge Storage

During this phase of the clock cycle, the positive side of capacitors C_1 and C_2 are initially charged to +5V. C_1^+ is then switched to ground and charge on C_1^- is transferred to C_2^- . Since C_2^+ is connected to +5V, the voltage potential across capacitor C_2 is now 10V.

Phase 2: V_{SS} Transfer

Phase two of the clock connects the negative terminal of C_2 to the V_{SS} storage capacitor and the positive terminal of C_2 to ground, and transfers the generated -10V to C_3 . Simultaneously, the positive side of capacitor C₁ is switched to +5V and the negative side is connected to ground.

Phase 3: V_{DD} Charge Storage

The third phase of the clock is identical to the first phase; the charge transferred in C_1 produces -5V in the negative terminal of C_1 , which is applied to the negative side of capacitor C_2 . Since C_2^+ is at +5V, the voltage potential across C_2 is 10V.

Phase 4: V_{DD} Transfer

The fourth phase of the clock connects the negative terminal of C₂ to ground and transfers the generated 10V across C₂ to C₄, the V_{DD} storage capacitor. Again, simultaneously with this, the positive side of capacitor C₁ is switched to +5V and the negative side is connected to ground, and the cycle begins again.

Since both V+ and V⁻ are separately generated from V_{CC} in a no–load condition, V+ and V⁻ will be symmetrical. Older charge pump approaches that generate V⁻ from V+ will show a decrease in the magnitude of V⁻ compared to V+ due to the inherent inefficiencies in the design.

The clock rate for the charge pump typically operates at 15kHz. The external capacitors must be 0.1μ F with a 16V breakdown rating.

External Power Supplies

For applications that do not require +5V only, external supplies can be applied at the V+ and V- pins. The value of the external supply voltages must be no greater than $\pm 10V$. The current drain for the $\pm 10V$ supplies is used for RS-232. For the RS-232 driver the current requirement will be 3.5mA per driver. The external power supplies should provide a power supply sequence of :+10V, then +5V, followed by -10V.

Figure 16. Charge Pump Phase 4

Figure 17. Charge Pump Waveforms

Drivers

The SP334 has three independent RS-232 single-ended drivers and two differential RS-485 drivers. Control for the mode selection is done by the RS232/RS485 select pin. The drivers are pre-arranged such that for each mode of operation the relative position and functionality of the drivers are set up to accommodate the selected interface mode. As the mode of the drivers is changed, the electrical characteristics will change to support the requirements of clock, data, and control line signal levels. Unused driver inputs can be left floating; however, to ensure a desired state with no input signal, pull–up resistors to +5V or pull–down resistors to ground are suggested. Since the driver inputs are both TTL or CMOS compatible, any value resistor less than $100k\Omega$ will suffice.

When in RS-232 mode, the single-ended RS-232 drivers produce compliant RS-232E and ITU V.28 signals. Each of the three drivers output single-ended bipolar signals in excess of $\pm 5V$ with a full load of $3k\Omega$ and 2500pF applied as specified. These drivers can also operate at least 120kbps.

When programmed to RS-485 mode, the differential RS-485 drivers produce complaint RS-485 signals. Each RS-485 driver outputs a unipolar signal on each output pin with a magnitude of at least 1.5V while loaded with a worst case of 54Ω between the driver's two output pins. The signal levels and drive capability of the RS-485 drivers allow the drivers to also comply with RS-422 levels. The transmission rate for the differential drivers is 10Mbps.

Receivers

The SP334 has five single-ended receivers when programmed for RS-232 mode and two differential receivers when programmed for RS-485 mode.

Control for the mode selection is done the same select pin as in the drivers. As the operating mode of the receivers is changed, the electrical characteristics will change to support the requirements of the appropriate serial standard. Unused receiver inputs can be left floating without causing oscillation. To ensure a desired state of the receiver output, a pull–up resistor of $100k\Omega$ to +5V should be connected to the inverting input for a logic low, or the non–inverting input for a logic high. For single-ended receivers, a pull–down resistor to ground of $5k\Omega$ is internally connected, which will ensure a logic high output.

The RS-232 receiver has a single–ended input with a threshold of 0.8V to 2.4V. The RS-232 receiver has an operating voltage range of \pm 15V and can receive signals up to 120kbps. RS-232 receivers are used in RS-232 mode for all signal types include data, clock, and control lines of the RS-232 serial port.

The differential RS-485 receiver has an input impedance of $15k\Omega$ and a differential threshold of ± 200 mV. Since the characteristics of an RS-422 receiver are actually subsets of RS-485, the receivers for RS-422 requirements are identical to the RS-485 receivers. All of the differential receivers can receive data up to 10Mbps.

Enable Pins

The SP334 drivers can be enabled by use of the TXEN pin. A logic HIGH will enable the driver outputs and a logic LOW will tri-state the outputs. The drivers can only be tri-stated in RS-485 mode. The drivers are always active in RS-232 mode.

The Receiver outputs can also be tri-stated by the use of the RXEN pin. A logic LOW will enable the receiver outputs and a logic HIGH will tri-state the outputs. The receiver tri-state capability is offered for both RS-232 and RS-485 modes. The input impedance of the receivers during tri-state is at least $12k\Omega$.

Applications

The SP334 allows the user flexibility in having a RS-232 or RS-485 serial port without using two different discrete active IC's. Figure 18 shows a connection to a standard DB-9 RS-232 connector. In RS-485 mode, the SP334 is a full duplex transceiver, however, a half duplex configuration can be made by connecting the driver outputs to receiver inputs.

Figure 18. SP334 Configuration to a DB-9 Serial Port

Mechanical Dimensions

WSOIC28

Top View

Side View

Front View

				700" 000				
PACKAGE OUTLINE SOIC .300" BODY JEDEC MS-013 VARIATION AE								
	COMMON	COMMON DIMENSIONS IN MM COMMON DIMENSIONS IN INCHES						
SYMBOLS		Control Uni	it)	(Reference Unit)				
	MIN	NOM	MAX	MIN	NOM	MAX		
Α	2.35	_	2.65	0.093	—	0.104		
A1	0.10	—	0.30	0.004	—	0.012		
A2	2.05	_	2.55	0.081	_	0.100		
b	0.31	-	0.51	0.012	-	0.020		
с	0.20	_	0.33	0.008	_	0.013		
E	1	0.30 BS	с	0.406 BSC				
E1	7.50 BSC			0.295 BSC				
е		1.27 BSC)	0.050 BSC				
h	0.25	—	0.75	0.010	—	0.030		
L	0.40	_	1.27	0.016	_	0.050		
L1		1.40 REF		0.055 REF				
L2		0.25 BS0	2	0.010 BSC				
R	0.07	—	—	0.003	—	—		
R1	0.07	-	_	0.003	_	_		
θ	0.	—	8'	0*	—	8*		
θ1	5°	_	15 °	5°	_	15 °		
θ2	0'	—	—	0*	—	—		
D	17.90 BSC 0.705 BSC				SC			
N	28							

Drawing No: POD-00000106

Revision: B

Ordering Information⁽¹⁾

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method
SP334CT-L	0°C to 70°C			Tube
SP334CT-L/TR		Yes ⁽²⁾		Reel
SP334ET-L	-40°C to 85°C	res/	28-pin WSOIC	Tube
SP334ET-L/TR	-40 C to 65 C			Reel

NOTE:

1. Refer to <u>www.exar.com/SP334</u> for most up-to-date Ordering Information.

2. Visit <u>www.exar.com</u> for additional information on Environmental Rating.

Revision History

Revision	Date	Description
2000	SP334/10	Legacy Sipex Datasheet
09/09/09	1.0.0	Convert to Exar Format. Add typical application circuit to page 1 and Revision History table. Remove EOL part numbers and update ordering information per PDN 081126-01. Change revision to 1.0.0. Add Maximum Data Rate to Absolute Maximum Ratings. Add RS-485 Driver and Receiver data rate column for 8Mbps maximum at Tmax and add Note 1.
03/19/18	1.0.1	Update to MaxLinear logo. Update format and ordering information table. RS-485 Enable Timing moved on page 3.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com High Performance Analog: 1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101 Email: <u>serialtechsupport@exar.com</u> www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.

© 2009 - 2018 MaxLinear, Inc. All rights reserved

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.