MITSUBISHI SEMICONDUCTOR (GaAs FET)

MGF2407A

MICROWAVE POWER GaAs FET

DESCRIPTION

The MGF2407A, power GaAs FET with an N-channel schottky gate, is designed for use in S to Ku band amplifiers.

FEATURES

• High output power

 $P_{1dB} = 24.5 \text{ dBm (TYP.)} @ 14.5 \text{ GHz}$

• High power gain

 $G_{LP} = 8 dB (TYP.)$

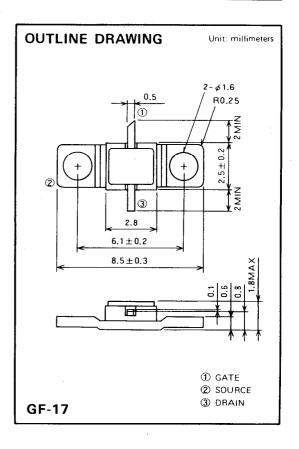
@ 14.5 GHz

• High power added efficiency

 $\eta_{\rm add}$ = 30% (TYP.)

@ 14.5 GHz, P_{1dB}

APPLICATION


S to Ku band power amplifiers.

QUALITY GRADE

• IG

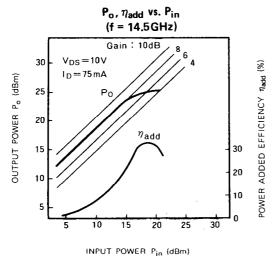
RECOMMENDED BIAS CONDITIONS

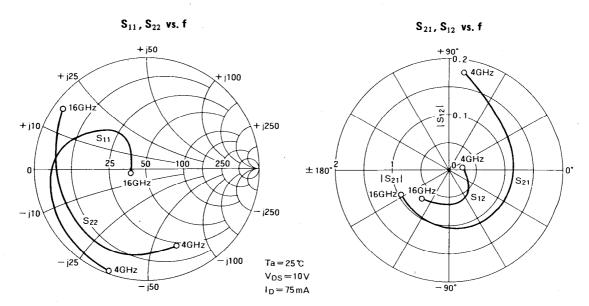
- V_{DS}=10V
- I_D=75mA
- Refer to Bias Procedure

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Symbol	Parameter	Ratings	Unit	
V_{GDO}	Gate to drain voltage	-15	V	
V _{GSO}	Gate to source voltage	-15	V	
ID	Drain current	200	mA	
IGR	Reverse gate current	-0.6	mA ⁻	
I _{GF}	Forward gate current	2.5	mA	
PT	Total power dissipation * 1	1.5	w	
Tch	Channel temperature	175	-C	
Tstg	Storage temperature	-65~+175	°C	

*1: T_C=25°C


ELECTRICAL CHARACTERISTICS ($T_a = 25^{\circ}C$)


Symbol	Parameter	Test conditions	Limits			
	, didinates	rest conditions	Min	Тур	Max	Unit
IDSS	Saturated drain current	turrent $V_{DS}=3V$, $V_{GS}=0V$ 100		150	200	mA
V _{GS (off)}	Gate to source cut-off voltage	$V_{DS}=3V$, $I_D=0.5mA$	-1	-2.5	-4	V
9 m	Transconductance	$V_{DS} = 3V, I_{D} = 75 \text{ mA}$	50	65		mS
P _{1dB}	Output power at 1dB gain compression		23.0	24.5	_	dBm
GLP	Linear power gain	$V_{DS} = 10V$, $I_D = 75 \text{ mA}$, $f = 14.5 \text{ GHz}$,	7.0	8.0		dB
7 add	Power added efficiency at P _{1dB}			30	-	%
Rth(ch-c)	Thermal resistance * 1	ΔV_f method	_	 	100	°C/W

^{*1:} Channel to case

MICROWAVE POWER GaAs FET

TYPICAL CHARACTERISTICS (Ta = 25°C)

S PARAMETERS ($T_a = 25^{\circ}C$, $V_{DS} = 10 \text{ V}$, $I_D = 75 \text{ mA}$)

f - (GHz) -	S Parameters (TYP.)									
	S ₁₁		S ₂₁		S ₁₂		S ₂₂		K	MSG/MAG
	Magn.	Angle (deg.)	Magn.	Angle (deg.)	Magn.	Angle (deg.)	Magn.	Angle (deg.)	_	· dB
4	0.968	-112.5	1.766	81.5	0.024	- 6.0	0.713	- 70.5	0.380	18.7
6	0.929	- 135,5	1.279	48.5	0.028	- 6.0	0.758	- 93.5	0.813	16.6
8	0.891	-157.5	1.147	26.0	0.033	- 17.0	0.777	-116.0	0.948	15.4
10	0.833	-180.0	1,111	- 5.0	0.041	- 30.5	0.782	-139.0	1,176	11.8
12	0.719	158.0	1.080	- 36.0	0.050	- 50.0	0.793	-164.5	1.583	8.9
14	0.469	133.5	1.030	- 85.0	0.059	- 82.0	0.818	168.0	2.276	6.1
. 16	0.172	-165.5	0.967	-153.0	0.073	-123.0	0.911	144.5	1.245	8.2

MGF2407A

MICROWAVE POWER GaAs FET

Requests Regarding Safety Designs

Mitsubishi Electric constantly strives to raise the level of its quality and reliability. Despite these concerted efforts, however, there will be occasions when our semiconductor products suffer breakdowns, malfunctions or other problems. In view of this reality, it is requested that every feasible precaution be taken in the pursuit of redundancy design, malfunction prevention design and other safety-related designs, to prevent breakdowns or malfunctions in our products from resulting in accidents involving people, fires, social losses or other problems, thereby upholding the highest levels of safety in the products when in use by customers.

Matters of Importance when Using these Materials

- 1. These materials are designed as reference materials to ensure that all customers purchase Mitsubishi Electric semiconductors best suited to their specific use applications. Please be aware, however, that the technical information contained in these materials does not comprise consent for the execution or use of intellectual property rights or other rights owned by Mitsubishi Electric Corporation.
- 2. Mitsubishi Electric does not assume responsibility for damages resulting from the use of product data, graphs, charts, programs, algorithms or other applied circuit examples described in these materials, or for the infringement of the rights of third-party owners resulting from such use.
- 3. The data, graphs, charts, programs, algorithms and all other information described in these materials were current at the issue of these materials, with Mitsubishi Electric reserving the right to make any necessary updates or changes in the products or specifications in these materials without prior notice. Before purchasing Mitsubishi Electric semiconductor products, therefore, please obtain the latest available information from Mitsubishi Electric directly or an authorized dealer.
- 4. Every possible effort has been made to ensure that the information described in these materials is fully accurate. However, Mitsubishi Electric assumes no responsibility for damages resulting from inaccuracies occurring within these materials.
- 5. When using the product data, technical contents indicated on the graphs, charts, programs or algorithms described in these materials, assessments should not be limited to only the technical contents, programs and algorithm units. Rather, it is requested that ample evaluations be made of each individual system as a whole, with the customer assuming full responsibility for decisions on the propriety of application. Mitsubishi Electric does not accept responsibility for the propriety of application.
- 6. The products described in these materials, with the exception of special mention concerning use and reliability, have been designed and manufactured with the purpose of use in general electronic machinery. Accordingly these products have not been designed and manufactured with the purpose of application in machinery or systems that will be used under conditions that can affect human life, or in machinery or systems used in social infrastructure that demand a particularly high degree of reliability. When considering the use of the products described in these materials in transportation machinery (automobiles, trains, vessels), for objectives related to medical treatment, aerospace, nuclear power control, submarine repeaters or systems or other specialized applications, please consult with Mitsubishi Electric directly or an authorized dealer.
- 7. When considering use of products for purposes other than the specific applications described in these materials, please inquire at Mitsubishi Electric or an authorized dealer.
- 8. The prior consent of Mitsubishi Electric in writing is required for any reprinting or reproduction of these materials.
- 9. Please direct any inquiries regarding further details of these materials, or any other comments or matters of attention, to Mitsubishi Electric or an authorized dealer.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.