3.3 V, LV-PECL/LV-CMOS Clock Multiplier

Description

The NB3N3020 is a high precision, low phase noise selectable clock multiplier. The device takes a 5 - 27 MHz fundamental mode parallel resonant crystal or a 2 - 210 MHz LVCMOS single ended clock source and generates a differential LVPECL output and a single ended LVCMOS/LVTTL output at a selectable clock output frequency which is a multiple of the input clock frequency. Three tri–level (Low, Mid, High) LVCMOS/LVTTL single ended select pins set one of 26 possible clock multipliers. An LVCMOS/LVTTL output enable (OE) tri–states clock outputs when low.

This device is housed in 5 mm x 4.4 mm narrow body TSSOP 16 pin package.

Features

- Selectable Clock Multiplier
- External Loop Filter is Not Required
- LV-PECL Differential Output
- LVCMOS/ LVTTL Outputs
- RMS Period Jitter of 5 ps
- Jitter or Low Phase Noise at 125 MHz [25 MHz Input]:

Offset	Noise Power
100 Hz	-95 dBc/Hz
1 kHz	-107 dBc/Hz
10 kHz	-112 dBc/Hz
100 kHz	-117 dBc/Hz
1 MHz	-117 dBc/Hz
10 MHz	-134 dBc/Hz

- Operating Range 3.3 V ±10%
- Industrial Temperature Range –40°C to +85°C

ON Semiconductor®

http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

Pin	Name	I/O	Description
FIII	Name	1/0	Description
6	Sel0	Tri-Level Input	Frequency select input 0. When left open, defaults to VDD/ 2. See output select Table 2 for details.
5	Sel1	Tri-Level Input	Frequency select input 1. When left open, defaults to VDD/ 2. See output select Table 2 for details.
4	Sel2	Tri-Level Input	Frequency select input 2. When left open, defaults to VDD/ 2. See output select Table 2 for details.
1, 11, 15	VDD	Power Supply	Positive supply voltage pins are connected to +3.3 V supply voltage.
2	X1/CLK	Input	Crystal or Clock input. Connect to 5 – 27 MHz crystal source or 2 – 210 MHz single-ended clock. See Table 2.
3	X2	Input	Crystal input. Connect to a 5 – 27 MHz crystal or leave unconnected for clock input. See Table 2.
7, 16	OE1, OE2	Input	Output enable input that tri-states clock outputs when low. Internal pull-up resistor to VDD. OE1 is designated to control LV CMOS output synchronously and OE2 is designated to control LV PECL output synchronously. See operation details in device operation.
8, 9, 12	GND	Power Supply	Ground 0 V. These pins provide GND return path for the devices.
13	CLK2	LVPECL Output	Non-inverted clock output. Clock frequency equals input frequency times multiplier.
14	CLK2	LVPECL Output	Inverted clock output. Clock frequency equals input frequency times multiplier.
10	CLK1	LVTTL/ LVCMOS Output	Clock Output. Clock frequency equals input frequency times multiplier.

Table	1. Pin	Description	
-------	--------	-------------	--

Sel2	Sel1	Sel0	CLK1, CLK2, <u>CLK2</u>	Clock Input Range [MHz]	Crystal Input Range [MHz]
L	L	L	Low (Power Down)	-	-
L	L	М	Input X 1	25 – 210	25 – 27
L	L	н	Input X 1.33	15 –157.5	15 – 27
L	М	L	Input X 1.5	10 – 140	10 – 27
L	М	М	Input X 1.6	25 – 131.25	25 – 27
L	М	Н	Input X 1.875	40 – 112	-
L	Н	L	Input X 2	25 – 105	25 – 27
L	н	М	Input X 2.33	15 – 90	15 – 27
L	Н	Н	Input X 2.4	25 – 87.5	25 – 27
М	L	L	Input X 2.5	10 – 84	10 – 27
М	L	М	Input X 2.66	15 – 78.75	15 – 27
М	L	Н	Input X 3	15 – 70	15 – 27
М	М	L	Input X 3.125	40 - 67.20	-
М	М	М	Input X 3.2	25 - 65.63	25 – 27
М	М	Н	Input X 3.33	15 – 63	15 – 27
М	Н	L	Input X 3.75	20 – 56	20 – 27
М	Н	М	Input X 4	2 – 25	5 – 25
М	Н	Н	Input X 5	6 – 42	6 – 27
Н	L	L	Input X 6	5 – 35	5 – 27
Н	L	М	Input X 6.25	20 - 33.6	20 – 27
Н	L	Н	Input X 6.33	15 – 33.16	15 – 27
Н	М	L	Input X 8	5 – 26.25	5 – 26.25
Н	М	М	Input X 8.33	15 – 25.2	15 – 25.2
Н	М	Н	Input X 10	5 – 21	5 – 21
Н	Н	L	Input X 12	5 – 17.5	5 – 17.5
Н	Н	М	Input X 12.5	10 – 16.8	10 – 16.8
Н	Н	Н	Input X 16	5 – 13.125	5 – 13.125

Table 2. Output Frequency Clock Multiplier Select Table

L – Low, M – Mid, H – High

Recommended Crystal Parameters

Crystal	Fundamental AT-Cut
Frequency	5 – 27 MHz
Load Capacitance	16 – 20 pF
Shunt Capacitance, C0	7 pF Max
Equivalent Series Resistance	35Ω Max
Initial Accuracy at 25°C	±20 ppm
Temperature Stability	±30 ppm
Aging	±20 ppm
C0/C1 Ration	250 Max

Device Operation

The NB3N3020 is a Clock multiplier. The device can take crystal or clock input and generates LVPECL and LVCMOS/LVTTL clock outputs which are multiples of the

input as determined by the tri-level select inputs [Sel0, Sel1, Sel2].

Clock Multiplication

NB3N3020 is a clock multiplier with the clock multiplier selected by the tri level select inputs [Sel0, Sel1, Sel2]. NB3N3020 has a LVTTL/LVCMOS output [CLK1] and a LVPECL clock output [CLK2, CLK2].

Output Enable

The device has an output enable [OE] which is used to tri-state the outputs. OE1 controls the CLK1 clock output where as OE2 controls the CLK2, $\overline{CLK2}$ clock outputs. When OE1or OE2 are disabled, the respective clock output(s) are tri-stated. In this mode of operation, PLL is still running, with the respective clock outputs tri-stated. When the OE1 or OE2 are enabled, the clock outputs

become active synchronous to the internal PLL output clock and do not create any glitches or runt pulses during the transition. In power down mode, the outputs are tri-stated regardless of the state of the OE1, OE2.

Changing Clock Multiplier

The clock output frequency can be dynamically changed using Sel0, Sel1, Sel2 pins. When the clock frequency is changed, the clock outputs move from one frequency to another and the PLL locks to the new frequency within a settling time of 3 msec. There is no glitch during this transition when the clock outputs are active {not tri-stated by OE1, OE2}.

Crystal/ Clock Input

The device takes in a 5 - 27 MHz crystal input or 2 - 210 MHz clock input. Once powered up, the input frequency is fixed and should not be changed dynamically. The input cannot accept a spread spectrum clock and needs a fixed frequency clock for device operation. The input frequencies

for clock and crystal input for specific multipliers are determined by Table 3.

Power Up

When the NB3N3020 is powered up, it takes 10 msec for the PLL's to stabilize and lock to the desired frequency of operation as selected by Sel0, Sel1, Sel2. During this time period, there may be glitches in the clock outputs.

Power Down:

The device can be powered down when the Sel0, Sel1, Sel2 pins are all connected to GND. In this mode of operation, PLL is turned off and the device consumes less than 5 mA of current. There may be a glitch in clock outputs when the device is powering down. In power down mode, the outputs are tri–stated regardless of the state of the OE1, OE2.

In the cases where the application requires glitch–less transitions, in order to avoid glitches it is recommended to use synchronous OE signaling to mask glitches to the clock outputs.

Table 3. Attributes

Characteristics	Value		
ESD Protection Human Body Model	2 kV		
Moisture Sensitivity, Indefinite Time Out of Dry pack (Note 1)	Level 1		
Flammability Rating Oxygen Index	UL-94 code V-0 A 1/8″ 28 to 34		
Transistor Count 8287 Devices			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V_{DD}	Positive Power Supply	GND = 0 V		4.6	V
VI	Input Voltage (VIN)	GND = 0 V	$GND \leq V_{I} \leq V_{DD}$	–0.5 V to V _{DD} + 0.5 V	V
I _{out}	LV PECL Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	TSSOP – 16 TSSOP – 16	138 108	°C/W
θJC	Thermal Resistance (Junction-to-Case)	(Note 3)	TSSOP – 16	33 to 36	°C/W
T _{sol}	Wave Solder			265	°C

Table 4. Maximum Ratings (Note 2)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and not valid simultaneously. If stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected.

3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power).

Symbol	Characteristic	Min	Тур	Мах	Unit
V_{DD}	Power Supply Voltage	2.97	3.3	3.63	V
I _{DD}	Power Supply Current (Note 4)		60	75	mA
IDDOE	Power Supply Current when OE1, OE2 is Set Low		50		mA
IDDOFF	Power Supply Current when PLL is powered off by Sel0, Sel1, Sel2			5	mA
VIH	Input HIGH Voltage (X1/CLK, OE1, OE2)	2000		V _{DD} + 300	mV
VIL	Input LOW Voltage (X1/CLK, OE1, OE2)	GND – 300		800	mV
VIH	Input HIGH Voltage (Sel0, Sel1, Sel2)	0.72 V _{DD}		V _{DD} + 300	mV
VIL	Input LOW Voltage (Sel0, Sel1, Sel2)	GND – 300		800	mV
V_{IM}	Input Mid Voltage (Sel0, Sel1, Sel2) (When left open, defaults to $V_{\mbox{DD}}/2$		V _{DD} /2		mV
V _{OH}	Output HIGH Voltage for CLK2, CLK2 (See Figure 3)	V _{DD} - 1.145		V _{DD} - 0.895	V
V _{OL}	Output LOW Voltage for CLK2, CLK2 (See Figure 3)	V _{DD} - 2.090		V _{DD} - 1.600	V
V _{OH}	Output HIGH Voltage for CLK1 [I _{OH} = -12 mA]	2.4			V
V _{OL}	Output LOW Voltage for CLK1 [I _{OL} = 12 mA]			0.4	V

Table 5. DC CHARACTERISTICS (V_{DD} = 3.3 V ±10%, GND = 0 V, T_A = -40°C to +85°C)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Measurement taken at 125 MHz with LV-PECL & LV-CMOS/ LV-TTL outputs not terminated.

Symbol	Characteristic	Min	Тур	Max	Unit
f _{CLKIN}	Crystal Input Frequency	5.0		27	MHz
f _{CLKIN}	Clock Input Frequency	2.0		210	MHz
f _{CLKOUT}	Output Clock Frequency			210	MHz
Φ_{NOISE}	Phase-Noise Performance (f _{CLKout} = 125 MHz, 25 MHz input)				
	@ 100 Hz offset from carrier		-95		dBc/Hz
	@ 1 kHz offset from carrier		-107		dBc/Hz
	@ 10 kHz offset from carrier		-112		dBc/Hz
	@ 100 kHz offset from carrier		-117		dBc/Hz
	@ 1 MHz offset from carrier		-117		dBc/Hz
	@ 10 MHz offset from carrier		-134		dBc/Hz
Tjitter p−p	Cycle to Cycle Jitter peak to peak (Note 6) f _{CLKout} = 125 MHz, 25 MHz input		20	36	ps
Tjitter rms	Cycle to Cycle Jitter rms (Note 6) f _{CLKout} = 125 MHz, 25 MHz input		5.0	9.0	ps
Tjitter p−p	Period Jitter peak to peak (Note 7) f _{CLKout} = 125 MHz, 25 MHz input		15	20	ps
Tjitter rms	Period Jitter rms (Note 7) f _{CLKout} = 125 MHz, 25 MHz input		3.0	5.0	ps
	Start up time from power up		10		ms
OE	Output Enable/Disable Time		10		us
	PLL settling time		3		ms

Table 6. AC Characteristics (V_{DD} = 3.3 V \pm 10%, GND = 0 V, T_A = -40°C to +85°C) (Note 5)

5. Measurement taken with outputs terminated with 50 ohms to $V_{\mbox{DD}}$ – 2 V. See Figure 2.

6. Sampled with 1000 cycles

7. Sampled with 10000 cycles

Symbol	Characteristic	Min	Тур	Мах	Unit
^t DUTY_CYCLE	Output Clock Duty Cycle (Measured at cross point for LV PECL clock output and VDD/2 for LVCMOS/ LVTTL clock output)	45	50	55	%
t _R	Output Rise Time (Note 5) (Measured from 20% to 80%. Figure 2) LV PECL Output		340	700	ps
t _F	Output Fall Time (Note 5) (Measured from 20% to 80%. Figure 2) LV PECL Output		340	700	ps
t _R	Output Rise Time (Measured from 0.8 to 2 V, no load) LVCMOS/ LV TTL Output			1500	ps
t _F	Output Fall Time (Measured from 2.0 V to 0.8 V, no load) LVCMOS/ LV TTL Output			1500	ps
t _R / t _F	Input Rise time/ Fall time for LV CMOS/ LV TTL clock input [X1/CLK]	0		1500	ps

Table 6. AC Characteristics (V_{DD} = 3.3 V $\pm 10\%,~GND$ = 0 V, T_A = $-40^{\circ}C$ to $+85^{\circ}C$) (Note 5)

5. Measurement taken with outputs terminated with 50 ohms to V_{DD} – 2 V. See Figure 2.

6. Sampled with 1000 cycles

7. Sampled with 10000 cycles

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Figure 2. Typical Termination for Output Driver for Device Evaluation

Figure 3. LV-PECL Output Parameter Characteristics

PACKAGE DIMENSIONS

TSSOP-16 CASE 948F-01 **ISSUE B**

INCHES

MIN MAX

0.047

0.193 0.200

0.002 0.006 0.020 0.030

0.026 BSC 0.007 0.011 0.004 0.008

0.007 0.010 0.252 BSC 0 ° 8

4.50 0.169 0.177

5.10

1.20

0.15

0.65 BSC

6.40 BSC

8

0 °

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

16X

1.26

0.36

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N3020DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
NB3N3020DTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product care a stuation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such apelicating the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.