

LM6181 100 mA, 100 MHz Current Feedback Amplifier

Check for Samples: LM6181

FEATURES

- (Typical Unless Otherwise Noted)
- Slew Rate: 2000 V/μs
- Settling Time (0.1%): 50 ns
- Characterized for Supply Ranges: ±5V and ±15V
- Low Differential Gain and Phase Error: 0.05%, 0.04°
- High Output Drive: ±10V into 100Ω
- Guaranteed Bandwidth and Slew Rate
- Improved Performance Over EL2020, OP160, AD844, LT1223 and HA5004

APPLICATIONS

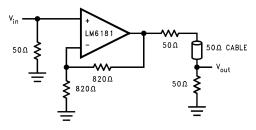
- Coax Cable Driver
- Video Amplifier
- Flash ADC Buffer
- High Frequency Filter
- Scanner and Imaging Systems

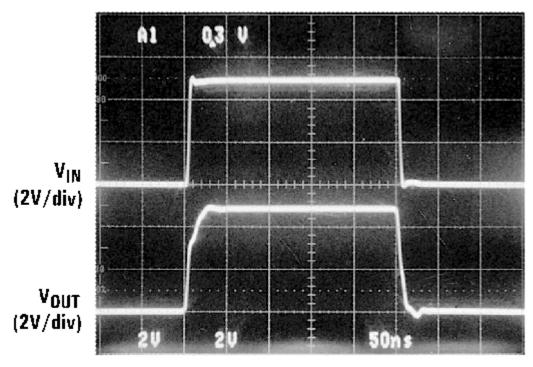
DESCRIPTION

The LM6181 current-feedback amplifier offers an unparalleled combination of bandwidth, slew-rate, and output current. The amplifier can directly drive up to 100 pF capacitive loads without oscillating and a 10V signal into a 50Ω or 75Ω back-terminated coax cable system over the full industrial temperature range. This represents a radical enhancement in output drive capability for an 8-pin PDIP high-speed amplifier making it ideal for video applications.

Built on Tl's advanced high-speed VIPTM II (Vertically Integrated PNP) process, the LM6181 employs current-feedback providing bandwidth that does not vary dramatically with gain; 100 MHz at $A_V = -1$, 60 MHz at $A_V = -10$. With a slew rate of 2000V/ μ s, 2nd harmonic distortion of -50 dBc at 10 MHz and settling time of 50 ns (0.1%) the LM6181 dynamic performance makes it ideal for data acquisition, high speed ATE, and precision pulse amplifier applications.

Typical Application




Figure 1. Cable Driver

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

VIP is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

TIME (50ns/div)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

Supply Voltage			±18V
Differential Input Voltage			±6V
Input Voltage			±Supply Voltage
Inverting Input Current			15 mA
Soldering Information	PDIP Package (N)	Soldering (10 sec)	260°C
	SOIC Package (M)	Vapor Phase (60 seconds)	215°C
		Infrared (15 seconds)	220°C
Output Short Circuit			See ⁽³⁾
Storage Temperature Range			-65°C ≤ T _J ≤ +150°C
Maximum Junction Temperature			150°C
ESD Rating ⁽⁴⁾			±3000V

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the Electrical Characteristics.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (3) Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±130 mA over a long term basis may adversely affect reliability.
- (4) Human body model 100 pF and 1.5 k Ω .

Operating Ratings(1)

<u> </u>		
Supply Voltage Range		7V to 32V
Junction Temperature Range ⁽²⁾	LM6181AM	-55°C ≤ T _J ≤ +125°C
	LM6181AI, LM6181I	-40°C ≤ T _J ≤ +85°C
Thermal Resistance (θ_{JA} , θ_{JC})	8-pin PDIP (N)	102°C/W, 42°C/W
	8-pin SOIC (M-8)	153°C/W, 42°C/W
	16-pin SOIC (M)	70°C/W, 38°C/W

⁽¹⁾ For guaranteed Military Temperature Range parameters see RETS6181X.

±15V DC Electrical Characteristics

The following specifications apply for Supply Voltage = ± 15 V, R_F = 820Ω , and R_L = 1 k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits T_J = 25°C.

Symbol	Parameter	Conditions	LM618	1AM	LM618	31AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
V _{OS}	Input Offset Voltage		2.0	3.0 4.0	2.0	3.0 3.5	3.5	5.0 5.5	mV max
TC V _{OS}	Input Offset Voltage Drift		5.0		5.0		5.0		μV/°C
I _B	Inverting Input Bias Current		2.0	5.0 12.0	2.0	5.0 12.0	5.0	10 17.0	μA max
	Non-Inverting Input Bias Current		0.5	1.5 3.0	0.5	1.5 3.0	2.0	3.0 5.0	
TC I _B	Inverting Input Bias Current Drift		30		30		30		nA/°C
	Non-Inverting Input Bias Current Drift		10		10		10		

Product Folder Links: LM6181

⁽²⁾ The typical junction-to-ambient thermal resistance of the molded PDIP(N) package soldered directly into a PC board is 102°C/W. The junction-to-ambient thermal resistance of the SOIC (M) package mounted flush to the PC board is 70°C/W when pins 1, 4, 8, 9 and 16 are soldered to a total 2 in² 1 oz. copper trace. The 16-pin SOIC (M) package must have pin 4 and at least one of pins 1, 8, 9, or 16 connected to V⁻ for proper operation. The typical junction-to-ambient thermal resistance of the SOIC (M-8) package soldered directly into a PC board is 153°C/W.

⁽¹⁾ Typical values represent the most likely parametric norm.

⁽²⁾ All limits guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

±15V DC Electrical Characteristics (continued)

The following specifications apply for Supply Voltage = ± 15 V, $R_F = 820\Omega$, and $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25$ °C.

Symbol	Parameter	Conditions	LM618	1AM	LM618	B1AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
I _B PSR	Inverting Input Bias Current Power Supply Rejection	V _S = ±4.5V, ±16V	0.3	0.5 3.0	0.3	0.5 3.0	0.3	0.75 4.5	μΑ/V max
	Non-Inverting Input Bias Current Power Supply Rejection	$V_S = \pm 4.5 V, \pm 16 V$	0.05	0.5 1.5	0.05	0.5 1.5	0.05	0.5 3.0	
I _B CMR	Inverting Input Bias Current Common Mode Rejection	-10V ≤ V _{CM} ≤ +10V	0.3	0.5 0.75	0.3	0.5 0.75	0.3	0.75 1.0	
	Non-Inverting Input Bias Current Common Mode Rejection	-10V ≤ V _{CM} ≤ +10V	0.1	0.5 0.5	0.1	0.5 0.5	0.1	0.5 0.5	
CMRR	Common Mode Rejection Ratio	-10V ≤ V _{CM} ≤ +10V	60	50 50	60	50 50	60	50 50	dB min
PSRR	Power Supply Rejection Ratio	V _S = ±4.5V, ±16V	80	70 70	80	70 70	80	70 65	dB min
R _O	Output Resistance	$A_V = -1$, $f = 300 \text{ kHz}$	0.2		0.2		0.2		Ω
R _{IN}	Non-Inverting Input Resistance		10		10		10		MΩ min
Vo	Output Voltage Swing	$R_L = 1 k\Omega$	12	11 11	12	11 11	12	11 11	V min
		$R_L = 100\Omega$	11	10 7.5	11	10 8.0	11	10 8.0	
I _{SC}	Output Short Circuit Current		130	100 75	130	100 85	130	100 85	mA min
Z _T	Transimpedance	$R_L = 1 k\Omega$	1.8	1.0 0.5	1.8	1.0 0.5	1.8	0.8 0.4	ΜΩ
		R _L = 100Ω	1.4	0.8 0.4	1.4	0.8 0.4	1.4	0.7 0.35	min
Is	Supply Current	No Load, V _O = 0V	7.5	10 10	7.5	10 10	7.5	10 10	mA max
V_{CM}	Input Common Mode Voltage Range		V ⁺ - 1.7V V ⁻ + 1.7V		V ⁺ - 1.7V V ⁻ + 1.7V		V ⁺ - 1.7V V ⁻ + 1.7V		V

±15V AC Electrical Characteristics

The following specifications apply for Supply Voltage = ± 15 V, $R_F = 820\Omega$, $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25$ °C.

Symbol	Parameter	Conditions	LM618	1AM	LM618	1AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽	Typical ⁽¹⁾	Limit ⁽²⁾	
BW	Closed Loop	A _V = +2	100		100		100		MHz
	Bandwidth -3 dB	A _V = +10	80		80		80		min
	3 dB	A _V = −1	100	80	100	80	100	80	
		A _V = −10	60		60		60		
PBW	Power Bandwidth	$A_V = -1, V_O = 5 V_{PP}$	60		60		60		
SR	Slew Rate	Overdriven	2000		2000		2000		V/µs
		$A_V = -1$, $V_O = \pm 10V$, $R_L = 150\Omega^{(3)}$	1400	1000	1400	1000	1400	1000	min

Product Folder Links: LM6181

(1) Typical values represent the most likely parametric norm.

(2) All limits guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

(3) Measured from +25% to +75% of output waveform.

±15V AC Electrical Characteristics (continued)

The following specifications apply for Supply Voltage = ± 15 V, $R_F = 820\Omega$, $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_{\perp} = 25$ °C.

Symbol	Parameter	Conditions	LM618	1AM	LM618	1AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽	Typical ⁽¹⁾	Limit ⁽²⁾	
t _s	Settling Time (0.1%)	$A_V = -1, V_O = \pm 5V$ $R_L = 150\Omega$	50		50		50		ns
t _r , t _f	Rise and Fall Time	V _O = 1 V _{PP}	5		5		5		
t _p	Propagation Delay Time	$V_O = 1 V_{PP}$	6		6		6		
i _{n(+)}	Non-Inverting Input Noise Current Density	f = 1 kHz	3		3		3		pA/√Hz
i _{n(-)}	Inverting Input Noise Current Density	f = 1 kHz	16		16		16		pA/√Hz
e _n	Input Noise Voltage Density	f = 1 kHz	4		4		4		pA/√Hz
	Second Harmonic Distortion	2 V _{PP} , 10 MHz	-50		-50		-50		dBc
	Third Harmonic Distortion	2 V _{PP} , 10 MHz	-55		- 55		-50		
	Differential Gain	$R_L = 150\Omega$							%
		A _V = +2	0.05		0.05		0.05		
		NTSC							
	Differential Phase	$R_L = 150\Omega$							Deg
		A _V = +2	0.04		0.04		0.04		
		NTSC							

±5V DC Electrical Characteristics

The following specifications apply for Supply Voltage = ± 5 V, $R_F = 820\Omega$, and $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	LM618	1AM	LM618	31AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
V _{OS}	Input Offset Voltage		1.0	2.0 3.0	1.0	2.0 2.5	1.0	3.0 3.5	mV max
TC V _{OS}	Input Offset Voltage Drift		2.5		2.5		2.5		μV/°C
I _B	Inverting Input Bias Current		5.0	10 22	5.0	10 22	5.0	17.5 27.0	μA max
	Non-Inverting Input Bias Current		0.25	1.5 1.5	0.25	1.5 1.5	0.25	3.0 5.0	
TC I _B	Inverting Input Bias Current Drift		50		50		50		nA/°C
	Non-Inverting Input Bias Current Drift		3.0		3.0		3.0		

Product Folder Links: LM6181

⁽¹⁾ Typical values represent the most likely parametric norm.

⁽²⁾ All limits guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

±5V DC Electrical Characteristics (continued)

The following specifications apply for Supply Voltage = $\pm 5V$, $R_F = 820\Omega$, and $R_L = 1~k\Omega$ unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25^{\circ}C$.

Symbol	Parameter	Conditions	LM618	1AM	LM618	31AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
I _B PSR	Inverting Input Bias Current Power Supply Rejection	V _S = ±4.0V, ±6.0V	0.3	0.5 0.5	0.3	0.5 0.5	0.3	1.0 1.0	μΑ/V max
	Non-Inverting Input Bias Current Power Supply Rejection	V _S = ±4.0V, ±6.0V	0.05	0.5 0.5	0.05	0.5 0.5	0.05	0.5 0.5	
I _B CMR	Inverting Input Bias Current Common Mode Rejection	-2.5V ≤ V _{CM} ≤ +2.5V	0.3	0.5 1.0	0.3	0.5 1.0	0.3	1.0 1.5	
	Non-Inverting Input Bias Current Common Mode Rejection	-2.5V ≤ V _{CM} ≤ +2.5V	0.12	0.5 1.0	0.12	0.5 0.5	0.12	0.5 0.5	
CMRR	Common Mode Rejection Ratio	$-2.5V \le V_{CM} \le +2.5V$	57	50 47	57	50 47	57	50 47	dB min
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4.0 V, \pm 6.0 V$	80	70 70	80	70 70	80	64 64	
R _O	Output Resistance	$A_V = -1$, $f = 300 \text{ kHz}$	0.25		0.25		0.25		Ω
R _{IN}	Non-Inverting Input Resistance		8		8		8		MΩ min
Vo	Output Voltage Swing	$R_L = 1 \text{ k}\Omega$	2.6	2.25 2.2	2.6	2.25 2.25	2.6	2.25 2.25	V min
		$R_L = 100\Omega$	2.2	2.0 2.0	2.2	2.0 2.0	2.2	2.0 2.0	
I _{SC}	Output Short Circuit Current		100	75 70	100	75 70	100	75 70	mA min
Z _T	Transimpedance	$R_L = 1 \text{ k}\Omega$	1.4	0.75 0.35	1.4	0.75 0.4	1.0	0.6 0.3	MΩ min
		$R_L = 100\Omega$	1.0	0.5 0.25	1.0	0.5 0.25	1.0	0.4 0.2	
Is	Supply Current	No Load, V _O = 0V	6.5	8.5 8.5	6.5	8.5 8.5	6.5	8.5 8.5	mA max
V _{CM}	Input Common Mode Voltage Range		V ⁺ - 1.7V V ⁻ + 1.7V		V ⁺ - 1.7V V ⁻ + 1.7V		V ⁺ - 1.7V V ⁻ + 1.7V		V

±5V AC Electrical Characteristics

The following specifications apply for Supply Voltage = ± 5 V, $R_F = 820\Omega$, and $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25^{\circ}$ C.

Symbol	Parameter	Conditions	LM618	1AM	LM61	81AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
BW	Closed Loop Bandwidth	A _V = +2	50		50		50		MHz
	-3 dB	A _V = +10	40		40		40		min
		A _V = -1	55	35	55	35	55	35	
		A _V = -10	35		35		35		
PBW	Power Bandwidth	$A_V = -1$, $V_O = 4$ V_{PP}	40		40		40		
SR	Slew Rate	$A_V = -1, V_O = \pm 2V,$ $R_L = 150\Omega^{(3)}$	500	375	500	375	500	375	V/µs min

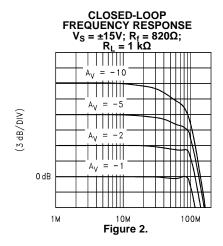
(1) Typical values represent the most likely parametric norm.

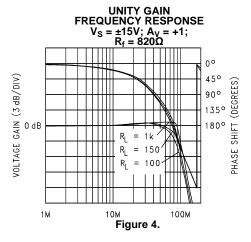
(2) All limits guaranteed at room temperature (standard type face) or at operating temperature extremes (bold face type).

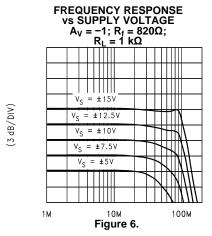
(3) Measured from +25% to +75% of output waveform.

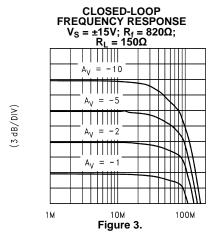
±5V AC Electrical Characteristics (continued)

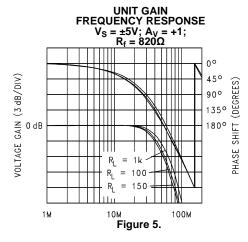
The following specifications apply for Supply Voltage = ± 5 V, $R_F = 820\Omega$, and $R_L = 1$ k Ω unless otherwise noted. **Boldface** limits apply at the temperature extremes; all other limits $T_J = 25^{\circ}$ C.

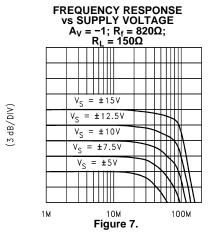

Symbol	Parameter	Conditions	LM618	1AM	LM61	81AI	LM61	81I	Units
			Typical ⁽¹⁾	Limit ⁽²⁾	Typical ⁽¹	Limit ⁽²⁾	Typical ⁽¹⁾	Limit ⁽²⁾	
t _s	Settling Time (0.1%)	$A_V = -1, V_O = \pm 2V$ $R_L = 150\Omega$	50		50		50		ns
t _r , t _f	Rise and Fall Time	$V_O = 1 V_{PP}$	8.5		8.5		8.5		
t _p	Propagation Delay Time	$V_O = 1 V_{PP}$	8		8		8		
i _{n(+)}	Non-Inverting Input Noise Current Density	f = 1 kHz	3		3		3		pA/√Hz
i _{n(-)}	Inverting Input Noise Current Density	f = 1 kHz	16		16		16		pA/√Hz
e _n	Input Noise Voltage Density	f = 1 kHz	4		4		4		pA/√Hz
	Second Harmonic Distortion	2 V _{PP} , 10 MHz	-45		-45		-45		dBc
	Third Harmonic Distortion	2 V _{PP} , 10 MHz	- 55		- 55		- 55		
	Differential Gain	$R_L = 150\Omega$ $A_V = +2$ NTSC	0.063		0.063		0.063		%
	Differential Phase	$R_L = 150\Omega$ $A_V = +2$ NTSC	0.16		0.16		0.16		Deg

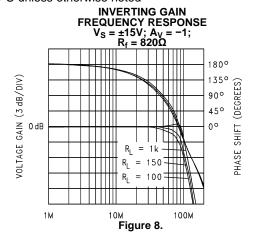

Product Folder Links: LM6181

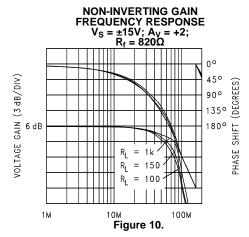


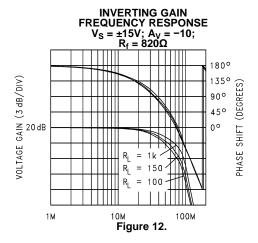

Typical Performance Characteristics

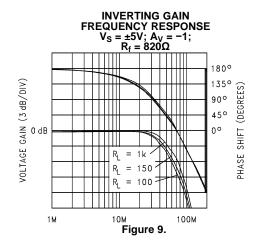

 $T_A = 25$ °C unless otherwise noted

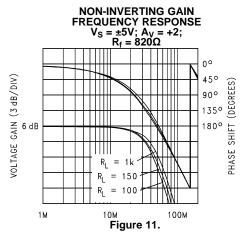


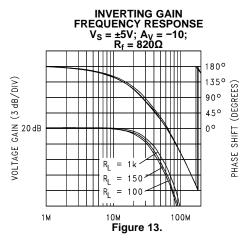


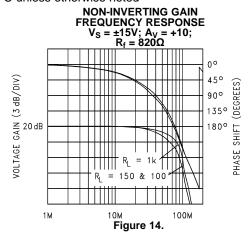

Submit Documentation Feedback


Copyright © 2004, Texas Instruments Incorporated

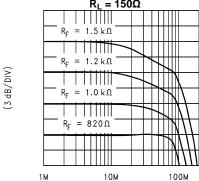
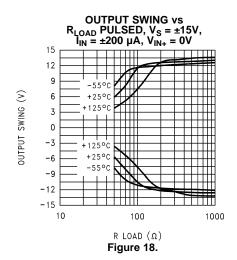
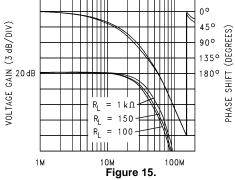


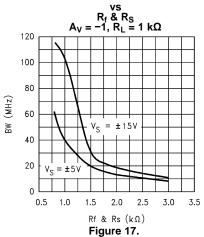

 $T_A = 25$ °C unless otherwise noted



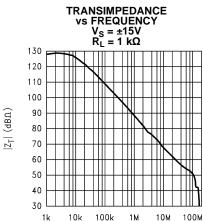
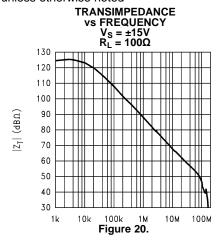
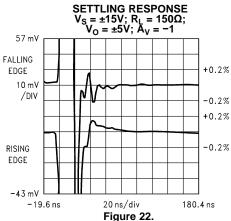


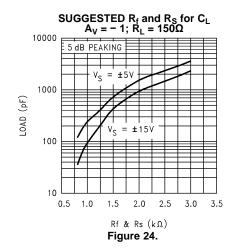
T_A = 25°C unless otherwise noted

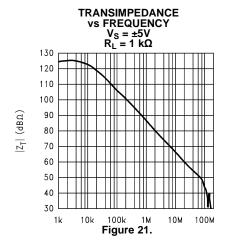




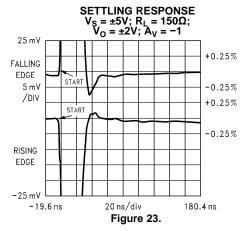

Figure 16.

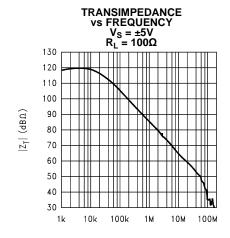
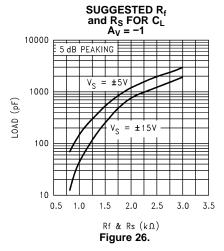
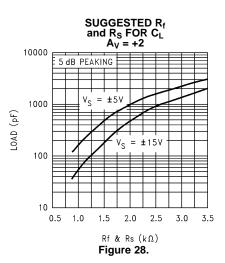
BANDWIDTH

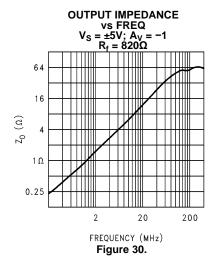




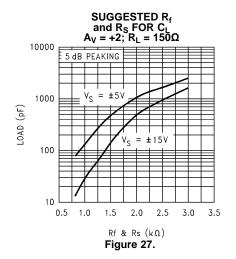

Figure 19.

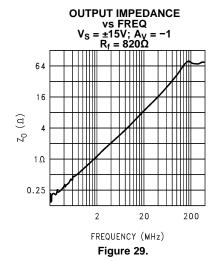


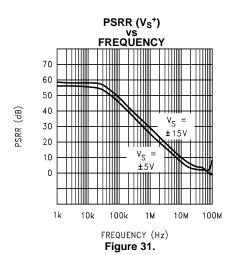

 $T_A = 25$ °C unless otherwise noted

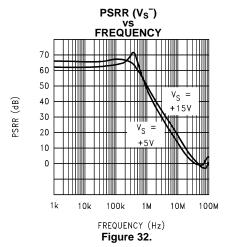




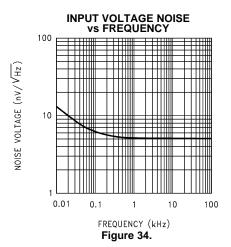

Figure 25.

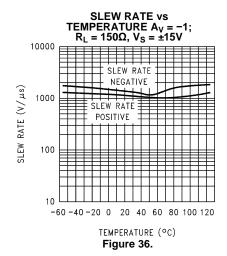


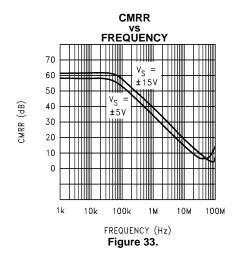

 $T_A = 25$ °C unless otherwise noted

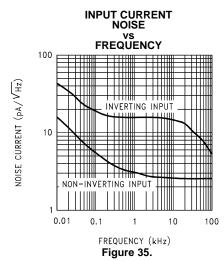


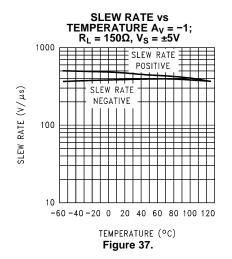


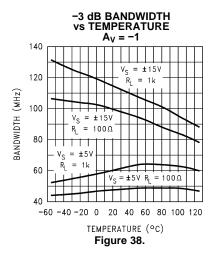


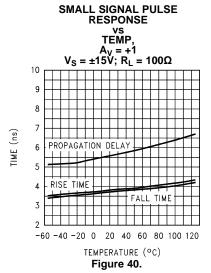


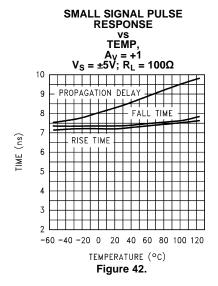


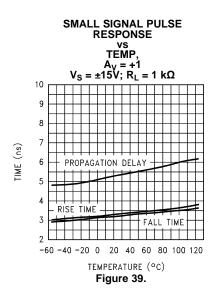

 $T_A = 25$ °C unless otherwise noted

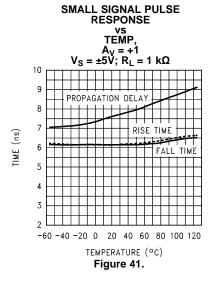


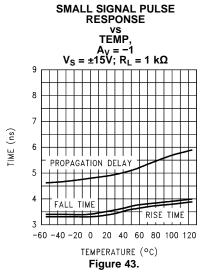


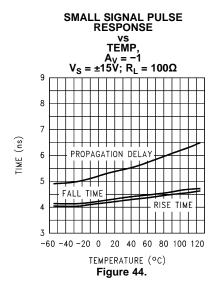


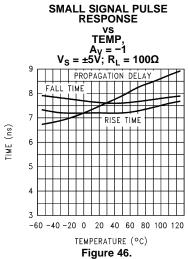

Copyright © 2004, Texas Instruments Incorporated

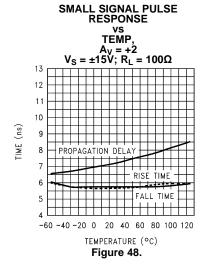


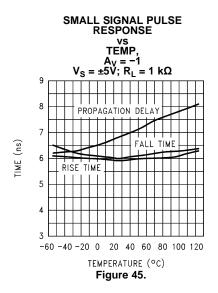

 $T_A = 25$ °C unless otherwise noted

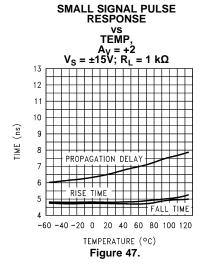


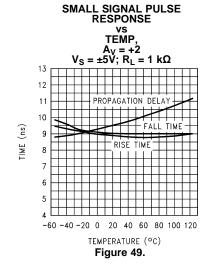


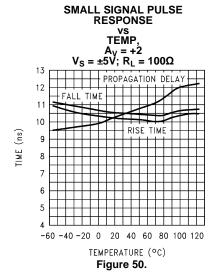

Submit Documentation Feedback

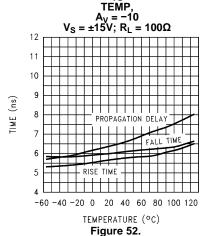

Copyright © 2004, Texas Instruments Incorporated

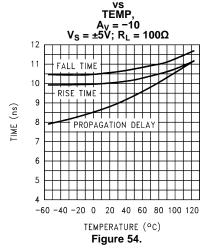


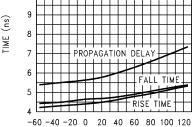

 $T_A = 25$ °C unless otherwise noted



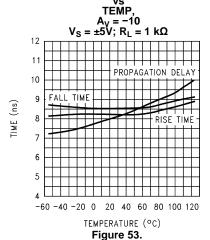





T_A = 25°C unless otherwise noted



SMALL SIGNAL PULSE RESPONSE

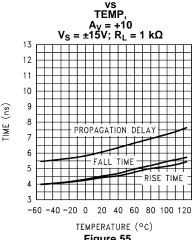
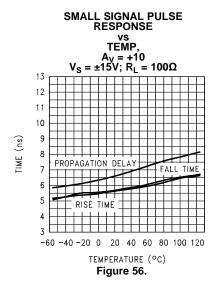


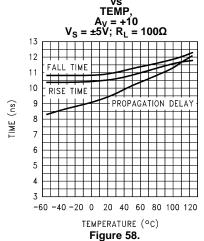
SMALL SIGNAL PULSE RESPONSE TEMP $V_S = \pm 15V$; $R_L = 1 k\Omega$ 12 10

TEMPERATURE (°C) Figure 51.

SMALL SIGNAL PULSE RESPONSE

SMALL SIGNAL PULSE RESPONSE


Figure 55.

 $T_A = 25$ °C unless otherwise noted

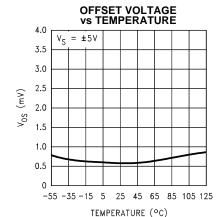
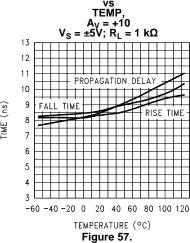
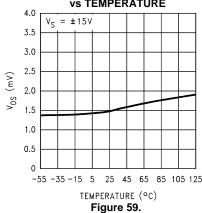
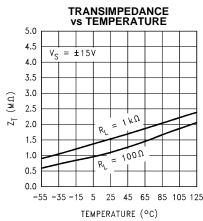
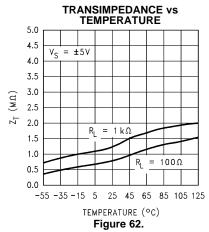
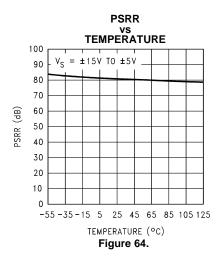
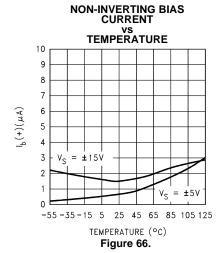




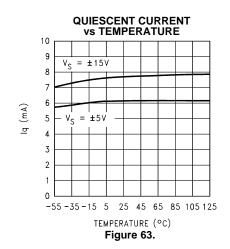
Figure 60.

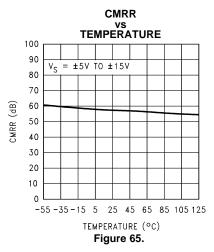
OFFSET VOLTAGE vs TEMPERATURE

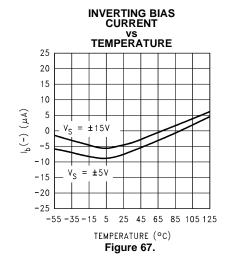
riguic co.

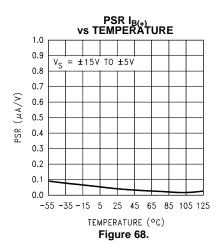




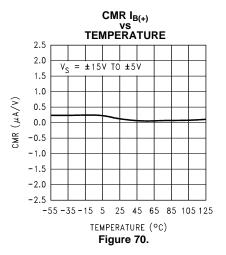

Figure 61.

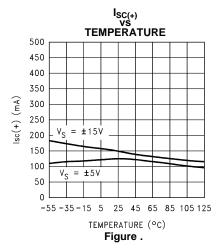


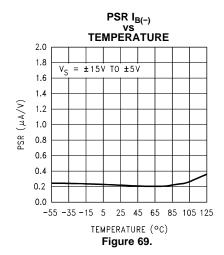

 $T_A = 25$ °C unless otherwise noted

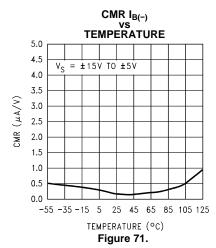


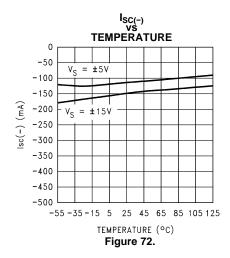


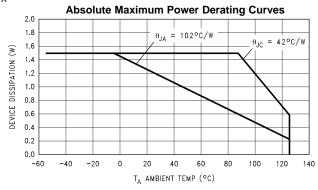

Submit Documentation Feedback

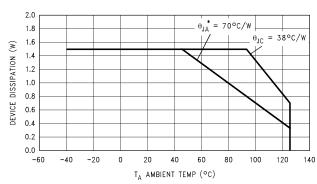

Copyright © 2004, Texas Instruments Incorporated




 $T_A = 25$ °C unless otherwise noted






Copyright © 2004, Texas Instruments Incorporated

Product Folder Links: LM6181

 $T_A = 25$ °C unless otherwise noted

 $^*\theta_{JA}$ = Thermal Resistance with 2 square inches of 1 ounce Copper tied to Pins 1, 8, 9 and 16.

Figure 74. M-Package

Figure 73. N-Package

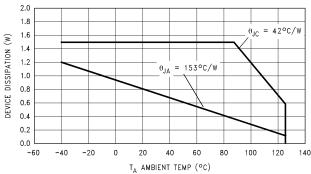
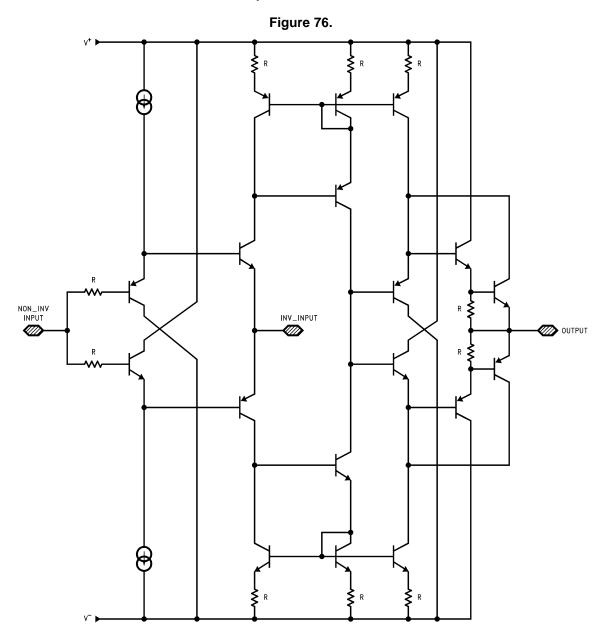


Figure 75. M-8 Package


20

Submit Documentation Feedback

Product Folder Links: LM6181

Simplified Schematic

Copyright © 2004, Texas Instruments Incorporated

TYPICAL APPLICATIONS

CURRENT FEEDBACK TOPOLOGY

For a conventional voltage feedback amplifier the resulting small-signal bandwidth is inversely proportional to the desired gain to a first order approximation based on the gain-bandwidth concept. In contrast, the current feedback amplifier topology, such as the LM6181, transcends this limitation to offer a signal bandwidth that is relatively independent of the closed-loop gain. Figure 77 and Figure 78 illustrate that for closed loop gains of -1 and -5 the resulting pulse fidelity suggests quite similar bandwidths for both configurations.

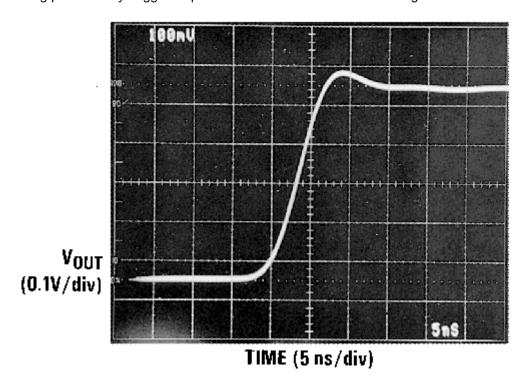
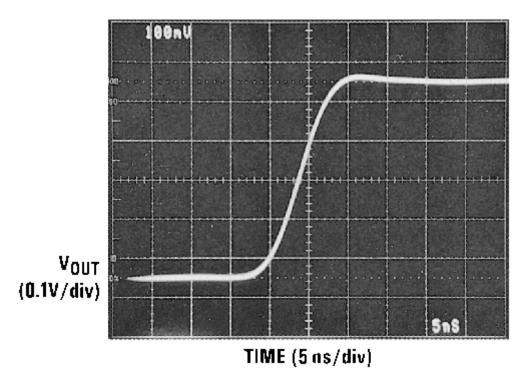



Figure 77.

Variation of Closed Loop Gain from -1 to -5 Yields Similar Responses

Figure 78.

The closed-loop bandwidth of the LM6181 depends on the feedback resistance, R_f. Therefore, R_S and not R_f, must be varied to adjust for the desired closed-loop gain as in Figure 79.

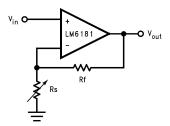


Figure 79. R_S Is Adjusted to Obtain the Desired Closed Loop Gain, Avc.

POWER SUPPLY BYPASSING AND LAYOUT CONSIDERATIONS

A fundamental requirement for high-speed amplifier design is adequate bypassing of the power supply. It is critical to maintain a wideband low-impedance to ground at the amplifiers supply pins to insure the fidelity of high speed amplifier transient signals. 10 µF tantalum and 0.1 µF ceramic bypass capacitors are recommended for each supply pin. The bypass capacitors should be placed as close to the amplifier pins as possible (0.5" or less).

FEEDBACK RESISTOR SELECTION: R_f

Selecting the feedback resistor, R_f, is a dominant factor in compensating the LM6181. For general applications the LM6181 will maintain specified performance with an 820Ω feedback resistor. Although this value will provide good results for most applications, it may be advantageous to adjust this value slightly. Consider, for instance, the effect on pulse responses with two different configurations where both the closed-loop gains are 2 and the feedback resistors are 820Ω and 1640Ω , respectively. Figure 80 and Figure 81 illustrate the effect of increasing

Copyright © 2004, Texas Instruments Incorporated Submit Documentation Feedback

 R_f while maintaining the same closed-loop gain—the amplifier bandwidth decreases. Accordingly, larger feedback resistors can be used to slow down the LM6181 (see -3 dB bandwidth vs R_f typical curves) and reduce overshoot in the time domain response. Conversely, smaller feedback resistance values than 820Ω can be used to compensate for the reduction of bandwidth at high closed loop gains, due to 2nd order effects. For example Figure 82 illustrates reducing R_f to 500Ω to establish the desired small signal response in an amplifier configured for a closed loop gain of 25.

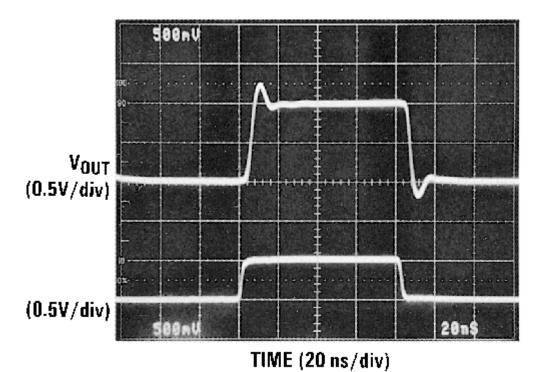
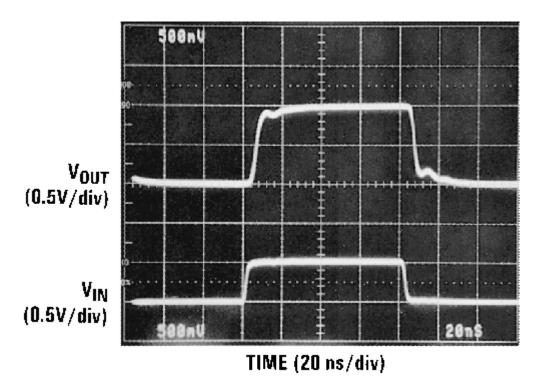



Figure 80. $R_f = 820\Omega$

24

Increasing Compensation with Increasing $R_{\mbox{\scriptsize f}}$

Figure 81. $R_f = 1640\Omega$

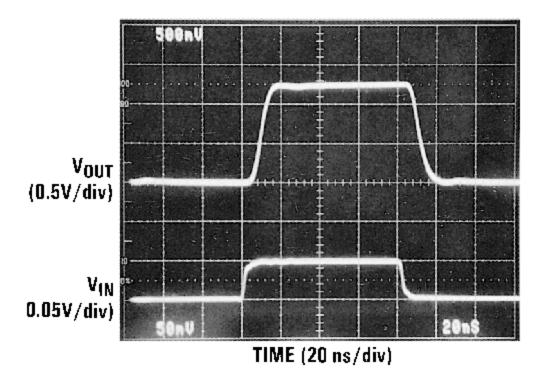


Figure 82. Reducing R_f for Large Closed Loop Gains, R_f = 500 Ω

Copyright © 2004, Texas Instruments Incorporated

SLEW RATE CONSIDERATIONS

The slew rate characteristics of current feedback amplifiers are different than traditional voltage feedback amplifiers. In voltage feedback amplifiers slew rate limiting or non-linear amplifier behavior is dominated by the finite availability of the 1st stage tail current charging the compensation capacitor. The slew rate of current feedback amplifiers, in contrast, is not constant. Transient current at the inverting input determines slew rate for both inverting and non-inverting gains. The non-inverting configuration slew rate is also determined by input stage limitations. Accordingly, variations of slew rates occur for different circuit topologies.

DRIVING CAPACITIVE LOADS

The LM6181 can drive significantly larger capacitive loads than many current feedback amplifiers. Although the LM6181 can directly drive as much as 100 pF without oscillating, the resulting response will be a function of the feedback resistor value. Figure 84 illustrates the small-signal pulse response of the LM6181 while driving a 50 pF load. Ringing persists for approximately 70 ns. To achieve pulse responses with less ringing either the feedback resistor can be increased (see typical curves Suggested $R_{\rm f}$ and $R_{\rm s}$ for $C_{\rm L}$), or resistive isolation can be used (10 Ω –51 Ω typically works well). Either technique, however, results in lowering the system bandwidth.

Figure 86 illustrates the improvement obtained with using a 47Ω isolation resistor.

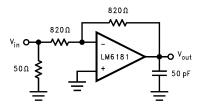


Figure 83.

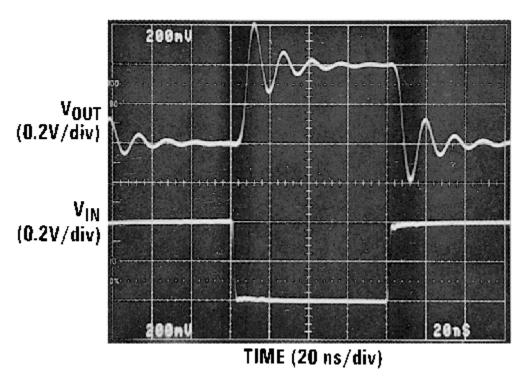


Figure 84. A_V = −1, LM6181 Can Directly Drive 50 pF of Load Capacitance with 70 ns of Ringing Resulting in Pulse Response

Submit Documentation Feedback

Copyright © 2004, Texas Instruments Incorporated

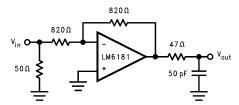
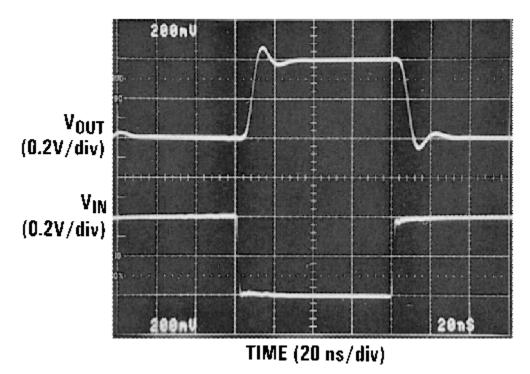



Figure 85.

 R_f and R_S Could Be Increased to Maintain $A_V = -1$ and Improve Pulse Response Characteristics.

Figure 86. Resistive Isolation of C_L Provides Higher Fidelity Pulse Response.

CAPACITIVE FEEDBACK

For voltage feedback amplifiers it is quite common to place a small lead compensation capacitor in parallel with feedback resistance, R_f. This compensation serves to reduce the amplifier's peaking in the frequency domain which equivalently tames the transient response. To limit the bandwidth of current feedback amplifiers, do not use a capacitor across R_f. The dynamic impedance of capacitors in the feedback loop reduces the amplifier's stability. Instead, reduced peaking in the frequency response, and bandwidth limiting can be accomplished by adding an RC circuit, as illustrated in Figure 88.

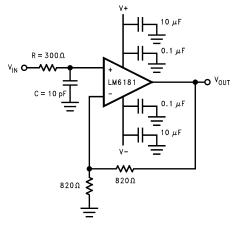
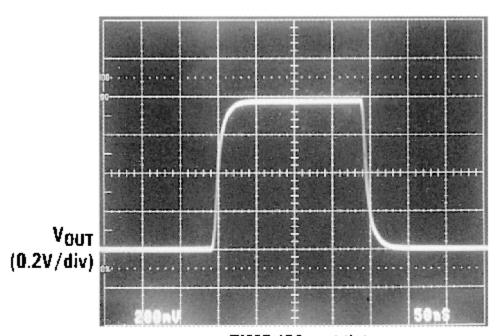



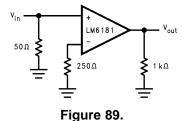
Figure 87.

$$f-3 dB = \frac{1}{2\pi RC}$$

(1)

TIME (50 ns/div)

Figure 88. RC Limits Amplifier Bandwidth to 50 MHz, Eliminating Peaking in the Resulting Pulse Response



Typical Performance Characteristics

OVERDRIVE RECOVERY

When the output or input voltage range of a high speed amplifier is exceeded, the amplifier must recover from an overdrive condition. The typical recovery times for open-loop, closed-loop, and input common-mode voltage range overdrive conditions are illustrated in Figure 90, Figure 92, Figure 92, and Figure 93, respectively.

The open-loop circuit of Figure 89 generates an overdrive response by allowing the ±0.5V input to exceed the linear input range of the amplifier. Typical positive and negative overdrive recovery times shown in Figure 90 are 5 ns and 25 ns, respectively.

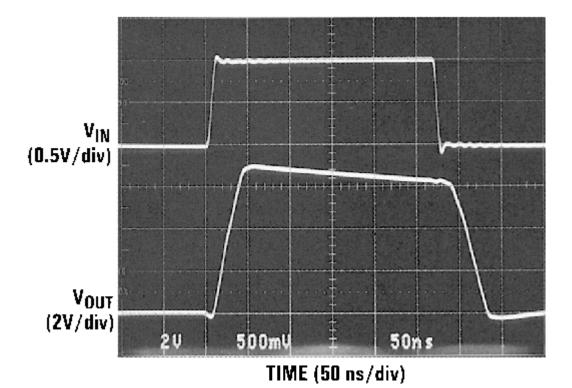


Figure 90. Open-Loop Overdrive Recovery Time of 5 ns, and 25 ns from Test Circuit in Figure 89

The large closed-loop gain configuration in Figure 91 forces the amplifier output into overdrive. Figure 92 displays the typical 30 ns recovery time to a linear output value.

Copyright © 2004, Texas Instruments Incorporated

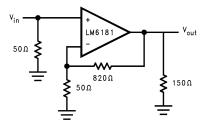


Figure 91.

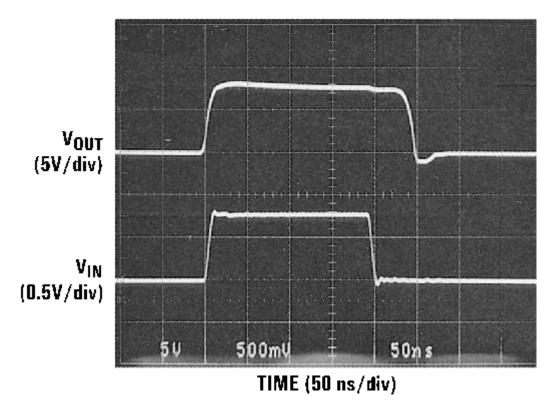
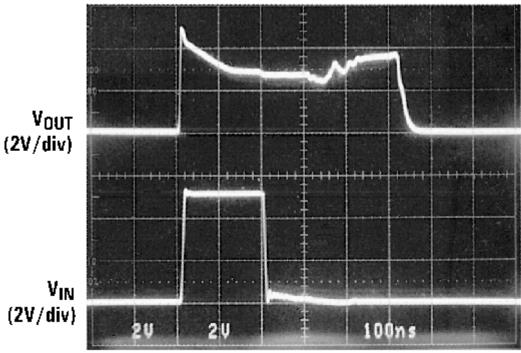



Figure 92. Closed-Loop Overdrive Recovery Time of 30 ns from Exceeding Output Voltage Range from Circuit in Figure 91

The common-mode input of the circuit in Figure 91 is exceeded by a 5V pulse resulting in a typical recovery time of 310 ns shown in Figure 93. The LM6181 supply voltage is ±5V.

TIME (100 ns/div)

Figure 93. Exceptional Output Recovery from an Input that Exceeds the Common-Mode Range

Connection Diagrams

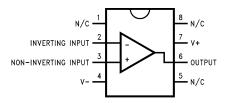
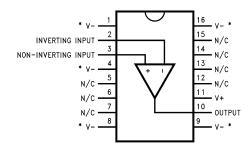



Figure 94. 8-Pin CDIP, PDIP (N), or SOIC (M-8) Package See Package Number NAB, P, or D

Copyright © 2004, Texas Instruments Incorporated

*Heat sinking pins(1)

Figure 95. 16-Pin SOIC Package (M) See Package Number D

(1) The typical junction-to-ambient thermal resistance of the molded PDIP(N) package soldered directly into a PC board is 102°C/W. The junction-to-ambient thermal resistance of the SOIC (M) package mounted flush to the PC board is 70°C/W when pins 1, 4, 8, 9 and 16 are soldered to a total 2 in² 1 oz. copper trace. The 16-pin SOIC (M) package must have pin 4 and at least one of pins 1, 8, 9, or 16 connected to V⁻ for proper operation. The typical junction-to-ambient thermal resistance of the SOIC (M-8) package soldered directly into a PC board is 153°C/W.

9-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
LM6181IM-8	ACTIVE	SOIC	D	8	95	TBD	Call TI	Call TI	-40 to 85	LM618 1IM8	Samples
LM6181IM-8/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM618 1IM8	Samples
LM6181IMX-8/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LM618 1IM8	Samples
LM6181IN	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI	-40 to 85	LM6181IN	Samples
LM6181IN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	LM6181IN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

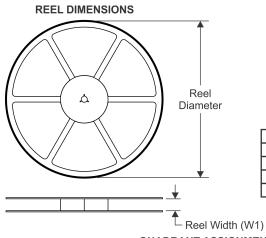
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

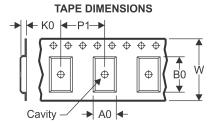
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

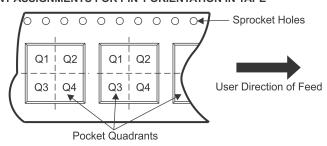
PACKAGE OPTION ADDENDUM


9-Mar-2013

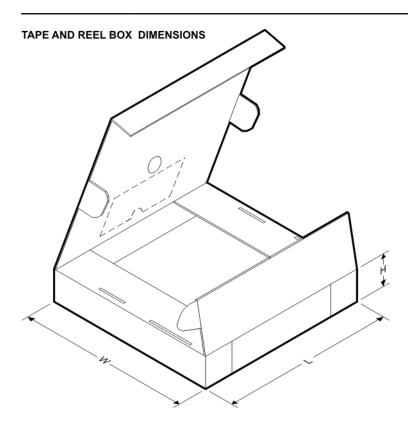

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 21-Mar-2013


TAPE AND REEL INFORMATION

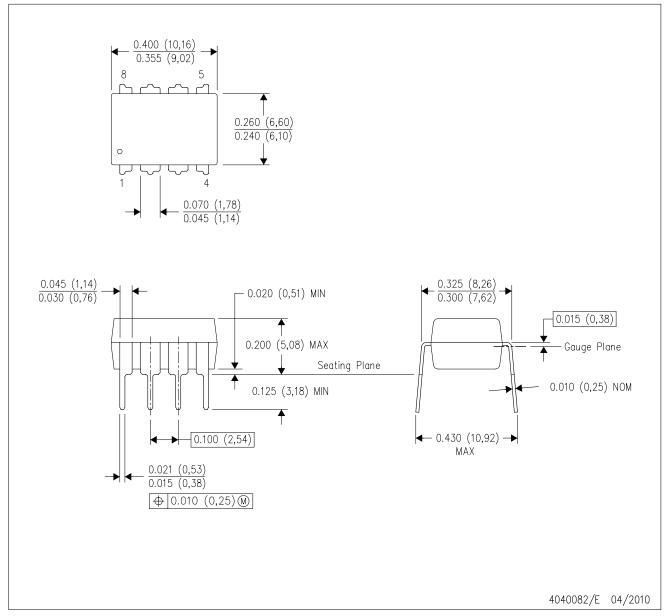
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM6181IMX-8/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 21-Mar-2013

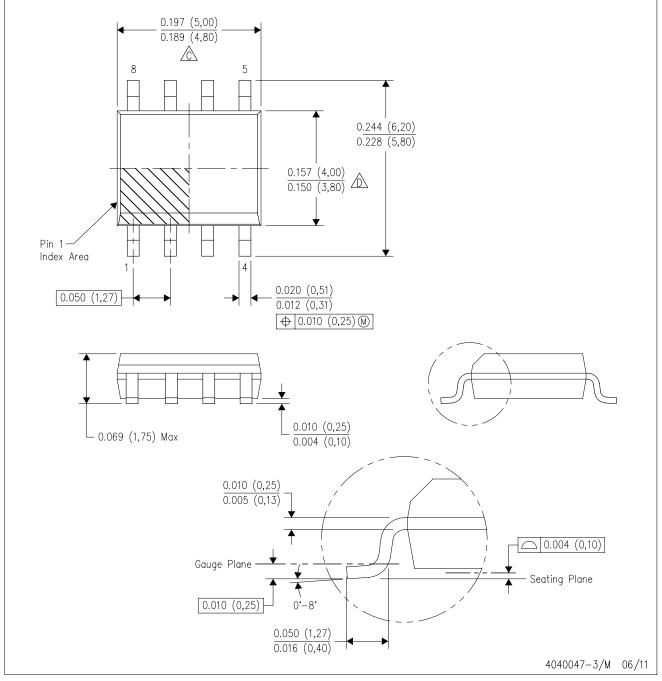


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LM6181IMX-8/NOPB	SOIC	D	8	2500	367.0	367.0	35.0	

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: <u>org@eplast1.ru</u>

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.