

WaveLink® High Bandwidth Differential Probing System

EXCEPTIONAL BANDWIDTH AND SIGNAL FIDELITY

Features & Benefits

- Up to 25 GHz bandwidth (probe + oscilloscope)
- System rise time as fast as 13 ps (20–80%)
- Highest bandwidth Solder-In solution (25 GHz)
- Ultra-compact browser tip (22 GHz)
- Superior probe impedance minimizes AC loading on device under test (DUT)
- Carbon-composite browser tips optimize signal fidelity and loading
- Probe noise as low as 14 nV/√Hz (1.6 mV_{rms})
- Low probe attenuation
- Large operating voltage range
 ±4 V common mode range
 ±2.5 V offset range
 2.0 V_{pk-pk} dynamic range
- Long length Solder-In tip with field replaceable resistors

The WaveLink Dxx05-A 13-25 GHz differential probe series has large operating voltage ranges, very low probe noise, and superior probe impedance.

Ultra-wideband Architecture for Superior Signal Fidelity

Teledyne LeCroy's WaveLink® high bandwidth differential probes utilize advanced differential traveling wave (distributed) amplifier architecture to achieve superior high frequency true analog broadband performance. Traveling wave (distributed) amplifiers are commonly used in ultra high frequency broadband amplifiers. This multi-stage amplifier architecture maximizes

gain per stage and minimizes probe attenuation, which provides very low probe noise and fast rise times.

Highest Bandwidth (25 GHz) Solder-In Lead

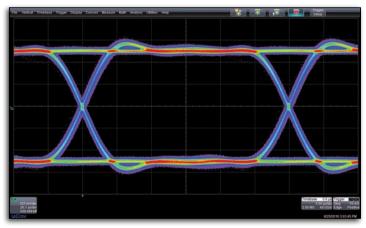

Up to 25 GHz Solder-In performance with system (probe + oscilloscope) rise times equal to that of the oscilloscope alone—13 ps (20–80%) and 17.5 ps (10–90%)—and superior impedance and noise performance.

Ultra-compact Positioner (Browser) Tip

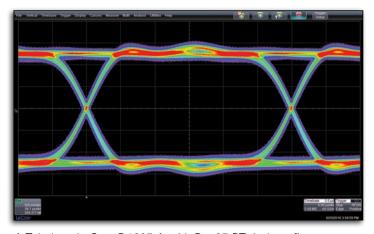
The most compact positioner tip browser with bandwidth up to 22 GHz makes probing in confined areas easy. Position multiple probes very close together using a variety of mechanical positioners, or use the hand-held wand for debugging.

Superior Probe Impedance Minimizes Circuit Loading

Circuit and signal loading is reduced by more than 50% with WaveLink high bandwidth probes compared to competitive probes. In the mid-band frequency range, the difference is even more apparent. This superior impedance greatly reduces measurement impact and circuit loading. It's made possible with innovative designs that locate probe tip resistance as close to the


Teledyne LeCroy Solder-In probe impedance is two or three times better than competitive probes, especially at higher frequencies.

DUT as possible and, in the case of the browser tip, use advanced materials to optimize performance.


Superior Signal Fidelity and Lowest Noise

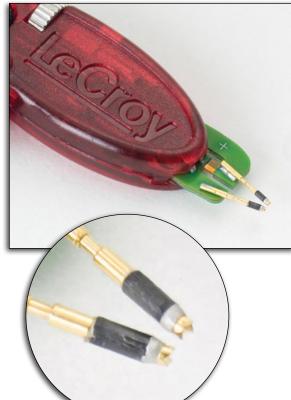
WaveLink has exceptional noise performance and the fastest rise times—as fast as 13 ps—to enable measurements of the highest precision on the fastest signals. In fact, the combination of the probe and the oscilloscope results in

measurement performance that is nearly identical to that of a cable input. In addition, the probe allows measurements on signals with large differential swings and high offsets while avoiding the use of multiple attenuators that can reduce signal fidelity. The tip construction avoids multiple connection points that could compromise signal fidelity. Serial data signal margins are better characterized and understood with WaveLink.

A 6.25 Gb/s PRBS-7 signal first measured with cable inputs to the oscilloscope (math subtracted waveform, cables de-embedded).

A Teledyne LeCroy D1605-A with Dxx05-PT tip (test fixture de-embedded). Note the high degree of correlation between the two measurements.

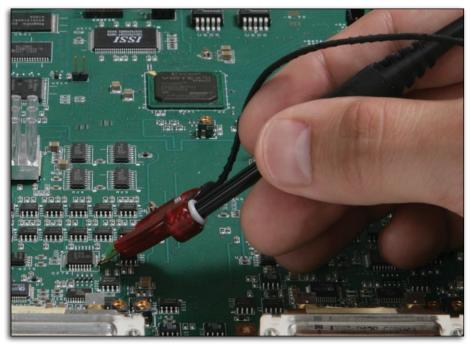
ULTRA-COMPACT POSITIONER TIP


Optimized Performance Using Advanced Materials

Carbon fiber composite pogo-pin resistive tips used in the positioner tip locate an ideal distributed resistance at the point of contact. This design is unique to Teledyne LeCroy and provides several important advantages:

- It improves signal fidelity by eliminating the skin effect present at high frequencies with purely conductive tips.
- It eliminates the parasitic loading due to high inductance and capacitance of metal pogo-pins by putting the probe resistance at the point of contact.
- The composite structure provides mechanical strength for good contact and long life.

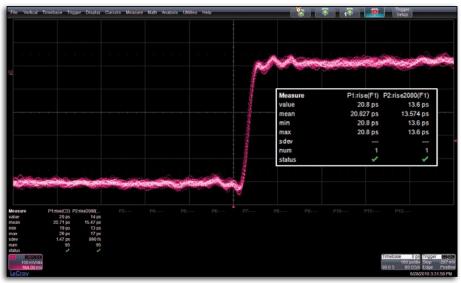
Ultra-compact Size


The positioned tip browser is very small—only 35 mm long, 14 mm wide, and 5 mm thick (13%" x 17/32" x 3/16") and can be easily located in close proximity to other probes or circuit elements. It is easily attached to a wide variety of probe positioners for precise circuit placement. For hand-held browsing, a wand may be attached to facilitate quick acquisition of signals for debug and analysis.

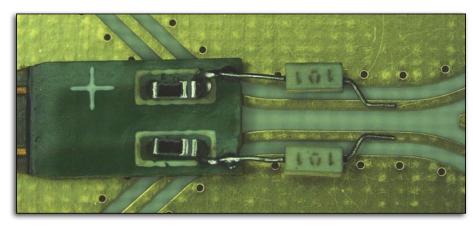
Teledyne LeCroy's browser (positioner tip) consists of an ideal distributed resistance at the point of circuit contact, with a crowned metal tip for positive circuit contact. The assembly is mounted on a metal pogo-pin for z-axis compliance and positive probe contact.

Shown magnified 500x, this cross section of the carbon-composite fiber in the resistive tip shows the fiber structure of the tip that reduces skin effect at high frequencies.

Teledyne LeCroy's Dxx05-PT positioner tip browser can be easily hand-held with the attachable wand or positioned in place with one of many standard or optional accessory mechanical positioners.


HIGHEST PERFORMING SOLDER-IN LEAD

Superior Bandwidth


Not only is the probe available with up to 25 GHz of bandwidth, but the rise time of the probe when connected to a Teledyne LeCroy 8 Zi-A, 9 Zi-A or 10 Zi Series oscilloscope is very fast—system rise times as fast as 13 ps (20–80%). You can use the probe with the assurance that the probe + oscilloscope system rise time will be as fast as a cable input.

Highest Mid-band Probe Impedance Reduces Circuit Loading

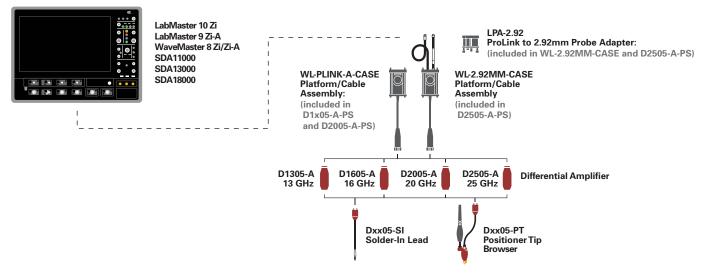
Exceptional mid- and high-band probe impedance characteristics make this lead the best performer available. Probe impedance is two to three times larger than competitive probes, resulting in one-half to one-third the circuit loading and better signal fidelity. This performance is made possible by an exceptionally low tip capacitance (75 fF) that tunes the probe impedance to the lead inductance. Additionally, pre-trimmed termination damping resistors are located at the circuit contact point, further improving performance. These resistors are easily field-replaceable.

Teledyne LeCroy D2505-A probe with Dxx05-PT positioner (browser) tip showing rise time response with 20 ps differential input source.

Teledyne LeCroy's Dxx05-SI Solder-In lead has external tip resistors to locate the tip resistance as close to the point of contact as possible. These resistors are installed on the lead at the factory to minimize operator setup time and are field-replaceable, should the need arise.

Optimized Probe + Oscilloscope Performance

All Teledyne LeCroy WaveLink high bandwidth differential probes are automatically calibrated for the highest performance when connected to a Teledyne LeCroy oscilloscope. Teledyne LeCroy has provided this capability since the introduction of the first WaveLink probes in 2003.


At the factory, each probe undergoes a rigorous calibration and performance verification process that results in a stored response file on-board the probe.

When the probe is connected to a Teledyne LeCroy oscilloscope, the probe and oscilloscope response are optimized to each other to provide a probe + oscilloscope response identical to that of the raw oscilloscope channel.

All that is left for the operator is to de-embed the probe loading from the circuit, if desired, using Teledyne LeCroy's Virtual Probe oscilloscope software option. Since the Teledyne LeCroy probe impedance is very high across the passband, this may not even be necessary.

COMPATIBILITY AND ACCESSORIES

Compatibility Chart

Accessories and Replacement Parts

Standard Accessories	WL-PLINK-A-CASE	WL-2.92MM-CASE	D1x05-A	D1x05-A-PS	D2x05-A	D2x05-A-PS	Dxx05-PT-KIT	Replacement Part
Amplifier System (includes items below with*)			1 each	1 each	1 each	1 each		D1305-A, D1605-A, D2005-A, or D2505-A
*Amplifier			1 each	1 each	1 each	1 each		
*Solder-In Lead Set (includes items below with**)			2 each	2 each	2 each	2 each		Dxx05-SI
**Spare Damping Resistors for SI Ti	p		10 each	10 each	10 each	10 each		Dxx05-SI-RESISTORS
**Tip Retaining Clip for SI Leads			2 each	2 each	2 each	2 each		PK600ST-3
**Adhesive Tape	,		1 set	1 set	1 set	1 set		Dxx0-PT-TAPE
*Ground Lead			1 each	1 each	1 each	1 each		PACC-LD005
*Ground Clip			1 each	1 each	1 each	1 each		PK006-4
*Instruction Manual			1 each	1 each	1 each	1 each		WL-HBW-A-OM-E
*Accessory Info Sheet & Quick Start Gu	uide		1 each	1 each	1 each	1 each		921508-00
Positioner Tip with Accessories	uiuc		1 Cacii	1 each	i cacii	1 each	1 each	RK-Dxx05-PT-KIT
kit includes items below with [†])				i eacii		i eacii	i eacii	TIK-DXX03-I I-KII
†Positioner Tip Browser				1 each		1 each	1 each	Dxx05-PT
†Replacement Pogo-pins for Dxx05-PT				1 each		1 each	1 each	Dxx05-PT-TIPS
[†] Positioner Tip Probe Guides				1 each		1 each	1 each	Dxx05-PT-GUIDES
[†] XYZ Positioner				1 each		1 each	1 each	Dxx0-PT-XYZ-POSITIONEF
†Adhesive Tape for XYZ Positioner				1 set		1 set	1 set	Dxx0-PT-TAPE
†Browser Wand for PT Tip				1 each		1 each	1 each	Dxx0-PT-WAND
†Interlock Pieces for PT Tip				1 each		1 each	1 each	Dxx0-PT-INTERLOCK
†Swivel for PT Tip				1 each		1 each	1 each	Dxx0-PT-SWIVEL
Platform/Cable Assembly Kit includes items below with‡)	1 each	1 each		1 each		1 each		WL-PLINK-A-CASE for 13, 16, and 20 GHz models WL-2.92MM-CASE for
‡Platform/Cable Assembly	1 each	4		1		4		25 GHz models
#Freehand Probe Holder	1 each	1 each		1 each 1 each		1 each		PACC-MS001
		1 each				1 each		
‡Probe Deskew Fixture	1 each	1 each		1 each		1 each		PCF200
‡Platform/Cable Assembly Mounting Clip	1 each	1 each		1 each		1 each		PK600ST-4 includes 4 adhesive backed clips
‡Probe Cable Clamp	2 each	2 each		2 each		2 each		PK600ST-4 includes 4 adhesive backed clips
‡ESD Wrist Strap	1 each	1 each		1 each		1 each		42402900001
‡Performance Verification Certificate	1 each	1 each		1 each		1 each		
‡Deluxe Soft Carrying Case	1 each	1 each		1 each		1 each		SAC-03
‡Foam Insert for Deluxe Case	1 each	1 each		1 each		1 each		921080-00 (WL-2.92MM- CASE) or 921081-00 (for WL-PLINK-A-CASE)
‡Protective Storage Case	1 each	1 each		1 each		1 each		921083-00
‡Plastic Tray for Storage Case	1 each	1 each		1 each		1 each		921078-00
‡ProLink to 2.92 mm Probe Adapter		1 each				1 each (25 GHz Models only)		LPA-2.92
Calibration Certificate	-							See calibration options
Recommended Accessories								
Deskew Test Fixture								TF-DSQ
Cascade Microtech EZ-Probe Positioner								EZ PROBE

SPECIFICATIONS

5-SI and Dxx05-PT Tips z (probe only, guaranteed) iHz (system bandwidth, used with 813Zi, typical) 5-SI and Dxx05-PT Tips 32.5 ps (typical) em rise time measured ≥ 13 GHz oscilloscope) 5-SI and Dxx05-PT Tips 24.5 ps (typical) em rise time measured ≥ 13 GHz oscilloscope 14 nV/√Hz (1.6 mV _{rms}) (typical) Referred to input, 13 GHz bandwidth 23 nV/√Hz (2.7 mV _{rms}) ical) Referred to input, 13 GHz bandwidth	Dxx05-SI and Dxx05-PT Tips 16 GHz (probe only, guaranteed) 16 GHz (system bandwidth, when used with 816Zi, typical) Dxx05-SI and Dxx05-PT Tips 28 ps (typical) System rise time, measured with ≥ 16 GHz oscilloscope Dxx05-SI and Dxx05-PT Tips 21 ps (typical) System rise time measured with ≥ 16 GHz oscilloscope		Dxx05-SI Lead 25 GHz (probe only, guaranteed) 25 GHz (system bandwidth, when used with 825Zi, typical) Dxx05-PT Tip 22 GHz (system bandwidth, when used with 825Zi, typical) 20 GHz (probe only, guaranteed) Dxx05-SI Lead 17.5 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-PT Tip 19 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-SI Lead 13 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-FT Tip 14 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-PT Tip 14 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope < 18 nV/\Hz (2.8 mV _{rms}) (typical) Referred to input, 25 GHz bandwidth < 28 nV/\Hz (4.5 mV _{rms}) (typical) Referred to input, 25 GHz bandwidth					
32.5 ps (typical) em rise time measured ≥ 13 GHz oscilloscope) 5-SI and Dxx05-PT Tips 24.5 ps (typical) em rise time measured ≥ 13 GHz oscilloscope 14 nV/Hz (1.6 mV _{rms}) (typical) Referred to input, 13 GHz bandwidth 23 nV/√Hz (2.7 mV _{rms}) ical) Referred to input,	28 ps (typical) System rise time, measured with ≥ 16 GHz oscilloscope Dxx05-SI and Dxx05-PT Tips 21 ps (typical) System rise time measured with ≥ 16 GHz oscilloscope < 14 nV/√Hz (1.8 mV _{rms}) (typical) Referred to input, 16 GHz bandwidth < 23 nV/√Hz (2.9 mVrms) (typical) Referred to input, 16 GHz bandwidth 2.0 V _{pk-pk} , (±1.0	20 ps (typical) System rise time measured with ≥ 20 GHz oscilloscope Dxx05-SI and Dxx05-PT Tips 15 ps (typical) System rise time measured with ≥ 20 GHz oscilloscope < 18 nV/\/Hz (2.5 mV _{rms}) (typical) Referred to input, 20 GHz bandwidth < 28 nV/\/Hz (4.0 mV _{rms}) (typical) Referred to input, 20 GHz bandwidth	17.5 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-PT Tip 19 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-SI Lead 13 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-PT Tip 14 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Vxy05-PT Tip 14 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope < 18 nV/\Hz (2.8 mV _{rms}) (typical) Referred to input, 25 GHz bandwidth < 28 nV/\Hz (4.5 mV _{rms}) (typical) Referred to input, (typical) Referred to input,					
24.5 ps (typical) em rise time measured ≥ 13 GHz oscilloscope 14 nV/\Hz (1.6 mV _{rms}) (typical) Referred to input, 13 GHz bandwidth 23 nV/\Hz (2.7 mV _{rms}) ical) Referred to input,	21 ps (typical) System rise time measured with ≥ 16 GHz oscilloscope < 14 nV/\Hz (1.8 mV _{rms})	15 ps (typical) System rise time measured with ≥ 20 GHz oscilloscope < 18 nV/\Hz (2.5 mV _{rms})	13 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope Dxx05-PT Tip 14 ps (typical) System rise time measured with ≥ 25 GHz oscilloscope < 18 nV/√Hz (2.8 mV _{rms}) (typical) Referred to input, 25 GHz bandwidth < 28 nV/√Hz (4.5 mV _{rms}) (typical) Referred to input,					
(typical) Referred to input, 13 GHz bandwidth 23 nV/\Hz (2.7 mV _{rms}) ical) Referred to input,	Referred to input, 16 GHz bandwidth < 23 nV/Hz (2.9 mVrms) (typical) Referred to input, 16 GHz bandwidth 2.0 V _{pk-pk} , (±1.0	(typical) Referred to input, 20 GHz bandwidth < 28 nV/Hz (4.0 mV _{rms}) (typical) Referred to input, 20 GHz bandwidth	(typical) Referred to input, 25 GHz bandwidth < 28 nV/\Hz (4.5 mV _{rms}) (typical) Referred to input,					
ical) Referred to input,	(typical) Referred to input, 16 GHz bandwidth 2.0 V _{pk-pk} , (±1.0	(typical) Referred to input, 20 GHz bandwidth	(typical) Referred to input,					
	±4 V (no	· n						
	e ±4 V (nominal)							
±2.5 V Differential (nominal)								
±10 V (nominal)								
3.5x (nominal) 4.5x (nominal)								
1.1 k Ω Differential 100 k Ω Common mode								
Dxx05-SI Lead Ω Ω Differential through natire frequency range Dxx05-PT Tip	Dxx05-SI Lead > 300 Ω Differential through entire frequency range Dxx05-PT Tip	Dxx05-SI Lead > 230 Ω Differential through entire frequency range Dxx05-PT Tip	Dxx05-SI Lead > 120 Ω Differential through entire frequency range Dxx05-PT Tip					
Ω Differential through	>160 Ω Differential through entire frequency range	>160 Ω Differential through entire frequency range	>160 Ω Differential through entire frequency range					
Dxx05-SI Lead: 3	00 Ω at 6 GHz, 525 Ω at 13 GHz, 60	00 Ω at 16 GHz, 300 Ω at 20 GHz, 1	20 Ω at 25 GHz					
Dxx05-SI Lead	d (typical): 40 dB DC to 50 MHz; 32	dB to 1 GHz; 20 dB to 16 GHz; 15 c	dB to 25 GHz					
Dxx05-PT Tip	(typical): 36 dB DC to 50 MHz; 30	dB to 1 GHz; 16 dB to 16 GHz; 14 dl	B to 20 GHz					
	Operating: 0 °C to 40 °C; Nor	n-operating: -40 °C to 70 °C	_					
Non-operatin			above 40 °C					
• • •	2 kV (ty	pical)						
	0.45 mm tip dia	meter (0.018")						
0 to 9 mm (0 to 0.35") tip spread at circuit connection								
1.3 m ((4 (t - 0) -) (b b - b) (0) (0) (1) (0) (0)	F and W/I -PLINK-A-CASE sold sens	rately					
ו	Dxx05-SI Lead Ω Ω Differential through tire frequency range Dxx05-PT Tip Ω Differential through tire frequency range Dxx05-SI Lead: 3 Dxx05-SI Lead: 7 Dxx05-SI Lead: 7 Dxx05-SI Lead: 7 Dxx05-SI Lead: 7 Dxx05-PT Tip	1.1 k Ω Dif 100 k Ω Com Dxx05-SI Lead Dyx05-SI Lead Dyx05-SI Lead Dxx05-PT Tip Dx05-PT Tip Dx05-PT Tip 160 Ω Differential through entire frequency range Dxx05-SI Lead: 300 Ω at 6 GHz, 525 Ω at 13 GHz, 60 Dxx05-PT Tip: 160 Ω at 6 GHz, 450 Ω at 13 Dxx05-PT Tip: 160 Ω at 6 GHz, 450 Ω at 13 Dxx05-PT Tip (typical): 36 dB DC to 50 MHz; 32 Dxx05-PT Tip (typical): 36 dB DC to 50 MHz; 30 Operating: 0 °C to 40 °C; Nor Operating: 5% to 80% RH (non-condensing) 2 kV (ty 100 pF, 300 0 to 9.45 mm tip dia 0.55 mm (0.022") Z 0 to 9 mm (0 to 0.35") tip sp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

ORDERING INFORMATION

Product Description	Product Code	
Complete Probe Systems		
13 GHz Complete Probe System with Solder-In Tip (13 GHz) and Positioner Tip Browser (13 GHz)	D1305-A-PS	
16 GHz Complete Probe System with Solder-In Tip (16 GHz) and Positioner Tip Browser (16 GHz)	D1605-A-PS	
20 GHz Complete Probe System with Solder-In Tip (20 GHz) and Positioner Tip Browser (20 GHz)	D2005-A-PS	
25 GHz Complete Probe System with Solder-In Tip (25 GHz) and Positioner Tip Browser (22 GHz)	D2505-A-PS	
Amplifier and Probe Tip Modules		
WaveLink D1305 13 GHz/1.6 V _{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D1305-A	
WaveLink D1605 16 GHz/1.6 V _{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D1605-A	
WaveLink D2005 20 GHz/1.6 V _{pk-pk} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D2005-A	
WaveLink D2505 25 GHz/1.6 V _{pk-p} Differential Probe Amplifier with Dxx05-SI Solder-In Tip (Qty. 2)	D2505-A	
Positioner Tip (Browser) Kits		
WaveLink Dxx05-PT (Up to 22 GHz Rating) Adjustable Positioner Tip Kit. For use with Dxx05 Amplifiers	Dxx05-PT-KIT	
Probe Platform/Cable Assemblies and Adapters		
WaveLink ProLink Platform/Cable Assembly Kit for ≥ 13 GHz WaveLink Probes	WL-PLINK-A-CASE	
WaveLink 2.92 mm Platform/Cable Assembly Kit for ≥ 20 GHz WaveLink Probes	WL-2.92MM-CASE	
ProLink to 2.92 mm Adapter with Probe Power and Communication Pass Through	LPA-2.92	

Product Description	Product Code		
Accessories			
Cascade Microtech EZ-Probe Positioner	EZ PROBE		
Probe Deskew and Calibration Test Fixture	TF-DSQ		
Calibration Options			
NIST Calibration for D1305. Includes Test Data	D1305-A-CCNIST		
NIST Calibration for D1605. Includes Test Data	D1605-A-CCNIST		
NIST Calibration for D2005. Includes Test Data	D2005-A-CCNIST		
NIST Calibration for D2505. Includes Test Data	D2505-A-CCNIST		
Replacement Parts			
Replacement Dxx05-SI 13-25 GHz Solder-In Lead with	Dxx05-SI		
Oty. 5 Spare Resistors			
Replacement SI Resistor Kit for Dxx05-SI Solder-In Tip	Dxx05-SI-RESISTORS		
Replacement Dxx05-PT Positioner Tip	Dxx05-PT		
Oty. 4 Replacement Carbon Composite Pogo-pin Tips	Dxx05-PT-TIPS		
Replacement Probe Tip Holder Kit	PK600ST-3		
Replacement Platform/Cable Assembly Mounting Kit	PK600ST-4		
Oty. 1 Package of Black Adhesive Pads (10/pkg.) and Oty. 1 Package of White Adhesive Pads (10/pkg.)	Dxx0-PT-TAPE		
Qty. 1 Package of Adhesive Probe Connection Guides	Dxx05-PT-GUIDES		

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built, and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year.

This warranty includes:

• No charge for return shipping

(200 individual guides/package)

- Long-term 7-year support
- Upgrade to latest software at no charge

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.