CBT3245A-Q100

Octal bus switch Rev. 1 — 20 March 2013

Product data sheet

General description 1.

The CBT3245A-Q100 provides 8 bits of high-speed TTL-compatible bus switching. The low ON resistance of the switch allows connections to be made with minimal propagation delay.

The CBT3245A-Q100 is organized as one 8-bit bus switches with one output enable (OE) input. When OE is LOW, the switch is on and port A is connected to the B port. When OE is HIGH, each switch is disabled.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 3) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 3)
 - ◆ Specified from -40 °C to +85 °C
- 5 Ω switch connection between two ports
- TTL-compatible control input levels
- Multiple package options
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - ♦ MM JESD22-A115B exceeds 150 V (C = 200 pF, R = 0 Ω)

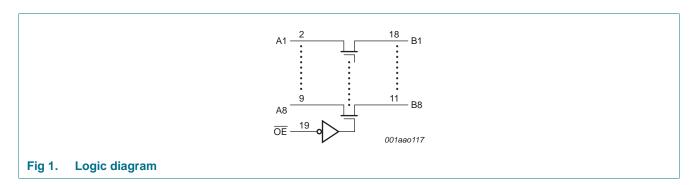
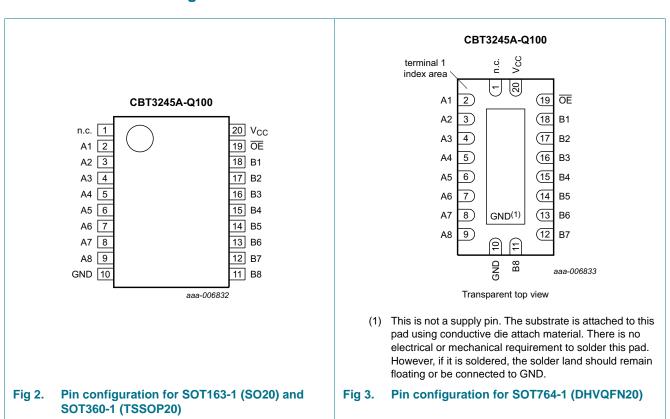

Ordering information

Table 1. **Ordering information**

Type number	Package			
	Temperature range	Name	Description	Version
CBT3245AD-Q100	–40 °C to +85 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
CBT3245APW-Q100	–40 °C to +85 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
CBT3245ABQ-Q100	–40 °C to +85 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 \times 4.5 \times 0.85 mm	SOT764-1



4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
n.c.	1	not connected
A1 to A8	2, 3, 4, 5, 6, 7, 8, 9	data input/output (A port)
GND	10	ground (0 V)
B1 to B8	18, 17, 16, 15, 14, 13, 12, 11	data input/output (B port)
OE	19	output enable input (active LOW)
V _{CC}	20	positive supply voltage

6. Functional description

Table 3. Function selection[1]

Input OE	Input/output
OE	An, Bn
L	An = Bn
H	Ζ

^[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).[1] $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		[2] -0.5	+7.0	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage		<u>[2]</u> -0.5	+7.0	V
Io	output current	V _O < 0 V	-	±128	mA
I _{IK}	input clamping current	$V_I = 0 V$	-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

^[1] Stresses beyond the listed ones, may permanently damage the device. The ratings are stress ratings only and functional operation of the device at or beyond any conditions, other than those conditions indicated in Section 8., is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^[2] The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

8. Recommended operating conditions

Table 5. Operating conditions

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		4.0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	8.0	V
T _{amb}	ambient temperature	operating in free air	-40	-	+85	°C

9. Static characteristics

Table 6. Static characteristics

Voltages are referenced to GND (ground = 0 V).

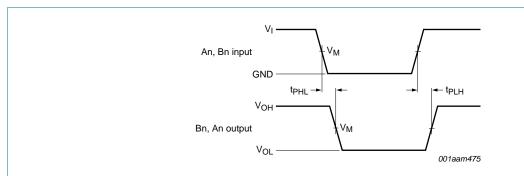
Symbol	Parameter	Conditions	Conditions			T_{amb} = -40 °C to +85 °C			
						Max			
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_{I} = -18 \text{ mA}$		-	-	-1.2	V		
I _I	input leakage current	$V_{CC} = 5.5 \text{ V}; V_{I} = \text{GND or } 5.5 \text{ V}$		-	-	±5	μΑ		
I _{CC}	supply current	V_{CC} = 5.5 V; I_O = 0 mA; V_I = V_{CC} or GND		-	1	3	μА		
ΔI_{CC}	additional supply current	per input pin; $V_{CC} = 5.5 \text{ V}$; 1 input at 3.4 V, other inputs at V_{CC} or GND	[2]	-	-	3.5	mA		
Cı	input capacitance	control pins; $V_I = 3 \text{ V or } 0 \text{ V}$		-	3.2	-	pF		
$C_{io(off)}$	off-state input/output capacitance	port off; $V_1 = 3 \text{ V or } 0 \text{ V}$; $\overline{OE} = V_{CC}$		-	6.6	-	pF		
R _{ON}	ON resistance	$V_{CC} = 4.5 \text{ V}; V_I = 0 \text{ V}; I_I = 64 \text{ mA}$	[3]	-	5	7	Ω		
		$V_{CC} = 4.5 \text{ V}; V_I = 0 \text{ V}; I_I = 30 \text{ mA}$	[3]	-	5	7	Ω		
		$V_{CC} = 4.5 \text{ V}; V_I = 2.4 \text{ V}; I_I = -15 \text{ mA}$	[3]	-	10	15	Ω		

^[1] All typical values are at V_{CC} = 5 V, T_{amb} = 25 °C.

^[2] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

^[3] Measured by the voltage drop between the An and the Bn terminals at the indicated current through the switch. The lowest voltage of the two (An or Bn) terminals, determines ON resistance.

10. Dynamic characteristics


Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 6.

Symbol	Parameter	Conditions	$T_{amb} = -40$	°C to +85 °C	Unit	
				Min	Max	
t _{pd}	propagation delay	An, Bn to Bn, An; see Figure 4	[1][2]			
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$		-	0.25	ns
t _{en}	enable time	OE to An or Bn; see Figure 5	[2]			
		$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$		1.0	5.9	ns
t _{dis}	disable time	OE to An or Bn; see Figure 5	[2]			
		V_{CC} = 5.0 V \pm 0.5 V		1.0	6.0	ns

^[1] The propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

11. Waveforms

Measurement points are given in Table 8.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 4. The data input (An, Bn) to output (Bn, An) propagation delay times

 $[\]begin{array}{ll} [2] & t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}. \\ & t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ & t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}. \end{array}$

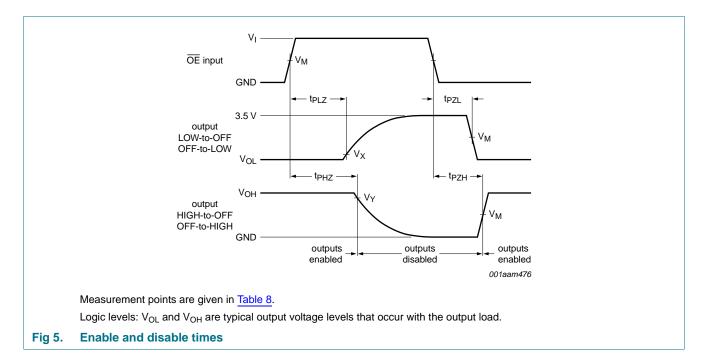
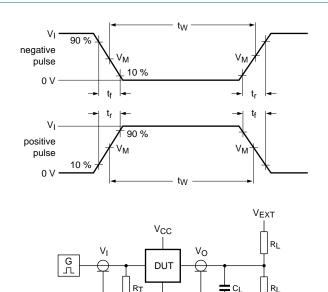



Table 8. Measurement points

Supply voltage	Input		Output				
V _{CC}	VI	V _M	V _M	V _X	V _Y		
V_{CC} = 5.0 V \pm 0.5 V	GND to 3.0 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$		

12. Test information

Test data is given in Table 9.

All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz; $Z_0 = 50~\Omega$.

001aae331

The outputs are measured one at a time with one transition per measurement.

Definitions for test circuit:

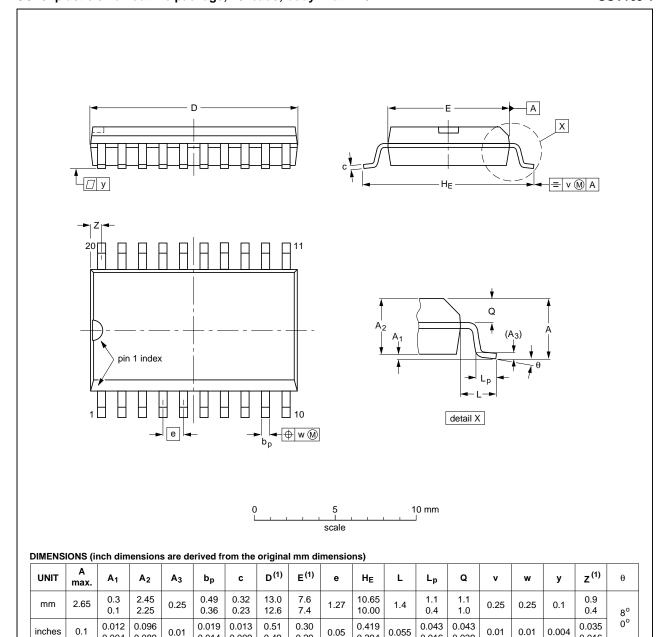
 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 6. Test circuit for measuring switching times


Table 9. Test data

Supply voltage	Input		Load		V _{EXT}			
	VI	t _r , t _f	CL	R_L	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
V_{CC} = 5.0 V \pm 0.5 V	GND to 3.0 V	\leq 2.5 ns	50 pF	500Ω	open	7.0 V	open	

13. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014

0.009

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013			99-12-27 03-02-19	

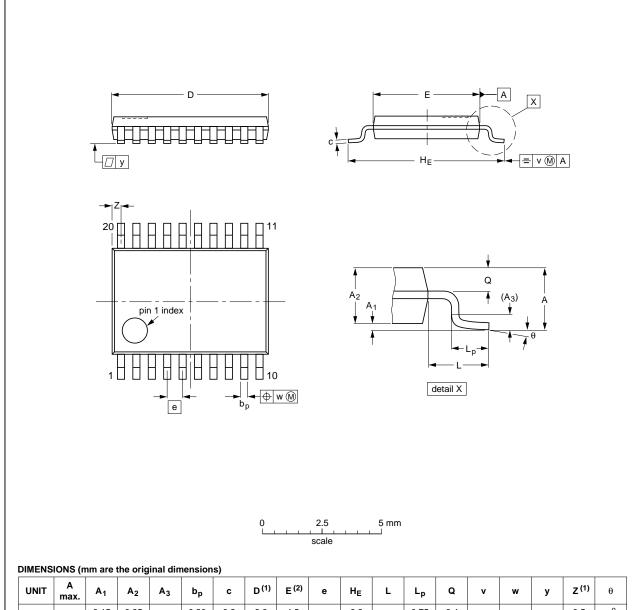
0.394

0.016

0.039

Fig 7. Package outline SOT163-1 (SO20)

0.004


0.089

CBT3245A_Q100 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT360-1		MO-153			-99-12-27 03-02-19	

Fig 8. Package outline SOT360-1 (TSSOP20)

CBT3245A_Q100

All information provided in this document is subject to legal disclaimers.

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

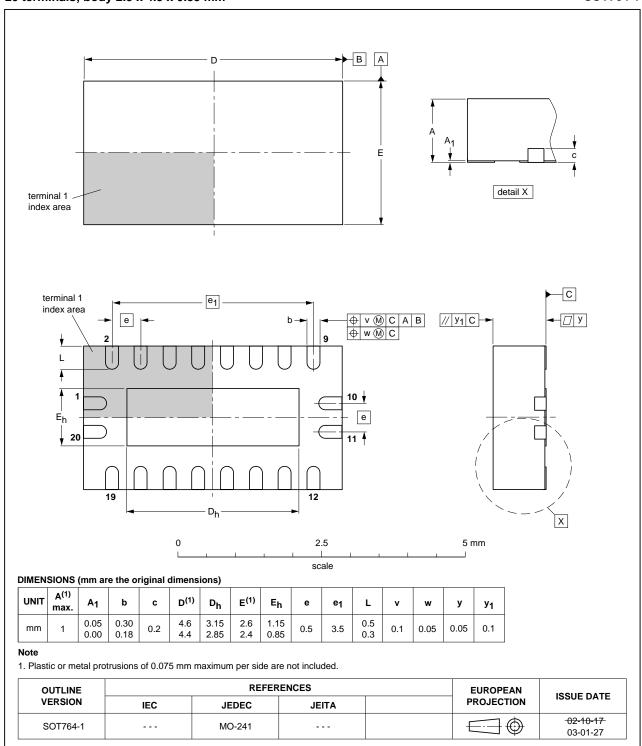


Fig 9. Package outline SOT764-1 (DHVQFN20)

CBT3245A_Q100 All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
ESD	ElectroStatic Discharge
DUT	Device Under Test
НВМ	Human Body Model
MIL	Military
MM	Machine Model
PRR	Pulse Rate Repetition
TTL	Transistor-Transistor Logic

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
CBT3245A_Q100 v.1	20130320	Product data sheet	-	-

11 of 14

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for guick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer's own

Suitability for use in automotive applications — This NXP

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

CBT3245A Q100

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning
5.2	Pin description
6	Functional description
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms
12	Test information 7
13	Package outline 8
14	Abbreviations
15	Revision history 11
16	Legal information 12
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks
17	Contact information
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.