Low-Jitter, Wide Frequency Range, **Programmable Clock Generator with 10 Outputs** #### **General Description** **Features** The MAX3636 is a highly flexible, precision phase-locked loop (PLL) clock generator optimized for the next generation of network equipment that demands low-jitter clock generation and distribution for robust high-speed data transmission. The device features subpicosecond jitter generation, excellent power-supply noise rejection, and pin-programmable LVDS/LVPECL output interfaces. The MAX3636 provides nine differential outputs and one LVCMOS output, divided into three banks. The frequency and output interface of each output bank can be individually programmed, making this device an ideal replacement for multiple crystal oscillators and clock distribution ICs on a system board, saving cost and space. This 3.3V IC is available in a 7mm x 7mm, 48-pin TQFN package and operates from -40°C to +85°C. #### **Applications** Ethernet Switches/ Routers Wireless Base Stations SONET/SDH Line Cards PCIe®, Network **Processors** Fibre Channel SAN #### ♦ Inputs - ♦ Crystal Interface: 18MHz to 33.5MHz ↓ LVCMOS Input: 15MHz to 160MHz - ♦ Differential Input: 15MHz to 350MHz #### **♦** Outputs - ♦ LVCMOS Output: Up to 160MHz - ↓ LVPECL/LVDS Outputs: Up to 800MHz - **♦ Three Individual Output Banks** - ♦ Pin-Programmable Dividers - ♦ Pin-Programmable Output Interface - ♦ Wide VCO Tuning Range (3.60GHz to 4.025GHz) - **♦ Low Phase Jitter** - ♦ 0.34ps_{RMS} (12kHz to 20MHz) - 0.14ps_{RMS} (1.875MHz to 20MHz) - **♦ Excellent Power-Supply Noise Rejection** - ♦ -40°C to +85°C Operating Temperature Range - ♦ 3.3V Supply Ordering Information appears at end of data sheet. ### **Functional Diagram** PCIe is a registered trademark of PCI-SIG Corp. ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **ABSOLUTE MAXIMUM RATINGS** | Supply Voltage Range (V _{CC} , V _{CCA} , V _{CCQA} , V _{CCQB} , V _{CCQC} , V _{CCQCC})0.3V to +4.0V Voltage Range at CIN, IN_SEL, DM, DF[1:0], | |---| | DP[1:0], PLL_BP, DA[1:0], DB[1:0], DC[1:0], | | QA_CTRL1, QA_CTRL2, QB_CTRL, | | QC_CTRL, QCC0.3V to (V _{CC} + 0.3V) | | Voltage Range at DIN, DIN (V _{CC} - 2.35V) to (V _{CC} - 0.35V) | | Voltage Range at QA[4:0], QA[4:0], QB[2:0], | | $\overline{\text{QB[2:0]}}$, QC, $\overline{\text{QC}}$ when LVDS Output0.3V to (V _{CC} + 0.3V) | | Current into QA[4:0], QA[4:0], QB[2:0], QE | | |--|-----------------------------------| | QC, QC when LVPECL Output | 56mA | | Current into QCC | ±50mA | | Voltage Range at XIN | 0.3V to +1.2V | | Voltage Range at XOUT | -0.3V to (V _{CC} - 0.6V) | | Continuous Power Dissipation ($T_A = +70^{\circ}$ C | C) | | TQFN (derate 40mW/°C above +70°C) | 3200mW | | Operating Junction Temperature Range | 55°C to +150°C | | Storage Temperature Range | 65°C to +160°C | | | | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{CC} = 3.0 \text{V to } 3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$. Typical values are at $V_{CC} = 3.3 \text{V}, T_A = +25 ^{\circ}\text{C}$, unless otherwise noted. Signal applied to CIN or DIN/DIN only when selected as the reference clock.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |--|------------------|---|-----------------------|-----------------------|---------|-------------------|--| | Supply Current with PLL | 1 | Configured with LVPECL outputs | | 170 | 215 | m A | | | Enabled (Note 3) | | Configured with LVDS outputs | | 290 | 365 | mA | | | Supply Current with PLL | | Configured with LVPECL outputs | | 110 | | mA | | | Bypassed (Note 3) | | Configured with LVDS outputs | | 230 | | mA | | | LVCMOS/LVTTL CONTROL INF
QA_CTRL2, QB_CTRL, QC_CT | | ., DM, DF[1:0], DA[1:0], DB[1:0], DC[1:0], PL | L_BP, D | P[1:0], Q <i>i</i> | A_CTRL1 | , | | | Input High Voltage | V _{IH} | | 2.0 | | | V | | | Input Low Voltage | V _{IL} | | | | 0.8 | V | | | Input High Current | lін | $V_{IN} = V_{CC}$ | | | 80 | μΑ | | | Input Low Current | IIL | $V_{IN} = 0V$ | -80 | | | μΑ | | | LVCMOS/LVTTL CLOCK INPUT | (CIN) | | | | | | | | Reference Clock Input
Frequency | f _{REF} | | 15 | | 160 | MHz | | | Input Amplitude Range | | Internally AC-coupled (Note 4) | 1.2 | | 3.6 | V _{P-P} | | | Input High Current | I _{IH} | $V_{IN} = V_{CC}$ | | | 80 | μΑ | | | Input Low Current | lıL | $V_{IN} = 0V$ | -80 | | | μΑ | | | Reference Clock Input Duty
Cycle | | | 40 | | 60 | % | | | Input Capacitance | | | | 1.5 | | pF | | | DIFFERENTIAL CLOCK INPUT | (DIN, DIN) (N | ote 5) | | | | | | | Differential Input Frequency | f _{REF} | | 15 | | 350 | MHz | | | Input Bias Voltage | V _{CMI} | | V _{CC} - 1.8 | V _{CC} - 1.3 | | V | | | Input Differential Voltage Swing | | | 150 | | 1800 | mV _{P-P} | | # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = 3.0V \text{ to } 3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{CC} = 3.3V, T_A = +25^{\circ}\text{C}$, unless otherwise noted. Signal applied to CIN or DIN/DIN only when selected as the reference clock.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|---------------------|--|------------------------|------------------------|---------------------------|------------------|--| | Single-Ended Voltage Range | | | V _{CC} - 2.0 | | V _{CC} - 0.7 | V | | | Input Differential Impedance | | | 80 | 100 | 120 | Ω | | | Differential Input Capacitance | | | | 1.5 | | pF | | | LVDS OUTPUTS (QA[4:0], QA[4 | :0], QB[2:0], | QB[2:0], QC, QC) (Note 6) | | | | | | | Output Frequency | | | | | 800 | MHz | | | Output High Voltage | V _{OH} | | | | 1.475 | V | | | Output Low Voltage | V _{OL} | | 0.925 | | | V | | | Differential Output Voltage | IV _{OD} I | | 250 | | 400 | mV | | | Change in Magnitude
of Differential Output for
Complementary States | ΔIV _{OD} I | | | | 25 | mV | | | Output Offset Voltage | Vos | | 1.125 | | 1.3 | V | | | Change in Magnitude of
Output Offset Voltage for
Complementary States | ΔIV _{OS} I | | | | 25 | mV | | | Differential Output Impedance | | | 78 | 100 | 140 | Ω | | | Output Ourront | | Short together | | 3 | | | | | Output Current | | Short to ground | | 6 | | - mA | | | Output Current When Disabled | | $V_{Q} = V_{\overline{Q}} = 0V \text{ to } V_{CC}$ | | 10 | | μΑ | | | Output Rise/Fall Time | | 20% to 80% | | 160 | 240 | ps | | | Outrout Data Quala Diatastias | | PLL enabled | 48 | 50 | 52 | 0/ | | | Output Duty-Cycle Distortion | | PLL bypassed (Note 7) | | 50 | | % | | | LVPECL OUTPUTS (QA[4:0], Q | A[4:0], QB[2: | 0], QB[2:0], QC, QC) (Note 8) | | | | | | | Output Frequency | | | | | 800 | MHz | | | Output High Voltage | V _{OH} | | V _{CC} - 1.13 | V _{CC} - 0.98 | V _{CC} - 0.83 | V | | | Output Low Voltage | V _{OL} | | V _{CC} - 1.85 | V _{CC} - 1.70 | V _{CC} -
1.55 | V | | | Output-Voltage Swing
(Single-Ended) | | | 0.5 | 0.7 | 0.9 | V _{P-P} | | | Output Current When Disabled | | $V_{Q} = V_{\overline{Q}} = 0V \text{ to } V_{CC}$ | | 10 | | μΑ | | | Output Rise/Fall Time | | 20% to 80% | | 140 | 240 | ps | | | Outside Duty Out District | | PLL enabled | 48 | 50 | 52.1 | 6/ | | | Output Duty-Cycle Distortion | | PLL bypassed (Note 7) | | 50 | , | % | | ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = 3.0 \text{V to } 3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}.$ Typical values are at $V_{CC} = 3.3 \text{V}, T_A = +25 ^{\circ}\text{C},$ unless otherwise noted. Signal applied to CIN or DIN/DIN only when selected as the reference clock.) (Notes 1, 2) | PARAMETER | SYMBOL | CO | NDITIONS | MIN | TYP | MAX | UNITS | |--|------------------|--------------------------------|-----------------------|------|------|-----------------|---------------------| | LVCMOS/LVTTL OUTPUT (QCC) |) | | | • | | | | | Output Frequency | | | | | | 160 | MHz | | Output High Voltage | | I _{OH} = -12mA | | 2.6 | , | V _{CC} | V | | Output Low Voltage | | $I_{OL} = 12mA$ | | | | 0.4 | V | | Output Rise/Fall Time | | 20% to 80% (Note | e 9) | 150 | 400 | 850 | ps | | 0 + 10 + 0 + 50 + 6 | | PLL enabled | | 42 | 50 | 58 | 0/ | | Output Duty-Cycle Distortion | | PLL bypassed (N | ote 7) | | 50 | | - % | | Output Impedance | | | | | 15 | | Ω | | PLL SPECIFICATIONS | | | | ' | | | | | NOO Fee was Been | ı, | Low VCO (DP1 = | 0 or NC) | 3600 | 3750 | 3830 | N 41 1- | | VCO Frequency Range | fvco | High VCO (DP1 = | : 1) | 3830 | 3932 | 4025 | MHz | | Phase-Frequency Detector
Compare Frequency | f _{PFD} | | | 15 | | 42 | MHz | | PLL Jitter Transfer Bandwidth | | | | | 130 | | kHz | | | | 25MHz crystal | 12kHz to 20MHz | | 0.34 | 1.0 | | | Integrated Phase Jitter | RJ | input (Note 9) | 1.875MHz to 20MHz | | 0.14 | | | | integrated Friase Sitter | nu nu | 25MHz LVCMOS
(Notes 10, 11) | or differential input | 0.34 | | | - ps _{RMS} | | Supply-Noise Induced Phase
Spur at LVPECL/LVDS Output | | (Note 12) | | | -56 | | dBc | | Supply-Noise Induced Phase
Spur at LVCMOS Output | | (Note 12) | | | -45 | | dBc | | Determinisitic Jitter Induced by Power-Supply Noise | | LVPECL or LVDS | (Note 12) | | 6 | | psp-p | | Nonharmonic and Subharmonic Spurs | | (Note 13) | | | -70 | | dBc | | | | f _{OFFSET} = 1kHz | | | -111 | , | | | | | f _{OFFSET} = 10kHz | | | -113 | | 1 | | SSB Phase Noise at 491.52MHz | | f _{OFFSET} = 100kHz | <u>Z</u> | | -119 | , | dBc/
Hz | | | | f _{OFFSET} = 1MHz | | -136 | | | - | | | | f _{OFFSET} ≥ 10MHz | | | -147 | , | 1 | | | | f _{OFFSET} = 1kHz | | | -115 | | | | | | f _{OFFSET} = 10kHz | | | -116 | | 1 | | SSB Phase Noise at 312.5MHz | | f _{OFFSET} = 100kHz | <u>Z</u> | | -122 | | dBc/
Hz | | | | f _{OFFSET} = 1MHz | | | -139 | | 112 | | | | f _{OFFSET} ≥ 10MHz | | | -149 | , | 1 | ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = 3.0 \text{V to } 3.6 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = 3.3 \text{V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted. Signal applied to CIN or DIN/DIN only when selected as the reference clock.) (Notes 1, 2)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |------------------------------|--------|------------------------------|-----|------|-----|------------|--| | | | f _{OFFSET} = 1kHz | | -117 | | | | | | | f _{OFFSET} = 10kHz | | -119 | |] , | | | SSB Phase Noise at 245.76MHz | | f _{OFFSET} = 100kHz | | -125 | | dBc/
Hz | | | | | f _{OFFSET} = 1MHz | | -142 | | | | | | | f _{OFFSET} ≥ 10MHz | | -151 | | | | | | | foffset = 1kHz | | -122 | | | | | | | f _{OFFSET} = 10kHz | | -123 | | J.D. / | | | SSB Phase Noise at 156.25MHz | | f _{OFFSET} = 100kHz | | -129 | | dBc/
Hz | | | | | f _{OFFSET} = 1MHz | | -145 | | 1 112 | | | | | f _{OFFSET} ≥ 10MHz | | -152 | | | | | | | f _{OFFSET} = 1kHz | | -123 | | | | | | | f _{OFFSET} = 10kHz | | -124 | |] , | | | SSB Phase Noise at 125MHz | | f _{OFFSET} = 100kHz | | -130 | | dBc/
Hz | | | | | f _{OFFSET} = 1MHz | | -147 | | 1 112 | | | | | f _{OFFSET} ≥ 10MHz | | -153 | | | | | | | f _{OFFSET} = 1kHz | | -126 | | | | | | | f _{OFFSET} = 10kHz | | -127 | |] , | | | SSB Phase Noise at 100MHz | | f _{OFFSET} = 100kHz | | -133 | | dBc/
Hz | | | | | f _{OFFSET} = 1MHz | | -148 | | | | | | | f _{OFFSET} ≥ 10MHz | | -152 | | | | - **Note 1:** A series resistor of up to 10.5Ω is allowed between V_{CC} and V_{CCA} for filtering supply noise when system power-supply tolerance is $V_{CC} = 3.3V \pm 5\%$. See Figure 3. - **Note 2:** Unless otherwise noted, specifications at $T_A = +25^{\circ}$ C and $T_A = +85^{\circ}$ C are guaranteed by production testing. Specifications at $T_A = -40^{\circ}$ C are guaranteed by design. - Note 3: Measured with all outputs enabled and unloaded. - **Note 4:** CIN can be AC- or DC-coupled. See Figure 8. Input high voltage must be \leq V_{CC} + 0.3V. - Note 5: DIN can be AC- or DC-coupled. See Figure 10. - **Note 6:** Measured with 100Ω differential load. - Note 7: Measured with crystal input, or with 50% duty cycle LVCMOS or differential input. - **Note 8:** Measured with output termination of 50Ω to V_{CC} 2V or Thevenin equivalent. - **Note 9:** Measured with a series resistor of 33Ω to a load capacitance of 3.0pF. See Figure 1. - Note 10: Measured at 156.25MHz. - Note 11: Measured using LVCMOS/LVTTL input with slew rate ≥ 1.0V/ns, or differential input with slew rate ≥ 0.5V/ns. - **Note 12:** Measured at 156.25MHz output with 200kHz, 50mV_{P-P} sinusoidal signal on the supply using the crystal input and the power-supply filter shown in <u>Figure 3</u>. See the <u>Typical Operating Characteristics</u> for other supply noise frequencies. Deterministic jitter is calculated from the measured power-supply-induced spurs. For more information, refer to Application Note 4461: <u>HFAN-04.5.5</u>: <u>Characterizing Power-Supply Noise Rejection in PLL Clock Synthesizers</u>. - Note 13: Measured with all outputs enabled and all three banks at different frequencies. ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Figure 1. LVCMOS Output Measurement Setup ### **Typical Operating Characteristics** $(V_{CC} = 3.3V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ ## Low-Jitter, Wide Frequency Range, **Programmable Clock Generator with 10 Outputs** ### Typical Operating Characteristics (continued) $(V_{CC} = 3.3V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **Typical Operating Characteristics (continued)** ($V_{CC} = 3.3V$, $T_A = +25$ °C, unless otherwise noted.) # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs -35 -40 -45 -50 1k ### **Typical Operating Characteristics (continued)** $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$ ## INTEGRATED PHASE JITTER (12kHz TO 20MHz) vs. Temperature #### JITTER TRANSFER ## SPURS INDUCED BY POWER-SUPPLY NOISE vs. Noise Frequency ## DETERMINISTIC JITTER INDUCED BY POWER SUPPLY NOISE vs. NOISE FREQUENCY 100k JITTER FREQUENCY (Hz) 10M # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ### **Pin Configuration** ## **Pin Description** | PIN | NAME | FUNCTION | | | |--------|------------------|---|--|--| | 1 | DM | LVCMOS/LVTTL Input. Three-level control for input divider M. See Table 3. | | | | 2 | XIN | Crystal Oscillator Input | | | | 3 | XOUT | Crystal Oscillator Output | | | | 4 | V _{CC} | Core Power Supply. Connect to 3.3V. | | | | 5 | IN_SEL | LVCMOS/LVTTL Input. Three-level control for input mux. See Table 1. | | | | 6 | PLL_BP | LVCMOS/LVTTL Input. Three-level control for PLL bypass mode. See Table 2. | | | | 7, 8 | DF1, DF0 | LVCMOS/LVTTL Inputs. Three-level controls for feedback divider F. See Table 4. | | | | 9 | QC_CTRL | LVCMOS/LVTTL Input. Three-level control input for C-bank output interface. See Table 10. | | | | 10 | V _{CCA} | Power Supply for Internal Voltage-Controlled Oscillators (VCOs). See Figure 3. | | | | 11, 12 | DP1, DP0 | LVCMOS/LVTTL Inputs. Three-level controls for VCO select and prescale divider P. See Table 7. | | | | 13, 14 | DB1, DB0 | LVCMOS/LVTTL Inputs. Three-level controls for output divider B. See Table 5. | | | # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ## **Pin Description (continued)** | | 1 | | |--------|---|--| | PIN | NAME | FUNCTION | | 15, 16 | DA1, DA0 | LVCMOS/LVTTL Inputs. Three-level controls for output divider A. See Table 5. | | 17, 18 | DC1, DC0 | LVCMOS/LVTTL Inputs. Three-level controls for output divider C. See Table 6. | | 19 | QA_CTRL2 | LVCMOS/LVTTL Input. Three-level control for QA[4:3] output interface. See Table 8. | | 20 | V _{CCQCC} | Power Supply for QCC Output. Connect to 3.3V. | | 21 | QCC | C-Bank LVCMOS Clock Output | | 22, 23 | QC, QC | C-Bank Differential Output. Configured as LVPECL or LVDS with the QC_CTRL pin. | | 24 | V _{CCQC} | Power Supply for C-Bank Differential Output. Connect to 3.3V. | | 25, 36 | V _{CCQA} | Power Supply for A-Bank Differential Outputs. Connect to 3.3V. | | 26, 27 | QA4, QA4 | A-Bank Differential Output. Configured as LVPECL or LVDS with the QA_CTRL2 pin. | | 28, 29 | QA3, QA3 | A-Bank Differential Output. Configured as LVPECL or LVDS with the QA_CTRL2 pin. | | 30, 31 | 30, 31 QAZ, QA2 A-Bank Differential Output. Configured as LVPECL or LVDS with the QA_CTRL1 pin. | | | 32, 33 | 2, 33 \overline{QA1}, QA1 A-Bank Differential Output. Configured as LVPECL or LVDS with the QA_CTRL1 pin. | | | 34, 35 | QAO, QAO | A-Bank Differential Output. Configured as LVPECL or LVDS with the QA_CTRL1 pin. | | 37 | V _{CCQB} | Power Supply for B-Bank Differential Outputs. Connect to 3.3V. | | 38, 39 | QBO, QBO | B-Bank Differential Output. Configured as LVPECL or LVDS with the QB_CTRL pin. | | 40, 41 | QB1, QB1 | B-Bank Differential Output. Configured as LVPECL or LVDS with the QB_CTRL pin. | | 42, 43 | QB2, QB2 | B-Bank Differential Output. Configured as LVPECL or LVDS with the QB_CTRL pin. | | 44 | QA_CTRL1 | LVCMOS/LVTTL Input. Three-level control for QA[2:0] output interface. See Table 8. | | 45 | QB_CTRL | LVCMOS/LVTTL Input. Three-level control for B-bank output interface. See Table 9. | | 46, 47 | DIN, DIN | Differential Clock Input. Operates up to 350MHz. This input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals. | | 48 | CIN | LVCMOS Clock Input. Operates up to 160MHz. | | _ | EP | Exposed Pad. Connect to supply ground for proper electrical and thermal performance. | ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **Detailed Description** The MAX3636 is a low-jitter clock generator designed to operate over a wide range of frequencies. It consists of a selectable reference clock (on-chip crystal oscillator, LVCMOS input, or differential input), PLL with on-chip VCO, pin-programmable dividers and muxes, and three banks of clock outputs. See <u>Figure 2</u>. The output banks include nine pin-programmable LVDS/LVPECL output buffers and one LVCMOS output buffer. The frequency, Figure 2. Detailed Functional Diagram ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs enabling, and output interface of each output bank can be individually programmed. In addition the A-bank is split into two banks with programmable enabling and output interface. A PLL bypass mode is also available for system testing or clock distribution. #### **Crystal Oscillator** The on-chip crystal oscillator provides the low-frequency reference clock for the PLL. This oscillator requires an external crystal connected between XIN and XOUT. See the *Crystal Selection and Layout* section for more information. The XIN and XOUT pins can be left open if not used. #### **LVCMOS Clock Input** An LVCMOS-compatible clock source can be connected to CIN to serve as the PLL reference clock. The input is internally biased to allow AC- or DC-coupling (see the *Applications Information* section). It is designed to operate from 15MHz to 160MHz. No signal should be applied to CIN if not used. #### **Differential Clock Input** A differential clock source can be connected to DIN to serve as the PLL reference clock. This input operates from 15MHz to 350MHz and contains an internal 100Ω differential termination. This input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals (see the <u>Applications Information</u> section). No signal should be applied to DIN if not used. #### Phase-Locked Loop (PLL) The PLL takes the signal from the crystal oscillator, LVCMOS clock input, or differential clock input and synthesizes a low-jitter, high-frequency clock. The PLL contains a phase-frequency detector (PFD), a charge pump (CP), and two low phase noise VCOs that combined give a wide 3.60GHz to 4.025GHz frequency range. The high-frequency VCO output is divided by prescale divider P and then is connected to the PFD input through a feedback divider F. The PFD compares the reference frequency to the divided-down VCO output and generates a control signal that keeps the VCO locked to the reference clock. The high-frequency VCO/P output clock is sent to the output dividers. To minimize noise-induced jitter, the VCO supply (V_{CCA}) is isolated from the core logic and output buffer supplies. #### **Dividers and Muxes** The dividers and muxes are set with three-level control inputs. Divider settings and routing information are given in <u>Table 1</u> to <u>Table 7</u>. See <u>Table 11</u> for example divider configurations used in various applications. #### Table 1. PLL Input | IN_SEL INPUT | | | | |--|--|--|--| | 0 | Crystal Input. XO circuit is disabled when not selected. | | | | 1 | Differential Input. No signal should be applied to DIN if not selected | | | | NC LVCMOS Input. No signal should be applied to CIN if not selected. | | | | #### Table 2. PLL Bypass | PLL_BP | PLL OPERATION | | | | | |--------|---|--|--|--|--| | 0 | 0 PLL Enabled for Normal Operation. All outputs from the A, B, and C banks are derived from the VCO. | | | | | | 1 | PLL Bypassed. Selected input passes directly to the outputs. Both VCOs are disabled to minimize power consumption and intermodulation spurs. Used for system testing or clock distribution. | | | | | | NC | The outputs from A-bank and B-bank are derived from the VCO, but the C-bank outputs are directly driven from the input signal for purposes of daisy chaining. | | | | | ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs **Table 3. Input Divider M** | DM | M DIVIDER RATIO | |----|-----------------| | 0 | ÷1 | | 1 | ÷5 | | NC | ÷4 | **Note:** When the on-chip XO is selected (IN_SEL = 0), the setting DM = 0 is required. Table 4. PLL Feedback Divider F | DF1 | DF0 | F DIVIDER RATIO | |-----|-----|-----------------| | 0 | 0 | ÷25 | | 0 | 1 | ÷20 | | 1 | 0 | ÷16 | | 1 | 1 | ÷32 | | 1 | NC | ÷24 | | NC | 1 | ÷30 | | 0 | NC | ÷40 | | NC | 0 | ÷48 | | NC | NC | ÷28 | Table 5. Output Divider A, B | DA1/DB1 | DA0/DB0 | A, B DIVIDER RATIO | |---------|---------|--------------------| | 0 | 0 | ÷2 | | 0 | 1 | ÷4 | | 1 | 0 | ÷5 | | 1 | 1 | ÷6 | | 1 | NC | ÷8 | | NC | 1 | ÷10 | | 0 | NC | ÷16 | | NC | 0 | ÷25 | | NC | NC | ÷1 | Table 6. Output Divider C | DC1 | DC0 | C DIVIDER RATIO | | | | |-----|-----|-----------------|--|--|--| | 0 | 0 | ÷2 | | | | | 0 | 1 | ÷3 | | | | | 1 | 0 | ÷4 | | | | | 1 | 1 | ÷5 | | | | | 1 | NC | ÷6 | | | | | NC | 1 | ÷8 | | | | | 0 | NC | ÷10 | | | | | NC | 0 | ÷16 | | | | | NC | NC | ÷25 | | | | Table 7. VCO Select and Prescale Divider P | DP1 | DP0 | VCO
FREQUENCY
RANGE
(MHz) | P
DIVIDER
RATIO | (VCO/P)
FREQUENCY
RANGE (MHz) | |-----|----------|------------------------------------|-----------------------|-------------------------------------| | | 0 | Low | ÷5 | 720 to 766 | | 0 | 1 | (3600 to | ÷6 | 600 to 638.33 | | | NC 3830) | 3830) | ÷9 | 400 to 425.50 | | | 0 | | ÷7 | 547.14 to 575 | | NC | 1 | | ÷10 | 383 to 402.50 | | | NC | High | ÷8 | 478.75 to 503.12 | | | 0 1 40 | (3830 to
4025) | ÷4 | 957.50 to
1006.25 | | 1 | 1 | | ÷5 | 766 to 805 | | | NC | | ÷6 | 638.33 to 670.83 | **Table 8. A-Bank Output Interface** | QA_CTRL1 | QA[2:0] OUTPUT | | | |----------|--|--|--| | 0 | QA[2:0] = LVDS | | | | 1 | QA[2:0] = LVPECL | | | | NC | QA[2:0] disabled to high impedance QA[4:3] OUTPUT | | | | QA_CTRL2 | | | | | 0 | QA[4:3] = LVDS | | | | 1 | QA[4:3] = LVPECL | | | | NC | QA[4:3] disabled to high impedance | | | **Table 9. B-Bank Output Interface** | QB_CTRL | QB[2:0] OUTPUT | | | |---------|------------------------------------|--|--| | 0 | QB[2:0] = LVDS | | | | 1 | QB[2:0] = LVPECL | | | | NC | QB[2:0] disabled to high impedance | | | **Table 10. C-Bank Output Interface** | QC_CTRL | QC AND QCC OUTPUT | | | |---------|---------------------------------------|--|--| | 0 | QC = LVDS, QCC = LVCMOS | | | | 1 | QC = LVPECL, QCC = LVCMOS | | | | NC | QC and QCC disabled to high impedance | | | #### **LVDS/LVPECL Clock Outputs** The differential clock outputs (QA[4:0], QB[2:0], QC) operate up to 800MHz and have a pin-programmable LVDS/LVPECL output interface. See Table 8 to Table 10. ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs When configured as LVDS, the buffers are designed to drive transmission lines with a 100Ω differential termination. When configured as LVPECL, the buffers are designed to drive transmission lines terminated with 50Ω to V_{CC} - 2V. Unused output banks can be disabled to high impedance and unused outputs can be left open. #### **LVCMOS Clock Output** The LVCMOS clock output operates up to 160MHz and is designed to drive a single-ended high-impedance load. If unused, this output can be left open or the C-bank can be disabled to high impedance. #### **Internal Reset** During power-on, a power-on reset (POR) signal is generated to synchronize all dividers. A reset signal is also generated if any control pin is changed. Outputs within a bank are phase aligned, but outputs bank-to-bank may not be phase aligned. #### **Applications Information** #### **Output Frequency Configuration** The MAX3636 output frequencies (f_{QA} , f_{QB} , f_{QC}) are functions of the reference frequency (f_{REF}) and the pin-programmable dividers (A, B, C, F, M). The relationships can be expressed as: $$f_{QA} = \frac{f_{REF}}{M} \times \frac{F}{A}$$ (1) $$f_{QB} = \frac{f_{REF}}{M} \times \frac{F}{B}$$ (2) $$f_{QC} = \frac{f_{REF}}{M} \times \frac{F}{C}$$ (3) The frequency ranges for the selected reference clocks are 18MHz to 33.5MHz for the crystal oscillator input, 15MHz to 160MHz for the LVCMOS input, and 15MHz to 350MHz for the differential input. The available dividers are given in Table 3 to Table 6. For a given reference frequency f_{REF} , the input divider M, the PLL feedback divider F, and VCO prescale divider P must be configured so the VCO frequency (f_{VCO}) falls within the specified ranges. Invalid PLL configuration leads to VCO frequencies beyond the specified ranges and can result in loss of lock. An expression for the VCO frequency along with the specified ranges is given by: $$f_{VCO} = \frac{f_{REF}}{M} \times F \times P \tag{4}$$ $3600MHz \le f_{VCO} \le 3830MHz \text{ (when DP1 = 0) (5)}$ $3830MHz \le f_{VCO} \le 4025MHz \text{ (when DP1 = 1 or NC) (6)}$ The prescale divider P is set by pins DP1 and DP0 as given in Table 7. In addition, the reference clock frequency and input divider M must also be selected so the PFD compare frequency (fpFD) falls within the specified range of 15MHz to 42MHz. If applicable, the higher fpFD should be selected for optimal jitter performance. $$f_{PFD} = \frac{f_{REF}}{M} = \frac{f_{VCO}}{P \times F}$$ (7) $15MHz \le f_{PFD} \le 42MHz$ (8) Note that the reference clock frequency is not limited by the $f_{\mbox{\scriptsize PFD}}$ range when the PLL is in bypass mode. #### **Example Frequency Configuration** The following is an example of how to find divider ratios for a valid PLL configuration, given a requirement of input and output frequencies. 1) Select input and output frequencies for an Ethernet application. $f_{REF} = 25MHz$ $f_{OA} = 312.5MHz$ $f_{OB} = 156.25 MHz$ $f_{QC} = 125MHz$ - 2) Find the input divider M for a valid PFD compare frequency. Using <u>Table 3</u> and equations (7) and (8), it is determined that $M = \pm 1$ is the only valid option. - 3) Find the feedback divider F and prescale divider P for a valid f_{VCO} . Using <u>Table 4</u> and <u>Table 7</u> along with equations (4), (5), and (6), it is determined that $F = \div 25$ and $P = \div 6$ results in $f_{VCO} = 3750$ MHz, which is within the valid range of the low VCO. - 4) Find the output dividers A, B, C for the required output frequencies. Using <u>Table 5</u> and <u>Table 6</u> and equations (1), (2), and (3), it is determined that $A = \div 2$ gives $f_{QA} = 312.5 MHz$, $B = \div 4$ gives $f_{QB} = 156.25 MHz$, and $C = \div 5$ gives $f_{QC} = 125 MHz$. <u>Table 11</u> provides input and output frequencies along with valid divider ratios for a variety of applications. # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Table 11. Reference Frequencies and Divider Ratios for Various Applications | f _{REF}
(MHz) | INPUT
DIVIDER
(M) | PLL
FEEDBACK
DIVIDER
(F) | VCO
FREQUENCY
(MHz) | VCO
PRESCALE
DIVIDER
(P) | OUTPUT
DIVIDER
(A, B, C) | OUTPUT
FREQUENCY
(MHz) | APPLICATIONS | | |---------------------------|-------------------------|-----------------------------------|---------------------------|-----------------------------------|--------------------------------|------------------------------|--|--| | 19.44 | 1 | 32 | | 6 | 1 | 622.08 | | | | 00.00 | 1 | 10 | | 6 | 2 | 311.04 | | | | 38.88 | | 16 | 3732.48 | 6 | 4 | 155.52 | SONET/SDH, STM-N | | | 155 50 | 4 | 16 | | 6 | 8 | 77.76 | | | | 155.52 | 4 | 10 | | 6 | 16 | 38.88 | | | | 25 | 1 | 25 | | 6 | 1 | 625 | | | | 31.25 | 1 | 20 | | 6 | 2 | 312.5 | | | | 62.5 | 4 | 40 | 3750 | 6 | 4 | 156.25 | Ethernet | | | 125 | 5 | 25 | 3/30 | 6 | 5 | 125 | Ellellel | | | 156.25 | 5 | 20 | | 6 | 10 | 62.5 | | | | 26.04166 | 1 | 24 | | 6 | 25 | 25 | | | | 25 | 1 | 30 | | 5 | 1 | 750 | | | | 31.25 | 1 | 24 | | 5 | 2 | 375 | | | | 62.5 | 4 | 48 | | 5 | 4 | 187.5 | | | | 105 | 4 | 24 | 3750 | 5 | 5 | 150 | Various | | | 125 | 4 | 24 | | 5 | 6 | 125 | | | | 150.05 | _ | 0.4 | | 5 | 10 | 75 | | | | 156.25 | 5 | 24 | | 5 | 25 | 30 | | | | 15.36 | 1 | 48 | | 5 | 1 | 737.28 | | | | 30.72 | 1 | 24 | | 5 | 2 | 368.64 | | | | 61.44 | 4 | 48 | 3686.4 | 5 | 4 | 184.32 | | | | 122.88 | 4 | 24 | | 5 | 6 | 122.88 | | | | 122.00 | 4 | 24 | | 5 | 8 | 92.16 | | | | 15.36 | 1 | 40 | | 6 | 1 | 614.4 | | | | 19.2 | 1 | 32 | | 6 | 2 | 307.2 | | | | 30.72 | 1 | 20 | | 6 | 4 | 153.6 | Wireless Base Station: | | | 38.4 | 1 | 16 | 3686.4 | 6 | 5 | 122.88 | WCDMA, cdma2000 [®] ,
LTE, TD_SCDMA, | | | 61.44 | 4 | 40 | | 6 | 6 | 102.4 | WiMAXTM, GSM | | | 76.8 | 4 | 32 | | 6 | 8 | 76.8 | , , , , , | | | 122.88 | 4 | 20 | 1 | 6 | 10 | 61.44 | 1 | | | 30.72 | 1 | 16 | | 8 | 1 | 491.52 | | | | 01.44 | 0 | 00 | | 8 | 2 | 245.76 | | | | 61.44 | 2 | 32 | 3932.16 | 8 | 4 | 122.88 | | | | 100.00 | 4 | 10 | | 8 | 8 | 61.44 | | | | 122.88 | 4 | 16 | | 8 | 16 | 30.72 | | | cdma2000 is a registered trademark of the Telecommunications Industry Association. WiMAX is a trademark of WiMAX Forum. # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Table 11. Reference Frequencies and Divider Ratios for Various Applications (continued) | f _{REF}
(MHz) | INPUT
DIVIDER
(M) | PLL
FEEDBACK
DIVIDER
(F) | VCO
FREQUENCY
(MHz) | VCO
PRESCALE
DIVIDER
(P) | OUTPUT
DIVIDER
(A, B, C) | OUTPUT
FREQUENCY
(MHz) | APPLICATIONS | | |---------------------------|-------------------------|-----------------------------------|---------------------------|-----------------------------------|--------------------------------|------------------------------|---|--| | | , | 10 | | 9 | 1 | 416 | | | | 26 | 1 | 16 | 0744 | 9 | 4 | 104 | | | | | 4 | 00 | 3744 | 9 | 8 | 52 | - GSM | | | 52 | 4 | 32 | | 9 | 16 | 26 | | | | | | | | 6 | 2 | 318.75 | | | | 26.5625 | 1 | 24 | 3825 | 6 | 4 | 159.375 | | | | | | | | 6 | 6 | 106.25 | FO 04N | | | | | | | 9 | 2 | 212.5 | FC-SAN | | | 26.5625 | 1 | 16 | 3825 | 9 | 4 | 106.25 | | | | | | | | 9 | 8 | 53.125 | 1 | | | 33.3 | 1 | | | 5 | 2 | 400 | | | | 133.33 | 4 | 24 | | 5 | 4 | 200 | | | | 166.67 | 5 | 1 | | 5 | 6 | 133.333 | | | | 25 | 1 | | 4000 | 5 | 8 | 100 | | | | 100 | 4 | 32 | | _ | 4.0 | 50 | | | | 125 | 5 | 1 | | 5 | 16 | 50 | | | | 33.3 | 1 | | | 4 | 2 | 500 | Server, FB-DIMM, | | | 133.33 | 4 | 30 | | 4 | 4 | 250 | Network Processor, DDR/QDR Memory, PCIe, SATA | | | 166.67 | 5 | 1 | | 4 | 5 | 200 | | | | 25 | 1 | | | 4 | 6 | 166.67 | | | | 100 | 4 | 40 | 4000 | 4 | 8 | 125 | | | | 125 | 5 | | | | | | | | | 31.25 | 1 | | | 4 | 10 | 100 | | | | 125 | 4 | 32 | | 4 | 0.5 | 10 | | | | 156.25 | 5 | 1 | | 4 | 25 | 40 | | | | 15.625 | 1 | | | 8 | 2 | 250 | | | | 62.5 | 4 | 1 | | 8 | 4 | 125 | Server, FB-DIMM, | | | 70.405 | _ | - 32 | 4000 | 8 | 5 | 100 | Network Processor, | | | 78.125 | 5 | | 4000 | 8 | 8 | 62.5 | DDR/QDR Memory, | | | CC C7 | 4 | 20 | | 8 | 10 | 50 | PCIe, SATA | | | 66.67 | 4 | 30 | | 8 | 25 | 20 | 1 | | | 33.3 | 1 | | | 6 | 2 | 333.33 | | | | 100.00 | 4 | 1 | | 6 | 4 | 166.67 | 1 | | | 133.33 | 4 | 20 | 4000 | 6 | 5 | 133.33 | Various | | | 100.07 | Г | 1 | | 6 | 8 | 83.33 | | | | 166.67 | 5 | | | 6 | 10 | 66.67 |] | | | 20.70 | 4 | 200 | 2021.0 | 6 | 5 | 131.04 | Migroupova Dadia Link | | | 32.76 | 1 | 20 | 3931.2 | 6 | 10 | 65.52 | Microwave Radio Link | | ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **Power-Supply Filtering** The MAX3636 is a mixed analog/digital IC. The PLL contains analog circuitry susceptible to random noise. To take full advantage of on-board filtering and noise attenuation, in addition to excellent on-chip power-supply rejection, this part provides a separate power-supply pin, V_{CCA} , for the VCO circuitry. Figure 3 illustrates the recommended power-supply filter network for V_{CCA} . The purpose of this design technique is to ensure clean input power supply to the VCO circuitry and to improve the overall immunity to power-supply noise. This network requires that the power supply is $+3.3V \pm 5\%$. Decoupling capacitors should be used on all other supply pins for best performance. All supply connections should be driven from the same source. Figure 3. Power-Supply Filter #### **Table 12. Crystal Selection Parameters** | PARAMETER | SYMBOL | MIN | TYP | MAX | UNITS | |------------------------------------|----------------|-----|-----|------|-------| | Crystal Oscillation Frequency | fosc | 18 | 25 | 33.5 | MHz | | Shunt Capacitance | C ₀ | | 2.0 | 7.0 | pF | | Load Capacitance | CL | | 18 | | pF | | Equivalent Series Resistance (ESR) | R _S | | 10 | 50 | Ω | | Maximum Crystal Drive Level | | | | 200 | μW | Figure 4. Crystal Equivalent Circuit #### **Ground Connection** The 48-pin TQFN package features an exposed pad (EP), which provides a low resistance thermal path for heat removal from the IC and also the electrical ground. For proper operation, the EP must be connected to the circuit board ground plane with multiple vias. #### **Crystal Selection and Layout** The IC features an integrated on-chip crystal oscillator to minimize system implementation cost. The crystal oscillator is designed to drive a fundamental mode, AT-cut crystal resonator. See Table 12 for recommended crystal specifications. See Figure 4 for the crystal equivalent circuit and Figure 5 for the recommended external capacitor connections. The crystal, trace, and two external capacitors should be placed on the board as close as possible to the XIN and XOUT pins to reduce crosstalk of active signals into the oscillator. The total load capacitance for the crystal is a combination of external and on-chip capacitance. The layout shown in Figure 6 gives approximately 1.7pF of trace plus footprint capacitance per side of the crystal. Note the ground plane is removed under the crystal to minimize capacitance. There is approximately 2.5pF of on-chip capacitance between XIN and XOUT. With an external 27pF capacitor connected to XIN and a 33pF capacitor connected to XOUT, the total load capacitance for the crystal is approximately 18pF. The XIN and XOUT pins can be left open if not used. Figure 5. Crystal, Capacitor Connections ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Figure 6. Crystal Layout Figure 7. Equivalent CIN Circuit Figure 8. Interface to CIN #### **Interfacing with LVCMOS Input** The equivalent LVCMOS input circuit for CIN is given in Figure 7. This input is internally biased to allow AC- or DC-coupling, and has $180k\Omega$ input impedance. See Figure 8 for the interface circuit. No signal should be applied to CIN if not used. #### **Interfacing with Differential Input** The equivalent input circuit for DIN is given in Figure 9. This input operates up to 350MHz and contains an internal 100Ω differential termination as well as a 35Ω common-mode termination. The common-mode termination ensures good signal integrity when connected to a source with large common-mode signals. The input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals (Figure 10). No signal should be applied to DIN if not used. Figure 9. Equivalent DIN Circuit ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Figure 10. Interfacing to DIN #### **Interfacing with LVPECL Outputs** The equivalent LVPECL output circuit is given in Figure 11. These outputs are designed to drive a pair of 50Ω transmission lines terminated with 50Ω to $V_{TT} = V_{CC}$ - 2V. If a separate termination voltage (V_{TT}) is not available, other terminations methods can be used, as shown in Figure 12. For more information on LVPECL terminations and how to interface with other logic families, refer to Application Note 291: HFAN-01.0: Introduction to LVDS, PECL, and CML. Figure 11. Equivalent LVPECL Output Circuit # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Figure 12. Interface to LVPECL Outputs ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs Figure 13. Equivalent LVDS Output Circuit Figure 14. Interface to LVDS Outputs #### **Interfacing with LVDS Outputs** The equivalent LVDS output circuit is given in Figure 13. These outputs provide 100Ω differential output impedance designed to drive a 100Ω differential transmission line terminated with a 100Ω differential load. Example interface circuits are shown in Figure 14. For more information on LVDS terminations and how to interface with other logic families, refer to Application Note 291: HFAN-01.0: Introduction to LVDS, PECL, and CML. #### **Interfacing with LVCMOS Output** The equivalent LVCMOS output circuit is given in Figure 15. This output provides 15Ω output impedance and is designed to drive a high-impedance load. A series resistor of 33Ω is recommended at the LVCMOS output before the transmission line. An example interface circuit is shown in Figure 16. Figure 15. Equivalent LVCMOS Output Circuit Figure 16. Interface to LVCMOS Output ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **Layout Considerations** The inputs and outputs are the most critical paths for the MAX3636; great care should be taken to minimize discontinuities on the transmission lines. Here are some suggestions for maximizing the performance of the IC: - An uninterrupted ground plane should be positioned beneath the clock outputs. The ground plane under the crystal should be removed to minimize capacitance. - Supply decoupling capacitors should be placed close to the supply pins, preferably on the same side of the board as the IC. - Take care to isolate input traces from the IC outputs. - The crystal, trace, and two external capacitors should be placed on the board as close as possible to the XIN and XOUT pins to reduce crosstalk of active signals into the oscillator. - Maintain 100Ω differential (or 50Ω single-ended) transmission line impedance into and out of the part. - Provide space between differential output pairs to reduce crosstalk, especially if the outputs are operating at different frequencies. - Use multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk. Refer to the MAX3636 Evaluation Kit for more information. #### **Typical Application Circuits** # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ## **Typical Application Circuits (continued)** ## Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs #### **Typical Application Circuits (continued)** #### **Ordering Information** | PART | TEMP RANGE | PIN-PACKAGE | |-------------|----------------|-------------| | MAX3636ETM+ | -40°C to +85°C | 48 TQFN-EP* | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. #### **Chip Information** PROCESS: BiCMOS #### **Package Information** For the latest package outline information and land patterns (footprints), go to **http://www.microsemi.com**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. | PACKAGE | PACKAGE | OUTLINE | LAND | |------------|---------|---------|----------------| | TYPE | CODE | NO. | PATTERN NO. | | 48 TQFN-EP | T4877+4 | 21-0144 | <u>90-0130</u> | ^{*}EP = Exposed pad. # Low-Jitter, Wide Frequency Range, Programmable Clock Generator with 10 Outputs ## **Revision History** | REVISION
NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|---------------|-----------------|------------------| | 0 | 9/11 | Initial release | _ | Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com. © 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.