

TRF370417

SLWS213-JANUARY 2010

50-MHz TO 6-GHz QUADRATURE MODULATOR

Check for Samples: TRF370417

FEATURES

- 76-dBc Single-Carrier WCDMA ACPR at –8 dBm Channel Power
- Low Noise Floor: -162.3 dBm/Hz at 2140 MHz
- OIP3 of 26.5 dBm at 2140 MHz
- P1dB of 12 dBm at 2140 MHz
- Carrier Feedthrough of –38 dBm at 2140 MHz
- Side-Band Suppression of –50 dBc at 2140 MHz
- Single Supply: 4.5-V–5.5-V Operation
- Silicon Germanium Technology
- 1.7-V CM at I, Q Baseband Inputs

APPLICATIONS

- Cellular Base Station Transceiver
- CDMA: IS95, UMTS, CDMA2000, TD-SCDMA
- TDMA: GSM, IS-136, EDGE/UWC-136
- Multicarrier GSM
- WiMAX: 802.16d/e
- 3GPP: LTE
- Point-to-Point (P2P) Microwave
- Wideband Software-Defined Radio
- Public Safety: TETRA/APC025
- Communication-System Testers
- Cable Modem Termination System (CMTS)
- RGE PACKAGE (TOP VIEW)

DESCRIPTION

The TRF370417 is a low-noise direct quadrature modulator, capable of converting complex modulated signals from baseband or IF directly up to RF. The TRF370417 is a high-performance, superior-linearity device that operates at RF frequencies of 50 MHz through 6 GHz. The modulator is implemented as a double-balanced mixer. The RF output block consists of a differential to single-ended converter and an RF amplifier capable of driving a single-ended 50- Ω load without any need of external components. The TRF370417 requires a 1.7-V common-mode voltage for optimum linearity performance.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRF370417

SLWS213-JANUARY 2010

www.ti.com

Real Providence

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

NOTE: NC = No connection

DEVICE INFORMATION

TERMINAL FUNCTIONS

TERMINAL		1/0	DECODIDITION			
NAME	NO.	I/O	DESCRIPTION			
BBIN	22	I	In-phase negative input			
BBIP	21	I	In-phase positive input			
BBQN	9	I	Quadrature-phase negative input			
BBQP	10	I	Quadrature-phase positive input			
GND	2, 5, 8, 11, 12, 14, 17, 19, 20, 23	_	Ground			
LON	4	I	Local oscillator negative input			
LOP	3	I	Local oscillator positive input			
NC	1, 6, 7, 13, 15	-	No connect			
RF_OUT	16	0	RF output			
VCC	18, 24	_	Power supply			

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VALUE ⁽²⁾	UNIT
	Supply voltage range	–0.3 V to 6	V
TJ	Operating virtual junction temperature range	-40 to 150	°C
T _A	Operating ambient temperature range	-40 to 85	°C
T _{stg}	Storage temperature range	-65 to 150	°C
ESD Rating	НВМ	75	V
ESD Rating	CDM	75	V

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{CC}	Power-supply voltage	4.5	5	5.5	V

THERMAL CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	VALUE	UNIT
R_{\thetaJA}	Thermal resistance, junction-to-ambient	High-K board, still air	29.4	°C/W
R_{\thetaJC}	Thermal resistance, junction-to-case		18.6	°C/W
R_{\thetaJB}	Thermal resistance, junction-to-board		14	°C/W

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DC Para	ameters					
I _{CC}	Total supply current (1.7 V CM)	$T_A = 25^{\circ}C$		205	245	mA
LO Inpu	it (50-Ω, Single-Ended)					
	LO frequency range		0.05		6	GHz
f_{LO}	LO input power	-5	0	12	dBm	
	LO port return loss			15		dB
Baseba	nd Inputs	•	•			
V _{CM}	I and Q input dc common voltage			1.7		
BW	1-dB input frequency bandwidth			1		GHz
Z _{I(single} ended)	Input impedance, resistance			5		kΩ
	Input impedance, parallel capacitance		3		pF	

SLWS213-JANUARY 2010

RF OUTPUT PARAMETERS

over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
f _{LO} = 7	0 MHz at 8 dBm				
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-8		dB
P1dB	Output compression point		7.3		dBm
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	22		dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	69		dBm
	Carrier feedthrough	Unadjusted	-46		dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-27.5		dBc
$f_{LO} = 4$	00 MHz at 8 dBm				
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-1.9		dB
P1dB	Output compression point		11		dBm
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	24.5		dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	68		dBm
	Carrier feedthrough	Unadjusted	-38		dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-40		dBc
f _{LO} = 9	45.6 MHz at 8 dBm				
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5		dB
P1dB	Output compression point		11		dBm
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	25		dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	65		dBm
	Carrier feedthrough	Unadjusted	-40		dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-42		dBc
	Output return loss		9		dB
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-161.2		dBm/Hz
f _{LO} = 1	800 MHz at 8 dBm			·	
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5		dB
P1dB	Output compression point		12		dBm
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	26		dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	60		dBm
	Carrier feedthrough	Unadjusted	-40		dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50		dBc
	Output return loss		8		dB
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-161.5		dBm/Hz

RF OUTPUT PARAMETERS (continued)

over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)

P1dBOutput compression point101101110111011 </th <th></th> <th>PARAMETER</th> <th>TEST CONDITIONS</th> <th>MIN TYP</th> <th>MAX</th> <th>UNIT</th>		PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
P1dBOutput compression point111 </td <td>f_{LO} = 19</td> <td>960 MHz at 8 dBm</td> <td></td> <td></td> <td></td> <td></td>	f _{LO} = 19	960 MHz at 8 dBm					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5		dB	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P1dB	Output compression point		12		dBm	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IP3	Output IP3	f_{BB} = 4.5, 5.5 MHz; P_{out} = -8 dBm per tone	26.5		dBm	
Sideband suppressionUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBcOutput return loss 8 dBOutput noise floor $\geq 13 \text{ MHz}$ offset from f_{LO} ; $P_{out} = -5 \text{ dBm}$ -162dBm/HzEVMError vector magnitude (rms)1 EDGE signal, $P_{out} = -6 \text{ dBm}^{(1)}$ 0.43%dBcAdgacent-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -74dBcAdternate-channel power ratio1 WCDMA signal; $P_{out} = -11 \text{ dBm per carrier}^{(3)}$ -68dBcAtternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -67dBc1 WCDMA signal; $P_{out} = -4 \text{ dBm}^{(2)}$ -68dBc2 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -778dBc2 WCDMA signal; $P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -69dBc1 WCDMA signal; $P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -69dBc1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -69dBm1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -69dBm1 WCDMA signal; $P_{out} = -8 \text{ dBm}$ per tone26.5dBm1 WCDMA signal; $P_{out} = -8 \text{ dBm}$ per tone26.5dBmP1dBOutput ropression point12dBmP2Uput IP3 $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 26.50 Uput IP2 $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBc0 Uput return loss0213 MHz offset from f_{LO} ; $P_{out} = -8 \text{ dBm}^{(2)}$ -761 WCDMA signal; $P_{out} = -4 \text{ dBm}^{(2)}$ -761 WCDMA signa	IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	60		dBm	
Output return loss8dBOutput noise floor ≥ 13 MHz offset from f_{LO} ; $P_{out} = -5$ dBm162dBm/HzEVMError vector magnitude (rms)1 EOCE signal, $P_{out} = -6$ dBm ⁽¹⁾ 0.43%dBm/HzAdjacent-channel power ratio1 WCDMA signal; $P_{out} = -8$ dBm ⁽²⁾ -76dBcAtternate-channel power ratio1 WCDMA signal; $P_{out} = -8$ dBm ⁽²⁾ -76dBc1 WCDMA signal; $P_{out} = -11$ dBm per carrier ⁽³⁾ -67dBc1 WCDMA signal; $P_{out} = -14$ dBm per carrier ⁽³⁾ -778dBc2 WCDMA signal; $P_{out} = -11$ dBm per carrier ⁽³⁾ -78dBc1 WCDMA signal; $P_{out} = -11$ dBm per carrier ⁽³⁾ -69dBc1 WCDMA signal; $P_{out} = -14$ dBm per carrier ⁽³⁾ -69dBc1 WCDMA signal; $P_{out} = -14$ dBm per carrier ⁽³⁾ -69dBc1 WCDMA signal; $P_{out} = -8$ dBm ret ratio-2.4dB1 WCDMA signal; $P_{out} = -8$ dBm per tone26.5dBm1 WCDMA signal; $P_{out} = -8$ dBm per tone26.5dBm1 WCDMA signal; $P_{out} = -8$ dBm per tone66dBm1 WCDMA signal; $P_{out} = -8$ dBm per tone66dBm1 Wadaused-38dBmdBm/Hz1 Unadjusted-38-50dBc0 Uuput return loss8.5dBm-722 WCDMA signal; $P_{out} = -8$ dBm ret ratio-72dBm/Hz1 WCDMA signal; $P_{out} = -8$ dBm ⁽²⁾ -76dBm/Hz1 WCDMA signal; $P_{out} = -16$ dBm-162.3dBm/Hz2 WCDMA signal; P_{out		Carrier feedthrough	Unadjusted	-38		dBm	
$\begin{tabular}{ c c c c c } \hline $$ Uuput noise floor $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50		dBc	
$ \begin{tabular}{ c c c c c } \hline Error vector magnitude (rms) & 1 EDGE signal, P_{out} = -6 dBm^{(1)} & 0.43\%$		Output return loss		8		dB	
$\begin{tabular}{ c c c c c c } & 1 WCDMA signal; P_{out} = -8 dBm^{(2)} & -76 & 1 WCDMA signals; P_{out} = -8 dBm^{(3)} & -74 & 2 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -68 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -67 & 4 WCDMA signals; P_{out} = -14 dBm per carrier^{(3)} & -67 & 4 WCDMA signals; P_{out} = -14 dBm per carrier^{(3)} & -67 & 4 WCDMA signals; P_{out} = -8 dBm^{(2)} & -80 & -80 & 1 WCDMA signals; P_{out} = -8 dBm^{(3)} & -78 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -72 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -69 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -69 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -69 & 4 WCDMA signals; P_{out} = -11 dBm per carrier^{(3)} & -69 & 4 WCDMA signals; P_{out} = -8 dBm per tone & 26.5 & dBm & 1 dBm$ & 1 WCDMA signals; P_{out} = -8 dBm per tone & 26.5 & dBm & 2 Untu tP3 & f_{BB} = 4.5, 5.5 MHz; P_{out} = -8 dBm per tone & 26.5 & dBm & 2 Unadjusted & -38 & dBm & 1 Galvat suppression Unadjusted & -38 & dBm & 1 Galvat suppression Unadjusted & -38 & dBm & -50 & dBc & 0 Unput noise floor & $213 MHz offset from f_{LO}; P_{out} = -5 dBm & -162.3 & dBm/Hz & -76 & 4 WCDMA signal; P_{out} = -8 dBm$^{(2)} & -76 & -76 & 4 WCDMA signal; P_{out} = -8 dBm$^{(2)} & -76 & -76 & 4 WCDMA signal; P_{out} = -8 dBm$^{(2)} & -76 & -76 & -76 & 4 WCDMA signal; P_{out} = -8 dBm$^{(2)} & -76 & -66 & -68 & -68 & -72 & -66 & -76 & $		Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-162		dBm/Hz	
$\begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	EVM	Error vector magnitude (rms)	1 EDGE signal, $P_{out} = -5 \text{ dBm}^{(1)}$	0.43%			
$ ACPR \end{tabular} ACPR \end{tabular} \begin{tabular}{ c c c c c } Access & ACPR \end{tabular} \end{tabular} ACPR \end{tabular} \begin{tabular}{ c c c c c } Access & ACPR \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c } Access & ACPR \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c } Access & ACPR \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c c } Access & ACPR \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c c } Access & ACPR \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ c c c c c c c } Access & ACPR \end{tabular} \end{tabular} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾	-76			
$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-74		15	
$\begin{tabular}{ c c c c } \hline \end{tabular} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	ACPR	Adjacent-channel power ratio	2 WCDMA signals; $P_{out} = -11 \text{ dBm per carrier}^{(3)}$	-68		dBc	
$\begin{tabular}{ c c c c } ALPR \\ Alternate-channel power ratio $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$				-67			
$\begin{tabular}{ c c c c c } \hline Alternate-channel power ratio & 2 WCDMA signals; $P_{out} = -11 dBm per carrier^{(3)} & -72 & 4 WCDMA signals; $P_{out} = -14 dBm per carrier^{(3)} & -69 & -69 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & $				-80			
$\begin{tabular}{ c c c c c } \hline Alternate-channel power ratio & 2 WCDMA signals; $P_{out} = -11 dBm per carrier^{(3)} & -72 & 4 WCDMA signals; $P_{out} = -14 dBm per carrier^{(3)} & -69 & -69 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & $			1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-78		dD a	
$\begin{tabular}{ c c c c c c } \hline 4 WCDMA signals; $P_{out} = -14 dBm per carrier^{(3)} -69 \\ \hline $f_{LO} = 2140 \ MHz at 8 dBm$ \\ \hline G Voltage gain $Output rms voltage over input I (or Q) rms voltage -2.4 dB \\ P1dB Output compression point 12 dBm \\ \hline $P1dB$ Output compression point $f_{BB} = 4.5, 5.5 \ MHz; $P_{out} = -8 \ dBm per tone 26.5 dBm \\ \hline $P2$ Output IP2$ $f_{BB} = 4.5, 5.5 \ MHz; $P_{out} = -8 \ dBm per tone 66 dBm \\ \hline $Carrier feedthrough $Unadjusted -38 dBm \\ \hline $Carrier feedthrough $Unadjusted $f_{BB} = 4.5, 5.5 \ MHz$ MIz MIz -50 dBc \\ \hline $Output return loss $Unadjusted$ $f_{BB} = 4.5, 5.5 \ MHz$ MIz MIz -50 dBm \\ \hline $Output return loss $Unadjusted$ $f_{BB} = 4.5, 5.5 \ MHz$ MIz MIz -50 dBm \\ \hline $Output return loss $Unadjusted$ $f_{BB} = 4.5, 5.5 \ MHz$ MIz MIz -50 dBm \\ \hline $Output return loss $Unadjusted$ $f_{BB} = 4.5, 5.5 \ MHz$ MIz MIz MIz $dfset from f_{LO} $P_{out} = -5 \ dBm$ dBm -50 dBc \\ \hline $Output return loss $Unadjusted$ $f_{BB} = 4.5, 5.5 \ MHz$ MIz $dfset from f_{LO} $P_{out} = -5 \ dBm$ dBm -162.3 dBm \\ \hline $AcPR$ $Adjacent-channel power ratio $13 \ MIz$ offset from f_{LO} $P_{out} = -8 \ dBm^{(3)}$ -72 dBm -72 dBm dBm dBm $dBm^{(3)}$ -72 dBm dBm $dBm^{(2)}$ -76 dBm dB		Alternate-channel power ratio		-72		dBc	
$ \begin{array}{c c c c c c } \hline F_{LO} = 2140 \mbox{ MHz at 8 dBm} \\ \hline G & Voltage gain & Output rms voltage over input I (or Q) rms voltage & -2.4 & dB \\ \hline P1dB & Output compression point & 12 & dBm \\ \hline P1dB & Output IP3 & f_{BB} = 4.5, 5.5 \mbox{ MHz; } P_{out} = -8 \mbox{ dBm per tone} & 26.5 & dBm \\ \hline P2 & Output IP2 & f_{BB} = 4.5, 5.5 \mbox{ MHz; } P_{out} = -8 \mbox{ dBm per tone} & 66 & dBm \\ \hline Carrier feedthrough & Unadjusted & -38 & dBm \\ \hline Carrier feedthrough & Unadjusted & -38 & dBm \\ \hline Sideband suppression & Unadjusted; f_{BB} = 4.5, 5.5 \mbox{ MHz} & -50 & dBc \\ \hline Output return loss & & & & & & & & & & & & & & & & & & $				-69]	
P1dBOutput compression point12dBmP1dBOutput compression point $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 26.5dBmP2Output IP2 $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 66dBmCarrier feedthroughUnadjusted-38dBmSideband suppressionUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBcOutput return lossUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBmOutput return loss213 MHz offset from $f_{LO}; P_{out} = -5 \text{ dBm}$ -162.3dBm/HzAdjacent-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -76dBc1 WCDMA signal; $P_{out} = -11 \text{ dBm per carrier}^{(3)}$ -67dBcACPR1 WCDMA signal; $P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -67dBcAtternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -778dBc2 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -778dBc2 WCDMA signal; $P_{out} = -11 \text{ dBm}^{(3)}$ -778dBc	f _{LO} = 2 ⁻	140 MHz at 8 dBm					
P3Output IP3 $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 26.5dBmIP2Output IP2 $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 66dBmCarrier feedthroughUnadjusted-38dBmSideband suppressionUnadjusted-38dBmOutput return lossUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBcOutput return lossUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBmOutput return loss1 WCDMA signal; $P_{out} = -5 \text{ dBm}$ -162.3dBm/HzAdjacent-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -764BcACPR1 WCDMA signal; $P_{out} = -11 \text{ dBm per carrier}^{(3)}$ -66-661 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -80-804BcAtternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -784Bc $Atternate-channel power ratio2 WCDMA signal; P_{out} = -8 \text{ dBm}^{(3)}-78-80WCDMA signal; P_{out} = -11 \text{ dBm per carrier}^{(3)}-784Bc$	G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.4		dB	
P2Output IP2 $f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$ 66dBmCarrier feedthroughUnadjusted38dBmSideband suppressionUnadjusted; f_{BB} = 4.5, 5.5 MHz50dBcOutput return lossUnadjusted; f_{BB} = 4.5, 5.5 MHz50dBcOutput return loss1 MLz offset from f _{LO} ; P _{out} = -5 dBm162.3dBm/HzOutput noise floor≥13 MHz offset from f _{LO} ; P _{out} = -8 dBm ⁽²⁾ 764Bm/HzAdjacent-channel power ratio1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾ 72dBc2 WCDMA signal; P _{out} = -11 dBm per carrier ⁽³⁾ -66-66dBc1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾ -80-80dBcAtternate-channel power ratio1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾ -778dBc2 WCDMA signal; P _{out} = -11 dBm per carrier ⁽³⁾ -66-80dBc1 WCDMA signal; P _{out} = -14 dBm for -778-80-778dBc	P1dB	Output compression point		12		dBm	
$\begin{tabular}{ c c c c c } \hline Carrier feedthrough & Unadjusted &38 & dBm \\ \hline Sideband suppression & Unadjusted; f_{BB} = 4.5, 5.5 \mbox{ MHz} & -50 & dBc \\ \hline Output return loss & 8.5 & dB \\ \hline Output noise floor & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	26.5		dBm	
Sideband suppressionUnadjusted; $f_{BB} = 4.5, 5.5 \text{ MHz}$ -50dBcOutput return loss8.5dBOutput noise floor $\geq 13 \text{ MHz}$ offset from f_{LO} ; $P_{out} = -5 \text{ dBm}$ -162.3dBm/HzAdjacent-channel power ratio $1 \text{ WCDMA signal}; P_{out} = -8 \text{ dBm}^{(2)}$ -76dBc $1 \text{ WCDMA signal}; P_{out} = -11 \text{ dBm per carrier}^{(3)}$ -67dBc $4 \text{ WCDMA signal}; P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -66dBc $1 \text{ WCDMA signal}; P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -66dBc $4 \text{ WCDMA signal}; P_{out} = -8 \text{ dBm}^{(2)}$ -80dBc $4 \text{ WCDMA signal}; P_{out} = -8 \text{ dBm}^{(3)}$ -778dBc $4 \text{ WCDMA signal}; P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -66dBc	IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	66		dBm	
Output return loss8.5dBOutput noise floor \geq 13 MHz offset from f_{LO} ; $P_{out} = -5 dBm$ -162.3dBm/HzAdjacent-channel power ratio $1 WCDMA$ signal; $P_{out} = -8 dBm^{(2)}$ -76 -76 -72 $2 WCDMA$ signal; $P_{out} = -8 dBm^{(3)}$ -72 dBc dBc $4 WCDMA$ signal; $P_{out} = -11 dBm$ per carrier ⁽³⁾ -66 -66 dBc $4 WCDMA$ signal; $P_{out} = -8 dBm^{(2)}$ -80 -78 dBc $4 WCDMA$ signal; $P_{out} = -8 dBm^{(3)}$ -78 dBc dBc		Carrier feedthrough	Unadjusted	-38		dBm	
Output noise floor ≥ 13 MHz offset from f_{LO} ; $P_{out} = -5$ dBm -162.3 dBm/HzAdjacent-channel power ratio 1 WCDMA signal; $P_{out} = -8$ dBm ⁽²⁾ -76 -76 -72 <td></td> <td>Sideband suppression</td> <td>Unadjusted; f_{BB} = 4.5, 5.5 MHz</td> <td>-50</td> <td></td> <td>dBc</td>		Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50		dBc	
$ACPR = \frac{\begin{bmatrix} 1 & WCDMA & signal; P_{out} = -8 & dBm^{(2)} & -76 \\ 1 & WCDMA & signal; P_{out} = -8 & dBm^{(3)} & -72 \\ 2 & WCDMA & signal; P_{out} = -11 & dBm & per & carrier^{(3)} & -67 \\ \hline 4 & WCDMA & signals; P_{out} = -14 & dBm & per & carrier^{(3)} & -66 \\ \hline 1 & WCDMA & signals; P_{out} = -8 & dBm^{(2)} & -66 \\ \hline 1 & WCDMA & signal; P_{out} = -8 & dBm^{(2)} & -80 \\ \hline 1 & WCDMA & signal; P_{out} = -8 & dBm^{(3)} & -78 \\ \hline 2 & WCDMA & signal; P_{out} = -11 & dBm ^{(3)} & -74 \\ \hline \end{bmatrix} dBc$		Output return loss		8.5		dB	
ACPR $ \begin{array}{ c c c c c } \hline & 1 & \text{WCDMA signal; } P_{out} = -8 & \text{dBm}^{(3)} & -72 & \\ \hline & 2 & \text{WCDMA signal; } P_{out} = -11 & \text{dBm per carrier}^{(3)} & -67 & \\ \hline & 4 & \text{WCDMA signals; } P_{out} = -14 & \text{dBm per carrier}^{(3)} & -66 & \\ \hline & 4 & \text{WCDMA signals; } P_{out} = -8 & \text{dBm}^{(2)} & -80 & \\ \hline & 1 & \text{WCDMA signal; } P_{out} = -8 & \text{dBm}^{(3)} & -78 & \\ \hline & 1 & \text{WCDMA signal; } P_{out} = -11 & \text{dBm}^{(3)} & -74 & \\ \hline \end{array} $		Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-162.3		dBm/Hz	
ACPR $\frac{Adjacent-channel power ratio}{ACPR} = \frac{2 \text{ WCDMA signal; } P_{out} = -11 \text{ dBm per carrier}^{(3)}}{4 \text{ WCDMA signals; } P_{out} = -14 \text{ dBm per carrier}^{(3)}} = -66$ $\frac{1 \text{ WCDMA signal; } P_{out} = -8 \text{ dBm}^{(2)}}{1 \text{ WCDMA signal; } P_{out} = -8 \text{ dBm}^{(3)}} = -78$ $\frac{1 \text{ WCDMA signal; } P_{out} = -8 \text{ dBm}^{(3)}}{2 \text{ WCDMA signal; } P_{out} = -11 \text{ dBm}^{(3)}} = -74$			1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$	-76			
ACPR $2 \text{ WCDMA signal; } P_{out} = -11 \text{ dBm per carrier}^{(3)}$ -67 ACPR $4 \text{ WCDMA signals; } P_{out} = -14 \text{ dBm per carrier}^{(3)}$ -66 $1 \text{ WCDMA signal; } P_{out} = -8 \text{ dBm}^{(2)}$ -80 $1 \text{ WCDMA signal; } P_{out} = -8 \text{ dBm}^{(3)}$ -78 $2 \text{ WCDMA signal; } P_{out} = -11 \text{ dBm}^{(3)}$ -74			1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-72			
ACPR1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -80Alternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -782 WCDMA signal; $P_{out} = -11 \text{ dBm}^{(3)}$ -74		Adjacent-channel power ratio	2 WCDMA signal; P _{out} = -11 dBm per carrier ⁽³⁾	-67		dBc	
ACPR1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(2)}$ -80Alternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -782 WCDMA signal; $P_{out} = -11 \text{ dBm}^{(3)}$ -74			4 WCDMA signals; $P_{out} = -14 \text{ dBm per carrier}^{(3)}$	-66		1	
Alternate-channel power ratio1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -782 WCDMA signal; $P_{out} = -11 \text{ dBm}^{(3)}$ -74	ACPR			-80			
Alternate-channel power ratio $2 \text{ WCDMA signal; } P_{\text{out}} = -11 \text{ dBm}^{(3)} -74 \text{ dBc}$				-78			
		Alternate-channel power ratio		-74		dBc	
				-68			

The contribution from the source of about 0.28% is not de-embedded from the measurement. (1)

(2) (3) Measured with DAC5687 as source generator; with 2.5 MHz LPF.

Measured with DAC5687 as source generator; no external BB filters are used.

SLWS213-JANUARY 2010

RF OUTPUT PARAMETERS (continued)

over recommended operating conditions, power supply = 5 V, $T_A = 25^{\circ}C$, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
$f_{LO} = 2$	500 MHz at 8 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-1.6	dB
P1dB	Output compression point		13	dBm
IP3	Output IP3	f_{BB} = 4.5, 5.5 MHz; P_{out} = -8 dBm per tone	29	dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	65	dBm
	Carrier feedthrough	Unadjusted	-37	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-47	dBc
		WiMAX 5-MHz carrier, $P_{out} = -8 \text{ dBm}^{(4)}$	-47	dB
EVM	Error vector magnitude (rms)	WiMAX 5-MHz carrier, $P_{out} = 0 \text{ dBm}^{(4)}$	-45	dB
f _{LO} = 3	500 MHz at 8 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	0.6	dB
P1dB	Output compression point		13.5	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	25	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	65	dBm
	Carrier feedthrough	Unadjusted	-35	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
		WiMAX 5-MHz carrier, $P_{out} = -8 \text{ dBm}^{(4)}$	-47	dB
EVM	Error vector magnitude (rms)	WiMAX 5-MHz carrier, $P_{out} = 0 \text{ dBm}^{(4)}$	-43	dB
f _{LO} = 4	000 MHz at 8 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	0.2	dB
P1dB	Output compression point		12	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	22.5	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	60	dBm
	Carrier feedthrough	Unadjusted	-36	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
f _{LO} = 5	800 MHz at 4 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-5.5	dB
P1dB	Output compression point		12.9	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	25	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	55	dBm
	Carrier feedthrough	Unadjusted	-31	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
EVM	Error-vector magnitude	WiMAX 5-MHz carrier, $P_{out} = -12 \text{ dBm}^{(4)}$	-40	dB

(4) Sideband suppression optimized with LO drive level; EVM contribution from instrument is not accounted for.

TRF370417

SLWS213-JANUARY 2010

www.ti.com

TYPICAL CHARACTERISTICS

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

-8

-10

-12

0

1000

2000

3000

Figure 3.

f - Frequency - MHz

V_{IN} = 98 mVrms SE

5000

6000

G004

 $V_{CC} = 5 V$

 $T_A = 25^{\circ}C$

4000

V_{IN} = 98 mVrms SE

5000

6000

G003

LO = 4 dBm

 $T_A = 25^{\circ}C$

4000

-8

-10

-12

0

8 dBm

1000

2000

3000

Figure 4.

f - Frequency - MHz

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

8

OIP3 – dBm

FEXAS

G006

TRF370417

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

Figure 11.

OIP2 vs FREQUENCY AND SUPPLY VOLTAGE

G011

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

Figure 16.

TRF370417

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

Figure 19.

NOISE AT 13-MHz OFFSET (dBm/Hz) vs FREQUENCY AND TEMPERATURE

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted). NOISE AT 13-MHz OFFSET (dBm/Hz)

TYPICAL CHARACTERISTICS (continued)

-150

-152

-154

-156

-158

-160 -162

-164

-166

-168

-170

0

-10

CS – Adjusted Carrier Feedthrough – dBm

0.8

1.4

2.0

Adj at 70 MHz @ 25°C

LO = 4 dBm

 $V_{CC} = 5 V$

2.6

Noise at 13-MHz Offset – dBm/Hz

vs

FREQUENCY AND SUPPLY VOLTAGE

5.5 V

5 V

3.2

f - Frequency - GHz

Figure 21.

ADJUSTED CARRIER FEEDTHROUGH

vs

FREQUENCY AND TEMPERATURE

3.8

4.5 V

4.4

5.0

5.6

G021

 $P_{OUT} = -5 \text{ dBm}$

LO = 8 dBm

 $T_A = 25^{\circ}C$

TRF370417

G024

G022

-40°C

85°C

f - Frequency - MHz

Figure 24.

POUT - Output Power - dBm

Figure 22.

www.ti.com

TRF370417

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

FREQUENCY AND TEMPERATURE

2080

2120

Figure 31.

f - Frequency - MHz

2160

2200

-80

14

2040

-80

2400

2440

2480

Figure 32.

f - Frequency - MHz

2520

2560

2600

G032

2240

G031

SLWS213-JANUARY 2010

www.ti.com

INSTRUMENTS

EXAS

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

TRF370417

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

1.70

1.75

1.80

G036

TYPICAL CHARACTERISTICS (continued)

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

www.ti.com

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

Figure 43.

SLWS213-JANUARY 2010

TYPICAL CHARACTERISTICS (continued)

 V_{CM} = 1.7 V, V_{inBB} = 98 mVrms single-ended sine wave in quadrature, V_{CC} = 5 V, LO power = 4 dBm (single-ended), f_{BB} = 50 kHz (unless otherwise noted).

APPLICATION INFORMATION AND EVALUATION BOARD

Basic Connections

- See Figure 47 for proper connection of the TRF3704 modulator.
- Connect a single power supply (4.5 V–5.5 V) to pins 18 and 24. These pins should be decoupled as shown on pins 4, 5, 6, and 7.
- Connect pins 2, 5, 8, 11, 12, 14, 17, 19, 20, and 23 to GND.
- Connect a single-ended LO source of desired frequency to LOP (amplitude between -5 dBm and 12 dBm). This should be ac-coupled through a 100-pF capacitor.
- Terminate the ac-coupled LON with 50 Ω to GND.
- Connect a baseband signal to pins 21 = I, $22 = \overline{I}$, 10 = Q, and $9 = \overline{Q}$.
- The differential baseband inputs should be set to the proper common-mode voltage of 1.7V.
- RF_OUT, pin 16, can be fed to a spectrum analyzer set to the desired frequency, LO ± baseband signal. This pin should also be ac-coupled through a 100-pF capacitor.
- All NC pins can be left floating.

ESD Sensitivity

RF devices may be extremely sensitive to electrostatic discharge (ESD). To prevent damage from ESD, devices should be stored and handled in a way that prevents the build-up of electrostatic voltages that exceed the rated level. Rated ESD levels should also not be exceeded while the device is installed on a printed circuit board (PCB). Follow these guidelines for optimal ESD protection:

- Low ESD performance is not uncommon in RF ICs; see the *Absolute Maximum Ratings* table. Therefore, customers' ESD precautions should be consistent with these ratings.
- The device should be robust once assembled onto the PCB *unless* external inputs (connectors, etc.) directly connect the device pins to off-board circuits.

SLWS213-JANUARY 2010

NOTE: DNI = Do not install.

Figure 47. TRF3704 EVM Schematic

www.ti.com

Figure 48 shows the top view of the TRF3704 EVM board.

Figure 48. TRF3704 EVM Board Layout

ltem Number	Quantity	Reference Designator	Value	PCB Footprint	Mfr. Name	Mfr. Part Number	Note
1	3	C1, C2, C3	100 pF	0402	PANASONIC	ECJ-0EC1H101J	
2	2	C4, C5	1000 pF	0402	PANASONIC	ECJ-0VC1H102J	
3	2	C6, C7	4.7 μF	TANT_A	KERMET	T491A475K016AS	
4	0	C8, C9	1 μF	0402	PANASONIC	ECJ- 0EC1H010C_DNI	DNI
5	0	C10, C11, C12, C13	0.1 μF	0402	PANASONIC	ECJ- 0EB1A104K_DNI	DNI
6	2	C14, C15	10 pF	0402	MURATA	GRM1555C1H100 JZ01D	
7	7	J1, J2, J3, J4, J5, J6, J7	LOP	SMA_SMEL_250x215	JOHNSON COMPONENTS	142-0711-821	
8	2	R1	0	0402	PANASONIC	ERJ-2GE0R00	OR EQUIVALENT
9	4	R2, R3, R4, R5	0	0402	PANASONIC	ERJ-2GE0R00	OR EQUIVALENT

www.ti.com

Table 1. Bill of Materials for Trif of ox EVM (continued)									
ltem Number	Quantity	Reference Designator	Value	PCB Footprint	Mfr. Name	Mfr. Part Number	Note		
		1 U1	TRF370333	QFN_24_163x163_ 0p50mm	ТІ	TRF370333	For TRF370333 EVM, TI supplied		
40	4		TRF370317	QFN_24_163x163_ 0p50mm	ті	TRF370317	For TRF370317 EVM, TI supplied		
10 1	I		TRF370315	QFN_24_163x163_ 0p50mm	ті	TRF370315	For TRF370315 EVM, TI supplied		
			TRF370417	QFN_24_163x163_ 0p50mm	ті	TRF370417	For TRF370417 EVM, TI supplied		
11	2	TP1, TP3	BLK	TP_THVT_100_RND	KEYSTONE	5001K			
12	2	TP2, TP4	RED	TP_THVT_100_RND	KEYSTONE	5000K			

Table 1. Bill of Materials for TRF370x EVM (continued)

GSM Applications

The TRF370417 is suited for GSM and multicarrier GSM applications because of its high linearity and low noise level over the entire recommended operating range. It also has excellent EVM performance, which makes it ideal for the stringent GSM/EDGE applications.

WCDMA Applications

The TRF370417 is also optimized for WCDMA applications where both adjacent-channel power ratio (ACPR) and noise density are critically important. Using Texas instruments' DAC568X series of high-performance digital-to-analog converters as depicted in Figure 49, excellent ACPR levels were measured with one-, two-, and four-WCDMA carriers. See *Electrical Characteristics*, $f_{LO} = 1960$ MHz and $f_{LO} = 2140$ MHz for exact ACPR values.

Figure 49. Typical Transmit Setup Block Diagram

DAC-to-Modulator Interface Network

For optimum linearity and dynamic range, the digital-to-analog converter (DAC) can interface directly with the modulator; however, the common-mode voltage of each device must be maintained. A passive interface circuit is used to transform the common-mode voltage of the DAC to the desired set-point of the modulator. The passive circuit invariably introduces some insertion loss between the two devices. In general, it is desirable to keep the insertion loss as low as possible to achieve the best dynamic range. Figure 50 shows the passive interconnect

Copyright © 2010, Texas Instruments Incorporated

SLWS213-JANUARY 2010

circuit for two different topologies. One topology is used when the DAC (e.g., DAC568x) common mode is larger than the modulator. The voltage V_{ee} is nominally set to ground, but can be set to a negative voltage to reduce the insertion loss of the network. The second topology is used when the DAC (e.g., DAC56x2) common mode is smaller than the modulator. Note that this passive interconnect circuit is duplicated for each of the differential I/Q branches.

Topology 1: DAC Vcm > TRF370x Vcm

Topology 2: DAC Vcm < TRF370x Vcm

	Торо	Tenelomy 2			
	With Vee = 0 V	With Vee = -5 V	Topology 2		
DAC Vcm [V]	3.3	3.3	0.7		
TRF370x Vcm [V]	1.7	1.7	1.7		
Vdd [V]	5	5	5		
Vee [V]	Gnd	-5	N/A		
R1 [Ω]	66	56	960		
R2 [Ω]	100	80	290		
R3 [Ω]	108	336	52		
Insertion loss [dB]	5.8	1.9	2.3		

DEFINITION OF SPECIFICATIONS

Unadjusted Carrier Feedthrough

This specification measures the amount by which the local oscillator component is suppressed in the output spectrum of the modulator. If the common mode voltage at each of the baseband inputs is exactly the same and there was no dc imbalance introduced by the modulator, the LO component would be naturally suppressed. DC offset imbalances in the device allow some of the LO component to feed through to the output. Because this phenomenon is independent of the RF output power and the injected LO input power, the parameter is expressed in absolute power, dBm.

Adjusted (Optimized) Carrier Feedthrough

This differs from the unadjusted suppression number in that the baseband input dc offsets are iteratively adjusted around their theoretical value of VCM to yield the maximum suppression of the LO component in the output spectrum. This is measured in dBm.

Unadjusted Sideband Suppression

This specification measures the amount by which the unwanted sideband of the input signal is suppressed in the output of the modulator, relative to the wanted sideband. If the amplitude and phase within the I and Q branch of the modulator were perfectly matched, the unwanted sideband (or image) would be naturally suppressed. Amplitude and phase imbalance in the I and Q branches results in the increase of the unwanted sideband. This parameter is measured in dBc relative to the desired sideband.

Adjusted (Optimized) Sideband Suppression

This differs from the unadjusted sideband suppression in that the gain and phase of the baseband inputs are iteratively adjusted around their theoretical values to maximize the amount of sideband suppression. This is measured in dBc.

Suppressions Over Temperature

This specification assumes that the user has gone though the optimization process for the suppression in question, and set the optimal settings for the I, Q inputs. This specification then measures the suppression when temperature conditions change after the initial calibration is done.

Figure 51 shows a simulated output and illustrates the respective definitions of various terms used in this data sheet.

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TRF370417IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Purchase Samples
TRF370417IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	Purchase Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION	

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF370417IRGER	VQFN	RGE	24	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1
TRF370417IRGET	VQFN	RGE	24	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Feb-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF370417IRGER	VQFN	RGE	24	3000	338.1	338.1	20.6
TRF370417IRGET	VQFN	RGE	24	250	338.1	338.1	20.6

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-220.
 - TEXAS INSTRUMENTS www.ti.com

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
 - F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.