Introduction

This Application Note is intended to provide practical guidance in the selection of PIN Diodes for switch control circuit functions. Switches, Digital and Analog Attenuators, and Limiters each have unique functions that require proper device selection. The design difficulty lies within the parametric translation from Diode Specifications, to the circuit designers' Microwave Specifications. Diode parametric language such as $\mathrm{Vb}, \mathrm{Vf}, \mathrm{Ct}, \mathrm{Rs}, \tau_{\mathrm{L}}, \theta$, must convert into Insertion Loss, VSWR, Isolation, P1dB, Input IP3, RF Operating Power, RF Power Dissipation, and D.C. Power Consumption Specification Terminology.

In addition to actual diode parameters, package parasitics play a significant role in determining switch circuit performance. Package capacitance, package inductance, package electrical resistance, and package thermal impedance are extremely important considerations to determine the effective frequency bandwidth and maximum incident power for reliable switch operation.

The manufacturing methodology dictates the type of diode selection. Surface mount assembly will mandate the usage of either plastic, HMIC SURMOUNT, or MELF \& HiPAX ceramic devices. Chip and Wire (Hybrid) manufacturing will determine the usage of Cermachips, Flip Chips, or Beam Lead Devices. Schematics for the most common switch designs: Series-Exclusive, Shunt-Exclusive, and Series-Shunt are outlined below for consideration.

The Decision Making Process for PIN Diode Selection for Microwave Switch Design

The following procedure outlines and Effective Process for PIN Diode Selection for Switch Design.

1. Determine the Preferred Type of Manufacturing for the PIN Diode in the Switch Design: Surface Mount or Chip and Wire (Hybrid) Manufacturing.
2. Determine the Frequency of Operation and RF Power Handling of the Switch Design.
3. Use Table 1, "Relative Switch Performance and Design Evaluation Matrix" to determine the Type of Switch Design that Best Satisfies the Particular Switch Specifications and Requirements.
4. Use Table 2, "Relative PIN Diode Performance Evaluation Matrix" to Determine the Type of PIN Diode that Best Satisfies the Switch Design Selected from Table 1.
5. Use Table 3, "PIN Diode P/N Series Matrix" to Determine the PIN Diode P/N Series that Best Satisfies the Type of PIN Diode Selected from Table 2.

Table 1: Relative Switch Performance and Design Evaluation Matrix

	Switch Design Configuration		
Parameter	Series Diodes Exclusive	Shunt Diodes Exclusive	Series-Shunt Diodes
Insertion Loss	Worst	Moderate	Best
VSWR	Moderate	Worst	Best
Isolation	Worst	Moderate	Best
P1dB	Moderate	Moderate	Moderate
Input IP3	Moderate	Moderate	Moderate
RF Incident Power	Worst	Best	Moderate
RF Power Dissipation	Worst	Best	Moderate
Switching Speed	Worst	Best	Moderate
D.C. Power Consumption	Best (Single +5V)	Moderate (+5V, -5 V)	Worst (+5 V, -5V)
PIN Diode Driver Design Simplicity	Best (+5 V Only)	Moderate (+5V, -5 V)	Moderate (+5 V, -5 V)
RF Design Simplicity	Best	Worst	Moderate
Cost	Best	Moderate	Moderate
Overall Evaluation	34 Points	38 Points	40 Points

Notes:

1. Evaluation based upon following grading : Best =5 Points, Moderate $=3$ Points, Worst $=1$ Point. The higher the score, the better the overall relative design advantage.
2. Where there is No significant relative advantage, a " Moderate " weighting can be used.

Assumptions for SP2T Design:

1. Design is a Reflective SP2T.
2. (2) Diodes are used per RF port.
3. Frequency Bandwidth is $3.0: 1$ maximum.

Conclusions:

The Series-Shunt Design is the Best in terms of Overall Switch Performance and value. Since each Design has a specific advantage, the decision for a Switch Design Selection is determined by the Specific Design Priorities for the requirement.

[^0]
Table 2: Relative PIN Diode Performance Evaluation Matrix

	Surface Mount Assembly			Chip \& Wire Hybrid Assembly		
Key Parameter	Plastic	$\begin{gathered} \text { MELF or Hi- } \\ \text { Pax } \end{gathered}$	SURMOUNT	Cerma Chip	Flip Chip	Beam Lead
$1 \mathrm{MHz}<\mathrm{F}<1 \mathrm{GHz}$		Best Selection				
$100 \mathrm{MHz}<\mathrm{F}<4 \mathrm{GHz}$	Best Selection					
$4 \mathrm{GHz}<\mathrm{F}<20 \mathrm{GHz}$			Best Selection			
$20 \mathrm{GHz}<\mathrm{F}<60 \mathrm{GHz}$					Best Selection	Best Selection
100 MHz < F $<20 \mathrm{GHz}$				Best Selection		
Pinc < 0.1 W						Best Selection
0.1 W < Pinc < 1 W	Best Selection				Best Selection	
1 W < Pinc < 20 W			Best Selection			
20 W < Pinc < 200 W		Best Selection		Best Selection		
Relative Cost Index	Lowest	Moderate/Highest	Moderate/Highest	Lowest	Moderate	Highest

Conclusions:

1. Plastic Devices are best suited where Cost is a decision driver, the Operating Frequency $<4 \mathrm{GHz}$, and the RF C.W. Incident Power < 1 W (+ 30 dBm).
2. MELF or HIPAX Ceramic Devices are best utilized where Highest Average Power ($>20 \mathrm{~W}$ C.W.) is the Primary Design Goal and the Operating Frequency $<1 \mathrm{GHz}$.
3. SURMOUNT Devices are probably the Best Overall Compromise in Device Selection. They can Operate (In Various bands) from $10 \mathrm{MHz}-20 \mathrm{GHz}$ and Perform well with RF Incident Power < 20 W C.W (+43 dBm).
4. Cermachip Devices provide the Best Overall Performance for Operating Frequeny ($100 \mathrm{MHz}-20$ GHz), and RF Incident Power < 200 W C.W (+ 53 dBm).
5. Flip Chip Devices are best suited for mmwave Frequencies $<60 \mathrm{GHz}$, where the RF Incident C.W. < 1W (+30 dBm) and Conductive Epoxy or Soldering is Required.
6. Beam Lead Devices are best suited for mmwave Frequencies $<60 \mathrm{GHz}$, where the RF Incident C.W. < 0.1 W (+20 dBm) and Thermo Compression Bonding is Required.
[^1]Table 3: PIN Diode Part Number Series Matrix

Plastic PIN Diodes	MELF \& HiPax PIN Diodes	SURMOUNT PIN Diodes	Cermachip PIN Diodes	Flip Chip PIN Diodes	
Beam Lead PIN					
Diodes					

Notes:

1. The following M/A-COM PIN Diode Drivers Operating with +5 V \& -5 V D.C. Power Supplies are Practical with Many PIN Diode Switch Designs: DR65 Series, MADRMA0001 and MADRMA0002 Series.
2. M/A-COM Website Homepage Hyperlink Address: http://www.macom.com
[^2]PIN Diodes for Microwave Switch Designs
Rev. V2

Schematic 1: SP2T Series Exclusive PIN Diode Switch, 40 dB Isolation with +5 V Supply

Schematic 1: D.C. Bias to RF Truth Table

RF State	B2 Bias	B3 Bias
Low Loss J1-J2 \& Isolation J1-J3	$+0.5 \mathrm{~V} @ 10 \mathrm{~mA}$	$+5 \mathrm{~V} @ 0 \mathrm{~mA}$
Low Loss J1-J3 \& Isolation J1-J2	$+5 \mathrm{~V} @ 0 \mathrm{~mA}$	$+0.5 \mathrm{~V} @ 10 \mathrm{~mA}$

Schematic 2: SP2T All Shunt, 60 dB Isolation Design with 90° Transformer using Distributed Transmission Line

Schematic 2: D.C. Bias to RF Truth Table

RF State	B2 Bias	B3 Bias
Low Loss J1-J2 \& Isolation J1-J3	$-\mathrm{V} @ 0 \mathrm{~mA}$	$+1 \mathrm{~V} @(+20 \mathrm{~mA} \mathrm{per} \mathrm{Diode)}$
Low Loss J1-J3 \& Isolation J1-J2	$+1 \mathrm{~V} @(+20 \mathrm{~mA} \mathrm{per} \mathrm{Diode)}$	$-\mathrm{V} @ 0 \mathrm{~mA}$

Schematic 3: SP2T All Shunt, 30 dB Isolation Design using $\boldsymbol{\pi}, \mathrm{C}-\mathrm{L}-\mathrm{C}$ Lumped Element 90° Transformer

Schematic 3: D.C. Bias to RF Truth Table

RF State	B2 Bias	B3 Bias
Low Loss J1-J2 \& Isolation J1-J3	$-\mathrm{V} @ 0 \mathrm{~mA}$	$+1 \mathrm{~V} @+20 \mathrm{~mA}$
Low Loss J1-J3 \& Isolation J1-J2	$+1 \mathrm{~V} @+20 \mathrm{~mA}$	$-\mathrm{V} @ 0 \mathrm{~mA}$

Schematic 4: SP2T Series-Shunt, 40 dB Isolation Design with Positive \& Negative Bias Current

Schematic 4: D.C. Bias to RF Truth Table

RF State	B2 Bias	B3 Bias
Low Loss J1-J2 \& Isolation J1-J3	$-4 \mathrm{~V} @ 10 \mathrm{~mA}$	$+1 \mathrm{~V} @+10 \mathrm{~mA}$
Low Loss J1-J3 \& Isolation J1-J2	$+1 \mathrm{~V} @+10 \mathrm{~mA}$	$-4 \mathrm{Q} @-10 \mathrm{~mA}$

Schematic 5: SP2T Series-Shunt, 40 dB Isolation Design with +5 V Supply

Schematic 5: D.C. Bias to RF Truth Table

RF State	B2 Series Bias	B2 Shunt Bias	B3 Series Bias	B3 Shunt Bias	B0 Voltage
 $\mathrm{J} 1-\mathrm{J} 3$ Isolation	$+0.5 \mathrm{~V} @ 11 \mathrm{~mA}$	$+5 \mathrm{~V} @ 0 \mathrm{~mA}$	$+1.4 \mathrm{~V} @+11 \mathrm{~mA}$ $(T o \mathrm{~J} 3$ Shunt Diode)	$+0.5 \mathrm{~V} @+11 \mathrm{~mA}$	+1.4 V
 $\mathrm{J} 1-\mathrm{J} 2$ Isolation	$+1.4 \mathrm{~V} @+11 \mathrm{~mA}$ (To J2 Shunt Diode)	$+0.5 \mathrm{~V} @+11 \mathrm{~mA}$	$+0.5 \mathrm{~V} @+10 \mathrm{~mA}$	$+5 \mathrm{~V} @ 0 \mathrm{~mA}$	+1.4 V

Notes:

1. Forward Bias Diode $\Delta \mathrm{Vf} @ 10 \mathrm{~mA} \sim+0.9 \mathrm{~V}$
2. Reverse Bias Series Diode $=(+1.4 \mathrm{~V}-+1.4 \mathrm{~V})=0 \mathrm{~V}$
3. Reverse Bias Shunt Diode $=(+0.5 \mathrm{~V}-+5.0 \mathrm{~V})=-4.5 \mathrm{~V}$

PIN Diodes for Microwave Switch Designs

Schematic 6: TR Switch Schematic with 25 dB Isolation Design with +3 V Supply

Schematic 6: TR Switch D.C. Bias to RF Truth Table

RF State	B1 Bias
Low Loss Tx - Ant \& Isolation $\mathrm{Rx}-\mathrm{Tx}$	$+2 \mathrm{~V} @+10 \mathrm{~mA}$
Low Loss Ant $-\mathrm{Rx} \&$ Isolation $\mathrm{Tx}-\mathrm{Rx}$	$0 \vee @ 0 \mathrm{~mA}$

For Lumped Electrical Transmission Line Length, θ, between Junction and Rx Shunt Diode :
$L=Z o /(2 \pi F o), C=1 /(2 \pi F o Z o)$, Where $F o$ is the Resonant Frequency $=\left(F_{1}{ }^{*} F_{2}\right)^{1 / 2} \& F_{1} \& F_{2}$ are Band Edge Frequencies.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: - North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
 - India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

 Visit www.macomtech.com for additional data sheets and product information.
 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^1]: - North America Tel: 800.366.2266
 - Europe Tel: +353.21.244.640

 Visit www.macomtech com for additional data sheets and product information

[^2]: North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

 - India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

 Visit www.macomtech.com for additional data sheets and product information.
 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

