Silicon PIN Photodiode ## **DESCRIPTION** BPV10NF is a PIN photodiode with high speed and high radiant sensitivity in black, T-1¾ plastic package with daylight blocking filter. Filter bandwidth is matched with 870 nm to 950 nm IR emitters. #### **FEATURES** Package type: leadedPackage form: T-1¾ • Radiant sensitive area (in mm²): 0.78 · Leads with stand-off · High radiant sensitivity Daylight blocking filter matched with 870 nm to 950 nm emitters • High bandwidth: > 100 MHz at V_B = 12 V • Fast response times • Angle of half sensitivity: $\varphi = \pm 20^{\circ}$ Compliant to RoHS Directive 2002/95/EC and in accordance with WEEE 2002/96/EC #### **APPLICATIONS** - High speed detector for infrared radiation - Infrared remote control and free air data transmission systems, e.g. in combination with TSFFxxxx series IR emitters | PRODUCT SUMMARY | | | | |-----------------|----------------------|---------|-----------------------| | COMPONENT | I _{ra} (μΑ) | φ (deg) | λ _{0.5} (nm) | | BPV10NF | 60 | ± 20 | 790 to 1050 | ## Note · Test condition see table "Basic Characteristics" | ORDERING INFORMATION | | | | | |----------------------|-----------|------------------------------|--------------|--| | ORDERING CODE | PACKAGING | REMARKS | PACKAGE FORM | | | BPV10NF | Bulk | MOQ: 4000 pcs, 4000 pcs/bulk | T-13/4 | | #### Note • MOQ: minimum order quantity | ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) | | | | | | |--|--|-------------------|---------------|------|--| | PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT | | | Reverse voltage | | V_{R} | 60 | V | | | Power dissipation | T _{amb} ≤ 25 °C | P _V | 215 | mW | | | Junction temperature | | Tj | 100 | °C | | | Operating temperature range | | T _{amb} | - 40 to + 100 | °C | | | Storage temperature range | | T _{stg} | - 40 to + 100 | °C | | | Soldering temperature | t ≤ 5 s, 2 mm from body | T _{sd} | 260 | °C | | | Thermal resistance junction/ambient | Connected with Cu wire, 0.14 mm ² | R _{thJA} | 350 | K/W | | | PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT | |--|--|-------------------|------|-----------------------|------|---------| | Forward voltage | I _F = 50 mA | V _F | | 1.0 | 1.3 | V | | Breakdown voltage | I _R = 100 μA, E = 0 | V _(BR) | 60 | | | V | | Reverse dark current | V _R = 20 V, E = 0 | I _{ro} | | 1 | 5 | nA | | Diode capacitance | V _R = 0 V, f = 1 MHz, E = 0 | C _D | | 11 | | pF | | Open circuit voltage | $E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 870 \text{ nm}$ | Vo | | 450 | | mV | | Short circuit current | $E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 870 \text{ nm}$ | I _K | | 50 | | μA | | Reverse light current | $E_e = 1 \text{ mW/cm}^2, \lambda = 870 \text{ nm}, \\ V_R = 5 \text{ V}$ | I _{ra} | | 55 | | μA | | | E_e = 1 mW/cm ² , λ = 950 nm, V_R = 5 V | I _{ra} | 30 | 60 | | μΑ | | Temperature coefficient of I _{ra} | $E_e = 1 \text{ mW/cm}^2, \lambda = 870 \text{ nm}, \ V_R = 5 \text{ V}$ | TK _{Ira} | | - 0.1 | | %/K | | Absolute spectral sensitivity | V _R = 5 V, λ = 870 nm | s(\lambda) | | 0.55 | | A/W | | Angle of half sensitivity | | φ | | ± 20 | | deg | | Wavelength of peak sensitivity | | λ_{p} | | 940 | | nm | | Range of spectral bandwidth | | λ _{0.5} | | 790 to 1050 | | nm | | Quantum efficiency | $\lambda = 950 \text{ nm}$ | η | | 70 | | % | | Noise equivalent power | $V_R = 20 \text{ V}, \ \lambda = 950 \text{ nm}$ | NEP | | 3 x 10 ⁻¹⁴ | | W/√Hz | | Detectivity | $V_R = 20 \text{ V}, \ \lambda = 950 \text{ nm}$ | D* | | 3 x 10 ¹² | | cm√Hz/V | | Rise time | $V_R = 50 \text{ V}, R_L = 50 \Omega, \lambda = 820 \text{ nm}$ | t _r | | 2.5 | | ns | | Fall time | $V_R = 50 \text{ V}, R_L = 50 \Omega, \lambda = 820 \text{ nm}$ | t _f | | 2.5 | | ns | ## **BASIC CHARACTERISTICS** (T_{amb} = 25 °C, unless otherwise specified) Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature Fig. 3 - Reverse Light Current vs. Irradiance Fig. 4 - Reverse Light Current vs. Reverse Voltage Fig. 5 - Diode Capacitance vs. Reverse Voltage Fig. 6 - Relative Spectral Sensitivity vs. Wavelength Fig. 7 - Relative Radiant Sensitivity vs. Angular Displacement ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 ## **PACKAGE DIMENSIONS** in millimeters Drawing-No.: 6.544-5185.01-4 96 12198 ## **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. # **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. ### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.