General Description

The MAX3735/MAX3735A are +3.3V laser drivers for SFP/SFF applications from 155Mbps up to 2.7Gbps. The devices accept differential input data and provide bias and modulation currents for driving a laser. DC-coupling to the laser allows for multirate applications and reduces the number of external components. The MAX3735/MAX3735A are fully compliant with the SFP MSA timing and the SFF-8472 transmit diagnostic requirements.

19-2529: Rev 1: 4/03

EVALUATION KIT AVAILABLE

An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power over temperature and lifetime. The wide modulation current range of 10mA to 60mA (up to 85mA AC-coupled) and bias current of 1mA to 100mA make this product ideal for driving FP/DFB laser diodes in fiber-optic modules. The resistor range for the laser current settings is optimized to interface with the DS1858 SFP controller IC.

The MAX3735/MAX3735A provide transmit-disable control, a single-point latched transmit-failure monitor output, photocurrent monitoring, and bias-current monitoring to indicate when the APC loop is unable to maintain the average optical power. The MAX3735A also features improved multirate operation.

The MAX3735/MAX3735A come in package and die form, and operate over the extended temperature range of -40°C to +85°C.

Applications

Gigabit Ethernet SFP/SFF Transceiver Modules 1G/2G Fibre Channel SFP/SFF Transceiver Modules

Multirate OC3 to OC48-FEC SFP/SFF Transceiver Modules

_Features

- SFP Reference Design Available
- Fully Compliant with SFP and SFF-8472 MSAs
- Programmable Modulation Current from 10mA to 60mA (DC-Coupled)
- Programmable Modulation Current from 10mA to 85mA (AC-Coupled)
- Programmable Bias Current from 1mA to 100mA
- Edge Transition Times <51ps
- 27mA (typ) Power-Supply Current
- Multirate 155Mbps to 2.7Gbps Operation
- Automatic Average Power Control
- On-Chip Pullup Resistor for TX_DISABLE
- ♦ 24-Pin 4mm × 4mm QFN package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3735E/D	-40°C to +85°C	Dice*
MAX3735ETG	-40°C to +85°C	24 Thin QFN-EP**
MAX3735EGG	-40°C to +85°C	24 QFN-EP**
MAX3735AETG	-40°C to +85°C	24 Thin QFN-EP**

*Dice are designed to operate from -40°C to +85°C, but are tested and guaranteed only at $T_A = +25$ °C. **EP = Exposed pad.

Pin Configuration appears at end of data sheet.

Typical Application Circuit

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} 0.5V to +6.0V Current into BIAS, OUT+, OUT20mA to +150mA Current into MD5mA to +5mA	Continuous Power Dissipation (T _A = +85°C) 24-Lead Thin QFN (derate 20.8mW/°C above +85°C)1354mW
Voltage at IN+, IN-, TX_DISABLE, TX_FAULT,	
SHUTDOWN0.5V to (V _{CC} + 0.5V)	above +85°C)1354mW
Voltage at BIAS, PC_MON, BC_MON,	Operating Ambient Temperature Range (T _A)40°C to +85°C
MODSET, APCSET0.5V to (V _{CC} + 0.5V)	Storage Ambient Temperature Range55°C to +150°C
Voltage at OUT+, OUT+0.5V to (V _{CC} + 1.5V)	Die Attach Temperature+400°C
Voltage at APCFILT1, APCFILT20.5V to +3V	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.97V to +3.63V, T_A = -40°C to +85°C. Typical values at V_{CC} = +3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	ТҮР	МАХ	UNITS
POWER SUPPLY				•			
Power-Supply Current	ICC	Excludes the laser bias a currents (Note 2)	nd modulation		27	50	mA
I/O SPECIFICATIONS				•			
Differential Input Voltage	VID	$V_{ID} = (V_{IN}+) - (V_{IN}-)$, Figu	ire 1	200		2400	mV _{P-P}
Common-Mode Input Voltage					$0.6 \times V_{CC}$)	V
Differential Input Resistance				85	100	115	Ω
TX_DISABLE Input Pullup Resistance	R _{PULL}			4.7	7.4	10.0	kΩ
		V _{HIGH} = V _{CC}				15	
TX_DISABLE Input Current		$V_{LOW} = GND, V_{CC} = 3.3$	V, R _{PULL} = 7.4k Ω		-450		μA
TX_DISABLE Input High Voltage	VIH			2			V
TX_DISABLE Input Low Voltage	VIL					0.8	V
TX_FAULT Output High Voltage	VOH	I _{OH} = 100µA sourcing (N	ote 3)	2.4			V
TX_FAULT Output Low Voltage	VOL	I _{OL} = 1mA sinking (Note	3)			0.4	V
SHUTDOWN Output High Voltage	V _{OH}	I _{OH} = 100µA sourcing V		V _{CC} - 0.4	4		V
SHUTDOWN Output Low Voltage	V _{OL}	I _{OL} = 100µA sinking				0.4	V
BIAS GENERATOR							
Bias On-Current Range	IBIAS	Current into BIAS pin		1		100	mA
Bias Off-Current	IBIASOFF	Current into BIAS pin dur TX_DISABLE	ing TX_FAULT or			100	μA
Bias Overshoot		During SFP module hot p (Notes 4, 5, 11)	lugging			10	%
Bias-Current Monitor Gain	BC_MON	External resistor to GND gain, IBIAS = 1mA, R _{BC_N}	0	10.0	12	13.5	mA/A
		IBIAS = 100mA, RBC_MON	$I = 693.25\Omega$	11.5	13	13.5	1
Bias-Current Monitor Gain		$1mA \le I_{BIAS} \le 100mA$	MAX3735	-8		+8	%
Stability		(Notes 4, 6)	MAX3735A	-6		+6	70

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.97V to +3.63V, T_A = -40°C to +85°C. Typical values at V_{CC} = +3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
AUTOMATIC POWER-CONTROL	LOOP						
MD Reverse Bias Voltage		18μA ≤ I _{MD} ≤ 1500μA		1.6			V
MD Average Current Range	I _{MD}	Average current into MD pi	'n	18		1500	μA
			I _{BIAS} = 1mA (MAX3735)	-880		+880	
Average Power-Setting Stability			I _{BIAS} = 1mA (MAX3735A)	-110		+110	ppm/°C
			$I_{BIAS} = 100 \text{mA}$	-650		+650	
Average Power Setting Accuracy		APC Closed Loop $1mA \le I_{BIAS} \le 100mA$ (Note	e 8)	-16		+16	%
		External resistor to GND defines the voltage gain;	MAX3735	0.8	1	1.23	
MD-Current Monitor Gain	IPC_MON	$I_{MD} = 18\mu A$, $R_{PC}MON = 50k\Omega$	MAX3735A	0.9		1.1	A/A
		$I_{MD} = 1.5 \text{mA}, \text{R}_{PC} \text{MON} = 6$	600Ω	0.95	1	1.05	1
		18μA ≤ I _{MD} ≤ 1500μA	MAX3735	-10		+10	0/
MD-Current Monitor Gain Stability		(Notes 4, 6)	MAX3735A	-4		+4	%
LASER MODULATOR		·					
Madulation On Ownerst Damag		Current into OUT+ pin; R_L : V _{OUT-} \ge 0.6V (DC-coupled)		10		60	
Modulation On-Current Range	IMOD	Current into OUT+ pin; $R_L \le 15\Omega_$, V_{OUT+} , $V_{OUT-} \ge 2.0V$ (AC-coupled)		10		85	mA
Modulation Off-Current	IMODOFF	Current into OUT+ pin duri TX_DISABLE	ng TX_FAULT or			100	μA
Modulation-Current Stability		I _{MOD} = 10mA		-480		+480	
(Note 4)		I _{MOD} = 60mA		-255		+255	ppm/°C
Modulation-Current Absolute Accuracy		$10\text{mA} \le I_{\text{MOD}} \le 60\text{mA}$ (Not	e 8)	-15		+15	%
Modulation-Current Rise Time	t _R	20% to 80%, 10mA \leq I _{MOD}	≤ 60mA (Note 4)		42	65	ps
Modulation-Current Fall Time	tF	20% to 80%, 10mA \leq I _{MOD}	≤ 60mA (Note 4)		50	80	ps
		$10mA \le I_{MOD} \le 60mA$ at 2. (Notes 4, 9, 10)	67Gbps		18	38	
Deterministic Jitter		At 1.25Gbps (K28.5 pattern)			11.5		ps
		At 622Mbps (Note 9)			18		1
	At 155Mbps (Note 9)		40				
Random Jitter	RJ	$10mA \le I_{MOD} \le 60mA$ (Not	e 4)		0.7	1.0	psrms

(V_{CC} = +2.97V to +3.63V, T_A = -40°C to +85°C. Typical values at V_{CC} = +3.3V, I_{BIAS} = 20mA, I_{MOD} = 30mA, T_A= +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
SAFETY FEATURES		·					
Excessive Bias-Current Comparator Threshold Range		TX_FAULT always occu 1.38V, TX_FAULT never VBC_MON ≤ 1.22V		1.22	1.30	1.39	V
Excessive MD-Current Comparator Threshold Range		TX_FAULT always occu 1.38V, TX_FAULT never VPC_MON ≤ 1.22V		1.22	1.30	1.39	V
SFP TIMING REQUIREMENTS		·					
TX_DISABLE Assert Time	t_off	Time from rising edge c IBIAS = IBIASOFF and I_M (Note 4)			0.14	5	μs
TX DISABLE Negate Time	t on	Time from falling edge of TX_DISABLE to IBIAS and IMOD at 95%	C _{APC} = 2.7nF, MAX3735 (Note 4)			1	ms
TA_DISABLE Negale Time	1_011	of steady state when TX_FAULT = 0 before reset	MAX3735A (Note 11)			600	μs
TX_DISABLE Negate Time During FAULT Recovery	t_onFAULT	Time from falling edge of IBIAS and I _{MOD} at 95% TX_FAULT = 1 before re	of steady state when		60	200	ms
TX_FAULT Reset Time or Power- On Time	t_init	From power-on or nega using TX_DISABLE (No	_		60	200	ms
TX_FAULT Assert Time	t_fault	Time from fault to TX_F/ 20pF, $R_{FAULT} = 4.7 k\Omega$	7 171021		3.3	50	μs
TX_DISABLE to Reset		Time TX_DISABLE mus reset TX_FAULT (Note 4	0			5	μs

Note 1: Specifications at -40°C are guaranteed by design and characterization. Dice are tested at $T_A = +25$ °C only.

Note 2: Maximum value is specified at I_{MOD} = 60mA, I_{BIAS} = 100mA.

Note 3: TX_FAULT is an open-collector output and must be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor.

Note 4: Guaranteed by design and characterization.

Note 5: V_{CC} turn-on time must be \leq 0.8s, DC-coupled interface.

Note 6: Gain stability is defined by the digital diagnostic document (SFF-8472, rev. 9.0) over temperature and supply variation.

Note 7: Assuming that the laser diode to photodiode transfer function does not change with temperature.

Note 8: Accuracy refers to part-to-part variation.

Note 9: Deterministic jitter is measured using a 2²³ - 1 PRBS or equivalent pattern.

Note 10: Broadband noise is filtered through the network as shown in Figure 3. One capacitor, C < 0.47µF, and one 0603 ferrite bead or inductor can be added (optional). This supply voltage filtering reduces the hotplugging inrush current. The supply noise must be < 100mV_{P-P} up to 2MHz.

Note 11: CAPC values chosen as shown in Table 4 (MAX3735A).

Figure 1. Required Input Signal and Output Polarity

Figure 2. Output Termination for Characterization

Figure 3. Supply Filter

Typical Operating Characteristics

(V_{CC} = +3.3V, C_{APC} = 0.01 \mu F, I_{BIAS} = 20 mA, and I_{MOD} = 30 mA, T_A = +25 ^{\circ}C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(V_{CC} = +3.3V, C_{APC} = 0.01μ F, I_{BIAS} = 20mA, and I_{MOD} = 30mA, T_A = +25°C, unless otherwise noted.)

100ms/div

4μs/div

Pin Description

PIN	NAME	FUNCTION
1, 4, 8, 14, 18	Vcc	+3.3V Supply Voltage
2	IN+	Noninverted Data Input
3	IN-	Inverted Data Input
5	PC_MON	Photodiode Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the monitor diode current.
6	BC_MON	Bias Current Monitor Output. Current out of this pin develops a ground-referenced voltage across an external resistor that is proportional to the bias current.
7, 12, 22	GND	Ground
9	SHUTDOWN	Shutdown Driver Output. Voltage output to control an external transistor for optional shutdown circuitry.
10	TX_FAULT	Open-Collector Transmit Fault Indicator (Table 1).
11	MODSET	A resistor connected from this pad to ground sets the desired modulation current.
13	BIAS	Laser Bias Current Output
15, 16	OUT+	Noninverted Modulation Current Output. Connect pins 15 and 16 externally to minimize parasitic inductance of the package. I _{MOD} flows into this pin when input data is high.
17	OUT-	Inverted Modulation Current Output. I _{MOD} flows into this pin when input data is low.
19	MD	Monitor Diode Input. Connect this pin to the anode of a monitor photodiode. A capacitor to ground is required to filter the high-speed AC monitor photocurrent.
20	APCFILT1	Connect a capacitor (C_{APC}) between pin 20 (APCFILT1) and pin 21 (APCFILT2) to set the dominant pole of the APC feedback loop.
21	APCFILT2	See APCFILT1
23	APCSET	A resistor connected from this pin to ground sets the desired average optical power.
24	TX_DISABLE	Transmitter Disable, TTL. Laser output is disabled when TX_DISABLE is asserted high or left unconnected. The laser output is enabled when this pin is asserted low.
EP	Exposed Pad	Ground. Must be soldered to the circuit board ground for proper thermal and electrical performance (see the <i>Exposed Pad Package</i> section).

Detailed Description

The MAX3735/MAX3735A laser drivers consist of three parts: a high-speed modulation driver, a laser-biasing block with automatic power control (APC), and safety circuitry (Figure 4). The circuit design is optimized for high-speed and low-voltage (+3.3V) operation.

High-Speed Modulation Driver

The output stage are composed of a high-speed differential pair and a programmable modulation current source. The MAX3735/MAX3735A are optimized for driving a 15 Ω load; the minimum instantaneous voltage required at OUT+ is 0.6V. Modulation current swings up to 60mA are possible when the laser diode is DC-coupled to the driver and up to 85mA when the laser diode is AC-coupled to the driver. To interface with the laser diode, a damping resistor (R_D) is required for impedance matching. The combined resistance of the series damping resistor and the equivalent series resistance of the laser diode should equal 15 Ω . To reduce optical output aberrations and duty-cycle distortion caused by laser diode parasitic inductance, an RC shunt network might be necessary. Refer to Maxim Application Note HFAN 02.0: *Interfacing Maxim's Laser Drivers to Laser Diodes* for more information.

At data rates of 2.7Gbps, any capacitive load at the cathode of a laser diode degrades optical output performance. Because the BIAS output is directly connected to the laser cathode, minimize the parasitic capacitance associated with the pin by using an inductor to isolate the BIAS pin parasitics from the laser cathode.

///XI///

2.7Gbps, Low-Power SFP Laser Drivers

Figure 4. Functional Diagram

Laser-Biasing and APC

To maintain constant average optical power, the MAX3735/MAX3735A incorporate an APC loop to compensate for the changes in laser threshold current over temperature and lifetime. A back-facet photodiode mounted in the laser package is used to convert the optical power into a photocurrent. The APC loop adjusts the laser bias current so that the monitor current is matched to a reference current set by RAPCSET. The time constant of the APC loop is determined by an external capacitor (CAPC). For possible CAPC values, see the *Applications Information* section.

Safety Circuitry

The safety circuitry contains an input disable (TX_DISABLE), a latched fault output (TX_FAULT), and fault detectors (Figure 5). This circuitry monitors the operation of the laser driver and forces a shutdown if a fault is detected (Table 1). A single-point fault can be a short to V_{CC} or GND. See Table 2 to view the circuit

response to various single-point failures. The transmit fault condition is latched until reset by a toggle of TX_DISABLE or V_{CC}. The laser driver offers redundant laser diode shutdown through the optional shutdown circuitry (see the *Typical Applications Circuit*). The TX_FAULT pin should be pulled high with a 4.7k Ω to 10k Ω resistor to V_{CC} as required by the SFP MSA.

Safety Circuitry Current Monitors

The MAX3735/MAX3735A feature monitors (BC_MON, PC_MON) for bias current (I_{BIAS}) and photo current (I_{MD}). The monitors are realized by mirroring a fraction of the currents and developing voltages across external resistors connected to ground. Voltages greater than 1.38V at PC_MON or BC_MON result in a fault state. For example, connecting a 100 Ω resistor to ground on each monitor output gives the following relationships:

 $V_{BC_MON} = (I_{BIAS} / 76) \times 100\Omega$ $V_{PC_MON} = I_{MD} \times 100\Omega$

Figure 5. Safety Circuitry

Table 1. Typical Fault Conditions

1.	If any of the I/O pins is shorted to GND or V _{CC} (single- point failure, see Table 2), and the bias current or the photocurrent exceed the programmed threshold.
2.	End-of-life (EOL) condition of the laser diode. The bias current and/or the photocurrent exceed the programmed threshold.
3.	Laser cathode is grounded and the photocurrent exceeds the programmed thresholds.
4.	No feedback for the APC loop (broken interconnection, defective monitor photodiode), and the bias current exceeds the programmed threshold.

Design Procedure

When designing a laser transmitter, the optical output usually is expressed in terms of average power and extinction ratio. Table 3 shows relationships helpful in converting between the optical average power and the modulation current. These relationships are valid if the mark density and duty cycle of the optical waveform are 50%.

Programming the Modulation Current

For a given laser power (P_{AVG}), slope efficiency (η), and extinction ratio (r_e), the modulation current can be calculated using Table 3. See the Modulation Current vs. R_{MODSET} graph in the *Typical Operating Characteristics*

section, and select the value of R_{MODSET} that corresponds to the required current at +25°C.

Programming the APC Loop

Program the average optical power by adjusting -RAPC-SET. To select the resistance, determine the desired monitor current to be maintained over temperature and lifetime. See the Monitor Diode Current vs. RAPCSET graph in the *Typical Operating Characteristics* section, and select the value of RAPCSET that corresponds to the required current.

Interfacing with Laser Diodes

To minimize optical output aberrations caused by signal reflections at the electrical interface to the laser diode, a series-damping resistor (R_D) is required (Figure 4). Additionally, the MAX3735/MAX3735A outputs are optimized for a 15Ω load. Therefore, the series combination of R_D and R_L, where R_L represents the laser-diode resistance, should equal 15Ω . Typical values for R_D are 8Ω to 13Ω . For best performance, place a bypass capacitor (0.01µF typ) as close as possible to the anode of the laser diode. An RC shunt network between the laser cathode and ground minimizes optical output aberrations. Starting values for most coaxial lasers are $R_{COMP} = 50\Omega$ in series with $C_{COMP} = 8pF$. Adjust these values experimentally until the optical output waveform is optimized. Refer to Maxim Application Note: HFAN 02.0: Interfacing Maxim's Laser Drivers to Laser Diodes for more information

PIN NAME	CIRCUIT RESPONSE TO OVERVOLTAGE OR SHORT TO V _{CC}	CIRCUIT RESPONSE TO UNDERVOLTAGE OR SHORT TO GROUND
TX_FAULT	Does not affect laser power.	Does not affect laser power.
TX_DISABLE	Modulation and bias currents are disabled.	Normal condition for circuit operation.
IN+	The optical average power increases and a fault occurs if VPC_MON exceeds the threshold. The APC loop responds by decreasing the bias current.	The optical average power decreases and the APC loop responds by increasing the bias current. A fault state occurs if V_{BC_MON} exceeds the threshold voltage.
IN-	The optical average power decreases and the APC loop responds by increasing the bias current. A fault state occurs if V_{BC} _MON exceeds the threshold voltage.	The optical average power increases and a fault occurs if VPC_MON exceeds the threshold. The APC loop responds by decreasing the bias current.
MD	Disables bias current. A fault state occurs.	The APC circuit responds by increasing bias current until a fault is detected, then a fault state* occurs.
SHUTDOWN	Does not affect laser power. If the shutdown circuitry is used, laser current is disabled and a fault state* occurs.	Does not affect laser power.
BIAS	In this condition, laser forward voltage is 0V and no light is emitted.	Fault state* occurs. If the shutdown circuitry is used, the laser current is disabled.
OUT+	The APC circuit responds by increasing the bias current until a fault is detected, then a fault state* occurs.	Fault state* occurs. If the shutdown circuitry is used, laser current is disabled.
OUT-	Does not affect laser power.	Does not affect laser power.
PC_MON	Fault state* occurs.	Does not affect laser power.
BC_MON	Fault state* occurs.	Does not affect laser power.
APCFILT1	IBIAS increases until V_{BC_MON} exceeds the threshold voltage.	IBIAS increases until V _{BC_MON} exceeds the threshold voltage.
APCFILT2	IBIAS increases until V _{BC_MON} exceeds the threshold voltage.	IBIAS increases until V _{BC_MON} exceeds the threshold voltage.
MODSET	Does not affect laser power.	Fault state* occurs.
APCSET	Does not affect laser power.	Fault state* occurs.

Table 2. Circuit Responses to Various Single-Point Faults

*A fault state asserts the TX_FAULT pin, disables the modulation and bias currents, and asserts the SHUTDOWN pin.

Table 3. Optical Power Definitions

PARAMETER	SYMBOL	RELATION
Average Power	Pavg	$P_{AVG} = (P_0 + P_1) / 2$
Extinction Ratio	r _e	$r_{e} = P_{1} / P_{0}$
Optical Power High	P ₁	$P_1 = 2P_{AVG} \times r_e / (r_e + 1)$
Optical Power Low	Po	$P_0 = 2P_{AVG} / (r_e + 1)$
Optical Amplitude	Pp-p	$P_{P-P} = P_1 - P_0$
Laser Slope Efficiency	η	$\eta = P_{P-P} / I_{MOD}$
Modulation Current	IMOD	$I_{MOD} = P_{P-P} / \eta$

Pattern-Dependent Jitter

To minimize the pattern-dependent jitter associated with the APC loop time constant, and to guarantee loop stability, connect a capacitor between APCFILT1 and APCFILT2 (see the *Applications Information* section for more information about choosing CAPC values). A capacitor attached to the photodiode anode (C_{MD}) is also recommended to filter transient currents that originate from the photodiode. To maintain stability and proper phase margin associated with the two poles created by CAPC and C_{MD}, CAPC should be 20x greater than C_{MD} for the MAX3735. CAPC should be 4x to 20x greater than C_{MD} for the MAX3735A.

Input Termination Requirements

The MAX3735/MAX3735A data inputs are SFP MSA compliant. On-chip 100Ω differential input impedance is provided for optimal termination (Figure 6). Because of the on-chip biasing network, the MAX3735/MAX3735A inputs self-bias to the proper operating point to accommodate AC-coupling.

Optional Shutdown Output Circuitry

The SHUTDOWN control output features extended eye safety when the laser cathode is grounded. An external transistor is required to implement this circuit (Figure 4). In the event of a fault, SHUTDOWN asserts high, placing the optional shutdown transistor in cutoff mode and thereby shutting off the laser current.

Applications Information

An example of how to set up the MAX3735/MAX3735A follows:

Select a communications-grade laser for 2.488Gbps. Assume that the laser output average power is PAVG = OdBm, the operating temperature is -40°C to +85°C, minimum extinction ratio is 6.6 (8.2dB), and the laser diode has the following characteristics:

Wavelength: $\lambda = 1.3 \mu m$

Threshold current: ITH = 22mA at +25°C

Threshold temperature coefficient: $\beta_{TH} = 1.3\%$ / °C

Laser-to-monitor transfer: $\rho_{MON} = 0.2A/W$

Laser slope efficiency: $\eta = 0.05$ mW/mA at +25°C

Figure 6. Simplified Input Structure

Determine RAPCSET

The desired monitor diode current is estimated by I_{MD} = $P_{AVG} \times \rho_{MON}$ = 200µA. The Monitor Diode vs. RAPC-SET graph in the *Typical Operating Characteristics* section shows that RAPCSET should be 3k Ω . The value can also be estimated using the equation below:

 $I_{MD} = 1.23 / (2 \times R_{APCSET})$

Determine RMODSET

To achieve a minimum extinction ratio (r_e) of 6.6 over temperature and lifetime, calculate the required extinction ratio at +25°C. Assuming the results of the calculation are $r_e = 20$ at +25°C, the peak-to-peak optical power Pp-p = 1.81mW, according to Table 3. The required modulation current is 1.81mW / (0.05mW/mA) = 36.2mA. The Modulation Current vs. RMODSET graph in the *Typical Operating Characteristics* section shows that RMODSET should be 9.5k Ω . The value can also be estimated using the equation below:

 $I_{MOD} = 1.23 / (0.0037 \times R_{MODSET})$

Determine CAPC

In order to meet SFP timing requirements and minimize pattern-dependent jitter, the CAPC capacitor value is determined by the laser-to-monitor transfer and other variables. The following equations and table can be used to choose the CAPC values for the MAX3735 and MAX3735A, respectively. The equations and table assume a DC-coupled laser. Refer to Maxim Application Note HFDN 23.0: *Choosing the APC Loop*

Figure 7. Simplified Output Structure

Capacitors Used with MAX3735/MAX3735A SFP Module Designs for more information on choosing C_{APC} for DCand AC-coupled laser interfaces.

MAX3735

Use the following equation to find the C_{APC} value when using the MAX3735:

 $\begin{array}{l} C_{APC} = 4.04 \times 10^{.9} \times t_{_On} \times \eta \times \rho_{MON} \left(29.3 + 20.6 \ \text{ITH} - 0.22 \ \text{ITH}^2 \right) \times \left(1947 + 833 \ \text{I}_{MOD} - 7.78 \ \text{I}_{MOD}^2 + 0.103 \\ \text{I}_{MOD}^3 \right) \end{array}$

where units are:

CAPC in μ F, I_{TH}, and I_{MOD} in mA and t_{ON} in μ s. C_{MD} can then be chosen as approximately 20x smaller than CAPC for the MAX3735.

MAX3735A

Use Table 4 to choose CAPC when using the MAX3735A. CAPC should be chosen according to the highest gain of the lasers (generally at cold temperature). CAPC selection assumes a 34% reduction in the gain of the lasers at +85°C from the cold (-40°C) values.

Table 4. MAX3735A CAPC Selection

LASER GAIN (A/A)	C _{APC} (μF)
0.005	0.039
0.007	0.047
0.010	0.068
0.020	0.100
0.030	0.120
0.040	0.120

where Gain = $I_{MD}/(I_{BIAS} - I_{TH} + 0.5 \times I_{MOD})$ for DC-coupled lasers. CMD can then be chosen as approximately 4x to 20x smaller than C_{APC} for the MAX3735A

Using the MAX3735/MAX3735A with Digital Potentiometers

For more information on using the MAX3735/MAX3735A with the Dallas DS1858/DS1859 SFP controller, refer to Maxim Application Note HFAN 2.3.3: *Optimizing the Resolution of Laser Driver Setting Using Linear Digital Potentiometers* for more information.

Modulation Currents Exceeding 60mA

For applications requiring a modulation current greater than 60mA, headroom is insufficient for proper operation of the laser driver if the laser is DC-coupled. To avoid this problem, the MAX3735/MAX3735A's modulation output can be AC-coupled to the cathode of a laser diode. An external pullup inductor is necessary to DC-bias the modulation output at V_{CC} . Such a configuration

isolates laser forward voltage from the output circuitry and allows the output at OUT+ to swing above and below the supply voltage (V_{CC}). When AC-coupled, the MAX3735/MAX3735A modulation current can be programmed from 10mA to 85mA. Refer to Maxim Application Note HFAN 02.0: *Interfacing Maxim's Laser Drivers to Laser Diodes* for more information on ACcoupling laser drivers to laser diodes.

Interface Models

Figures 6 and 7 show simplified input and output circuits for the MAX3735/MAX3735A laser driver. If dice are used, replace package parasitic elements with bondwire parasitic elements.

Wire Bonding Die

The MAX3735 uses gold metalization with a thickness of 5µm (typ). Maxim characterized this circuit with gold wire ball bonding (1-mil diameter wire). Die-pad size is 94 mil (2388µm) square, and die thickness is 15 mil (381µm). Refer to Maxim Application Note HFAN-08.0.1: *Understanding Bonding Coordinates and Physical Die Size* for additional information.

Layout Considerations

To minimize inductance, keep the connections between the MAX3735 output pins and laser diode as close as possible. Optimize the laser diode performance by placing a bypass capacitor as close as possible to the laser anode. Use good high-frequency layout techniques and multiple-layer boards with uninterrupted ground planes to minimize EMI and crosstalk.

Exposed-Pad Package

The exposed pad on the 24-pin QFN provides a very low thermal resistance path for heat removal from the IC. The pad is also electrical ground on the MAX3735/ MAX3735A and must be soldered to the circuit board ground for proper thermal and electrical performance. Refer to Maxim Application Note HFAN-08.1: *Thermal Considerations for QFN and Other Exposed-Pad Packages* for additional information.

Laser Safety and IEC 825

Using the MAX3735/MAX3735A laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Each user must determine the level of fault tolerance required by the application, recognizing that Maxim products are neither designed nor authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application in which the failure of a Maxim product could create a situation where personal injury or death may occur.

_MAX3735 Chip Topography

PAD		COORDINATES		
PAD	NAME	Х	Y	
1*	BC_MON	47	47	
2	PC_MON	47	229	
3	V _{CC}	47	514	
4	IN-	47	696	
5	IN+	47	878	
6	V _{CC}	47	1063	
7	GND	242	1149	
8	TX_DISABLE	452	1149	
9	APCSET	636	1149	
10	GND	819	1149	
11	APCFILT2	1008	1149	
12	APCFILT1	1193	1149	
13	MD	1383	1149	
14	GND	1567	1149	
15	V _{CC}	1758	1032	
16**	OUT-	1758	888	
17**	OUT-	1758	742	
18**	OUT+	1758	579	
19**	OUT+	1758	433	
20	V _{CC}	1758	289	
21	BIAS	1758	93	
22	GND	1578	-64	
23	GND	1401	-64	
24	MODSET	1205	-64	
25	TX_FAULT	1016	-64	
26	SHUTDOWN	818	-64	
27	V _{CC}	623	-64	
28	GND	435	-64	
28 29	GND GND	435 245	-6- -6-	

Bonding Coordinates

Pin Configuration

Chip Information

TRANSISTOR COUNT: 327 SUBSTRATE CONNECTED TO GND DIE SIZE: 60 mils x 79 mils PROCESS: SiGe Bipolar

*Index pad. Orient the die with this pad in the lower-left corner. **Bond out both pairs of OUT- and OUT+ to minimize series inductance.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

					COMM	TI NI	MENS	21002						EAPUS	SED	PAD	VAH	RIATI	UNS.	
PKG	1	12L 4×4		16L 4×4		20L 4×4		24L 4×4		4	PKG.		D2				E2			
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	Ċ	DDES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T1	1244-2	1.95	2.10	2.25	1.95	2.10	2.25
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	T1	1644-2	1.95	2.10	2.25	1.95	2.10	2.25
A2		0.20 REF			0.20 REF		0.20 REF		-	0.20 REF			Ta	2044-1	1.95	2.10	2.25	1.95	2.10	2.25
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	Ta	2444-1	2.45	2.60	2.63	2.45	2.60	2.63
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10								
Е	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10								
e	-	0.80 BSC.		0.65 BSC.		0.50 BSC.		0.50 BSC.		1										
ĸ	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-								
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50								
N		12		16			20			24										
ND NE	-	3		4			5			6										
Jedec Vor.		VGGB		4 WGGC			5 WGGD-1			6 WGGD-2										
NOTES: 1. DII 2. AL 3. N 4. TH	MENSION L DIMEN IS THE IE TERM	NING & ' NSIONS & TOTAL M	NRE IN NUMBER	OF TEF	rers. An Rminals. D termin	gles ar	e in di Bering	EGREES.	ition si		NFORM T									
NOTES: 1. DII 2. AL 3. N 4. TH JE	MENSION L DIMEN IS THE IE TERM ISD 95-	NING & T NSIONS A TOTAL P IINAL #1 1 SPP-(IDENTI 12. DE	HILLIMET OF TEF FIER AND TAILS OF	TERS. AN RMINALS. D TERMIN TERMIN	GLES AR	e in di Bering Entifiei	EGREES. CONVEN	ition si Iptional	, BUT M	IUST BE	to Located 1 D Feature		N						
NOTES 1. DII 2. AL 3. N JE TH S. DII	MENSION L DIMEN IS THE IE TERM SD 95- IE ZONE MENSION	NING & " NSIONS & TOTAL M IINAL #1 1 SPP-(E INDICAT	IDENTION IDENTION IDENTION IDENTION IDENTION IDENTION IDENTION	MILLIMET OF TEF TER AND TAILS OF E TERMIN	TERS. AN RMINALS. D TERMIN F TERMIN NAL #1	GLES AR AL NUME AL ∦1 ID IDENTIFIE	e in di Bering Entifiei R May	EGREES. CONVEN R ARE O BE EITH	ition si Iptional Ier a M	, BUT M IOLD OR	iust be i Marked	LOCATED 1								
NOTES: 1. DII 2. AL 3. N JET DII FR	MENSION L DIMEN IS THE IE TERM SD 95- IE ZONE MENSION ROM TER	NING & T NSIONS & TOTAL # 1 SPP-(E INDICAT N & APP RMINAL T	UMBER IDENTIO 12. DE ED. TH LIES TO IP.	MILLIMET OF TEF FIER AND TAILS OF E TERMIN METALL	TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEI	GLES AR AL NUME AL ∦1 ID IDENTIFIE RMINAL A	e in di Bering Entifiei R May ND IS	EGREES. CONVEN R ARE O BE EITH MEASUR	ition si Iptional Ier a M Ed Beth	, BUT M IOLD OR WEEN 0.	iust be i Marked	LOCATED 1 FEATURE AND 0.30								
NOTES 1. DII 2. AL 3. N JE TH S. DII FR C. N	MENSION L DIMEN IS THE E TERM SD 95- HE ZONE MENSION ROM TER D AND 1	NING & T NSIONS & TOTAL # 1 SPP-(E INDICAT N & APP RMINAL T	RE IN IDENTIO 12. DE TED. TH LIES TO IP. R TO T	MILLIMET OF TEF FIER AND TAILS OF E TERMIN METALL HE NUM	TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEI BER OF	GLES AR AL NUME AL ∯1 ID IDENTIFIE RMINAL A TERMINAL	e in di Bering Entifier R May ND IS 	EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	ition si Iptional Ier a M Ed Beth	, BUT M IOLD OR WEEN 0.	IUST BE MARKED 25 mm	LOCATED 1 FEATURE AND 0.30								
NOTES: 1. DII 2. AL 3. N JETH JETH III FRI 6. CO	MENSION L DIMEN IS THE IE TERM IE TERM IE ZONE MENSION ROM TER D AND N EPOPULA	NING & ' NSIONS & TOTAL # INAL #1 1 SPP- I NDICAT N & APPI RMINAL T NE REFEI	RE IN IDENTIO DI2. DE ED. TH LIES TO IP. R TO TI POSSIE LIES TO	Millimet OF Ter Ter and Tails of E termin Metall He numi Le in a The ed	TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEI BER OF SYMMET (POSED	GLES AR AL NUME AL ∦1 ID IDENTIFIE RMINAL A TERMINAL RICAL F/	e in di Bering Entifiei R May ND IS LS ON Ashion.	EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	itton si iptional ier a m ed bety and e	, but m Nold or Ween 0.: Side Ri	IUST BE MARKED 25 mm ESPECTIVI	LOCATED 1 FEATURE AND 0.30						<1		
NOTES: 1. DII 2. AL 3. N JETH JETH III FRI 6. CO	MENSION L DIMEN IS THE IE TERM IE TERM IE ZONE MENSION ROM TER D AND N EPOPULA	NING & ' NSIONS & TOTAL # IINAL #1 IINAL #1 INO APP RMINAL T NE REFEI ATION IS RITY APP	RE IN IDENTIO DI2. DE ED. TH LIES TO IP. R TO TI POSSIE LIES TO	Millimet OF Ter Ter and Tails of E termin Metall He numi Le in a The ed	TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEI BER OF SYMMET (POSED	GLES AR AL NUME AL ∦1 ID IDENTIFIE RMINAL A TERMINAL RICAL F/	e in di Bering Entifiei R May ND IS LS ON Ashion.	EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	itton si iptional ier a m ed bety and e	, but m Nold or Ween 0.: Side Ri	IUST BE MARKED 25 mm ESPECTIVI	LOCATED 1 FEATURE AND 0.30			CKAG	E OUT 24L QF	LINE	N, 4x4x	:0.8 mm	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

___Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2003 Maxim Integrated Products

18

ſ

Printed USA

is a registered trademark of Maxim Integrated Products.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.