emWin

Graphic Library with
Graphical User Interface

User & Reference Guide

Document: UM03001
Software version: V5.20

Document revision: 2
Date: March 8, 2013

O
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

2 CHAPTER

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.
Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG
In den Weiden 11

D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com

Internet: http://www.segger.com

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.

Contact us for further information on topics or routines not yet specified.

Print date: March 8, 2013

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Software

Rev.

Date

By

Description

5.20

130308

AS

Chapter 28 ‘Language Support’
- New function GUI_LANG_GetTextBuffered() added.
- New function GUI_LANG_GetTextBufferedEx() added.

5.20

130305

AS

Chapter 19 'Skinning’

- New function CHECKBOX_GetSkinFlexButtonSize() added.
- New function CHECKBOX_SetSkinFlexButtonSize() added.

5.20

130218

JE

Chapter 25 'Sprites’
- New function GUI_SPRITE_CreateHidden() added.
- New function GUI_SPRITE_CreateHiddenEx() added.
Chapter 29 'Display Drivers’
GUIDRV_FlexColor:
- Support for Himax HX8340 added to 66712.
- New module 66772 added wit support for:
Hitachi HD66772, Samsung S6D0117, Sitronix ST7712,
Himax HX8301, Ilitek ILI9220 and ILI9221
GUIDRV_SLin:
- Support for Epson S1D13305 added.
Chapter 30 'VNC-Server’
- New function GUI_VNC_SetLockFrame() added.
Chapter 32 ‘'Timing and execution’
- New function GUI_Error() added.
Chapter 34 '‘Configuration’
- New function GUI_SetOnErrorFunc() added.
Chapter 25 'Sprites’
- New function GUI_SPRITE_CreateHidden() added.
- New function GUI_SPRITE_CreateHiddenEx() added.
Chapter 29 'Display Drivers’
GUIDRV_FlexColor:
- Support for Himax HX8340 added to 66712.
- New module 66772 added wit support for:
Hitachi HD66772, Samsung S6D0117, Sitronix ST7712,
Himax HX8301, Ilitek ILI9220 and ILI9221
GUIDRV_SLin:
- Support for Epson S1D13305 added.
Chapter 30 'VNC-Server’
- New function GUI_VNC_SetLockFrame() added.
Chapter 32 ‘'Timing and execution’
- New function GUI_Error() added.
Chapter 34 'Configuration’
- New function GUI_SetOnErrorFunc() added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER

Software | Rev.| Date By Description
Chapter 8 'Displaying bitmap files’
- New function GUI_BMP_SerializeExBpp() added.
Chapter 9 ‘Bitmap Converter’
- New functions added to create animated sprites and cursors out
of animated GIF files.
Chapter 13 '‘Memory Devices’
- New function GUI_MEMDEV_SerializeBMP() added.
Chapter 15 'The Window Manager (WM)’
New function WM_SetCaptureMove() added.
New function WM_Screen2hWin() added.
New function WM_Screen2hWinEx() added.
Chapter 16 "Window Objects (Widgets)’
- New functions added:
TEXT_GetText()
LISTVIEW_SetWrapMode()
IE Chapter 27 'Antialiasing’
5.18 0 120917 AS |- New function GUI_AA_SetDrawMode() added.
Chapter 28 'Foreign Language Support’
- New feature "Text- and language resource files" added.
Chapter 29 'Display drivers’
GUIDRV_FlexColor:
- Function GUIDRV_FlexColor_SetInterface66709_B16() replaced
by the function GUIDRV_FlexColor_SetReadFunc66709_B16().
- Function GUIDRV_FlexColor_SetInterface66720_B16() replaced
by the function GUIDRV_FlexColor_SetReadFunc66720_B16().
- New module 66702 added:
Solomon SSD1284, SSD1289, SSD1298
- New module 66715 added:
Himax HX8352B
- Recommended calling sequence for configuration functions
added.
GUIDRV_S1D13781:
- Additional information about initialized registers added.
Chapter 16 '"Window Objects (Widgets)’
5.16 2 120809 AS | - New function SPINBOX_SetRange() added.
Various corrections.
Chapter 15 ‘The Window Manager (WM)’
Descriptions of the following functions reworked:
- WM_GetScrollPosH()
5.16 1 120628 AS | - WM_GetScrollPosV()
- WM_SetScrollPosH()
- WM_SetScrollPosV()
Preface, About and Chapter 1 ‘Intro’ reworked.
Chapter 12 'Colors’
JE |- New color conversion routine added to support
5.16 0 120605 AS 1bpp at different color depths.
Chapter 13 '‘Memory Devices’
- New function GUI_MEMDEV_RotateHQT() added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Software | Rev.| Date By Description

Chapter 15 ‘The Window Manager (WM)’

- Support for ToolTips added.

- New functions added:

WM_TOOLTIP_AddTool()
WM_TOOLTIP_Create()
WM_TOOLTIP_Delete()
WM_TOOLTIP_SetDefaultFont()
WM_TOOLTIP_SetDefaultColor()
WM_TOOLTIP_SetDefaultPeriod()

Chapter 16 ‘Window Objects (Widgets)’

- New functions added:
BUTTON_SetReactOnTouch()
DROPDOWN_SetUpMode()
ICONVIEW_EnableStreamAuto()

- Changed function SPINBOX_SetButtonSize():
New option SPINBOX_EDGE_CENTER.

Chapter 17 'Dialogs’

- CHOOSECOLOR dialog and functions added:
CHOOSECOLOR_Create()
CHOOSECOLOR_GetSel()
CHOOSECOLOR_SetSel()
CHOOSECOLOR_SetDefaultColor()
CHOOSECOLOR_SetDefaultSpace()
CHOOSECOLOR_SetDefaultBorder()
CHOOSECOLOR_SetDefaultButtonSize()

- CHOOSEFILE dialog and functions added:
CHOOSEFILE_Create()
CHOOSEFILE_EnableToolTips()
CHOOSEFILE_SetButtonText()
CHOOSEFILE_SetDefaultButtonText()
CHOOSEFILE_SetToolTips()

JE CHOOSEFILE_SetTopMode()

5.16 0 120605 AS Chapter 23 'Pointer Input Devices’

- New function GUI_PID_IsPressed() added.

Chapter 24 'Keyboard Input’

- New function GUI_GetKeyState() added.

Chapter 28 ‘Foreign Language Support’

- New function GUI_LANG_GetNumItems() added.

New function GUI_LANG_GetText() added.

New function GUI_LANG_GetTextEx() added.

New function GUI_LANG_LoadCSV() added.

New function GUI_LANG_LoadCSVEXx() added.

New function GUI_LANG_LoadText() added.

New function GUI_LANG_LoadTextEx() added.

New function GUI_LANG_SetLang() added.

New function GUI_LANG_SetMaxNumLang() added.

- New function GUI_LANG_SetSep() added.

Chapter 29 'Display drivers’

- New display controller supported by
GUIDRV_SPage:

GUIDRV_SPage_Set1510:
Epson S1D15605, S1D15606, S1D15607,
S1D15608, S1D15705, S1D15710, S1D15714
Integrated Solutions Technology IST3020
New Japan Radio Company NJU6676
Novatek NT7502, NT7534, NT7538, NT75451
Samsung S6B0719, S6B0713, S6B0724, S6B1713
Sino Wealth SH1101A
Sitronix ST7522, ST7565, ST7567
Solomon SSD1303, SSD1805, SSD1815, SSD1821
Sunplus SPLC501C
UltraChip UC1608, UC1701, UC1601, UC1606
GUIDRV_SPage_Set1512:
Epson S1D15E05, S1D15E06, S1D15719, S1D15721
GUIDRV_SPage_SetST7591: Sitronix ST7591

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER

Software

Rev.

Date

By

Description

5.16

120605

JE
AS

Chapter 29 'Display drivers’

- New display controllers supported by GUIDRV_FlexColor:
66708: Ilitek ILI9335
66709: Ilitek ILI9338, ILI9340, ILI9341, ILI9342
66719: Samsung S6E63D6

- New function LCD_SetMaxNumcColors() added.

- Support for 1bpp added to GUIDRV_SPage.

- Function GUIDRV_SPage_SetS1D15() obsolete
Replaced by GUIDRV_SPage_Set1512

- New variants GUIDRV_Lin added:
GUIDRV_LIN_OX_8
GUIDRV_LIN_OXY_8

- New driver GUIDRV_S1D13781 added.

New chapter ‘Touch drivers’ (30) added.

- New driver GUITDRV_ADS7846 added.

5.14

120202

AS

Chapter 29 'Display drivers’
- New display controller supported by
GUIDRV_FlexColor:
66709: Ilitek ILI9340
- New display controllers supported by
GUIDRV_SPage:
Epson S1D15605, S1D15606, S1D15607,
S1D15608, S1D15705, S1D15710, S1D15714
Integrated Solutions Technology IST3020
New Japan Radio Company NJU6676
Novatek NT7502, NT7534, NT7538, NT75451
Samsung S6B0719, S6B0713, S6B0724, S6B1713
Sino Wealth SH1101A
Sitronix ST7522, ST7565, ST7567
Solomon SSD1805, SSD1303, SSD1815
UltraChip UC1608, UC1701, UC1601, UC1606
Sunplus SPLC501C
- New function GUIDRV_SPage_Set1510 added.
- New function GUIDRV_SPage_Set1512 added.

5.14

120201

AS

Chapter 8 ‘Displaying bitmaps files’
- Improved description of how the ‘GetData’-function
is used by emWin.
Chapter 29 'Display drivers’
- GUIDRV_SPage now supports 1bpp.
- New display controllers supported by
GUIDRV_SPage:
Epson S1D15E05, S1D15E06, S1D15719,
S1D15721
Sitronix ST7591
- New function GUIDRV_SPage_SetST7591 added.

5.14

120124

AS

Chapter 16 'Window Objects (Widgets)’
- New function EDIT_GetTextColor().
- New function SPINBOX_GetEditHandle().

5.14

120111

JE
AS

Chapter 3 ‘Simulation’

- New function SIM_GUI_Enable() added.

Chapter 7 ‘2D Graphic Library’

- New functions added:
GUI_DrawStreamedBitmapAuto()
GUI_DrawStreamedBitmapExAuto()
GUI_DrawStreamedBitmap24Ex()
GUI_DrawStreamedBitmap555Ex()
GUI_DrawStreamedBitmap565Ex()
GUI_DrawStreamedBitmapM555Ex()
GUI_DrawStreamedBitmapM565Ex()

Chapter 11 ‘Font Converter’

- Functions to size, shift and move characters added.

Chapter 12 ‘Colors’

- Sub chapter ‘Gamma correction’ added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Software | Rev.| Date By

Description

JE

120111 AS

Chapter 15 ‘The Window Manager (WM)’
- Change of the WM_MOVE message to transmit
position changes.
- New functions added:
WM_MOTION_Enable()
WM_MOTION_SetMovement()
WM_MOTION_SetDeceleration()
WM_MOTION_SetDefaultPeriod()
WM_MOTION_SetMotion()
WM_MOTION_SetMoveable()
WM_MOTION_SetSpeed()
Chapter 16 'Window Objects (Widgets)’
- New widget "SPINBOX" added.
- New widget "IMAGE" added.
- Return values added to the following functions:
BUTTON_SetText()
TEXT_SetText()
- New function DROPDOWN_GetItemText() added.
- New function EDIT_GetBkColor() added.
- New function EDIT_SetBkColor() added.
- New function EDIT_SetFocussable() added.
- New function EDIT_GetFont() added.
- New function GUI_EditFloat() added.
- Listing of widget IDs added.
Chapter 25 'Sprites’
- New function GUI_SPRITE_CreateAnim() added.
- New function GUI_SPRITE_CreateExAnim() added.
Chapter 26 ‘Cursors’
- New function GUI_CURSOR_SelectAnim() added.
Chapter 29 'Display drivers’
- New display controllers supported by GUIDRV_FlexColor:
66708: FocalTech FT1509
66709: Renesas R61526
66709: Ilitek ILI9342
66712: Himax HX8347
66712: Himax HX8352
- New display controllers supported by
GUIDRV_CompactColor_16:
66708: FocalTech FT1509
66709: Renesas R61526
66709: Ilitek ILI9342

111021 AS

Font Converter documentation added as chapter 11.

- New function GUIDRV_FlexColor_SetFunc66712() added.

- New function GUIDRV_FlexColor_SetInterface66712B16()
added.

- New display controller supported by GUIDRV_07X1:
741: Novatek NT7508

- New display controller supported by GUIDRV_Pagelbpp:
1510: Solomon SSD1821

- GUIDRV_Lin ‘Using the Lin driver in systems with cache memory’
changed.

AS

110621 IE

Chapter 16 ‘Window Objects (Widgets)’

- New function LISTVIEW_SetHeaderHeight() added.

New function ICONVIEW_AddStreamedBitmapltem() added.
New function ICONVIEW_GetltemText() added.

New function ICONVIEW_GetltemUserData() added.

New function ICONVIEW_GetNumItems() added.

New function ICONVIEW_InsertBitmaplItem() added.

New function ICONVIEW_InsertStreamedBitmapltem() added.
New function ICONVIEW_SetBitmaplItem() added.

New function ICONVIEW_SetFrame() added.

New function ICONVIEW_SetItemText() added.

New function ICONVIEW_SetItemUserData() added.

New function ICONVIEW_SetSpace() added.

New function ICONVIEW_SetStreamedBitmapltem() added.
New function ICONVIEW_SetTextAlign() added.

New function TEXT_GetNumLines() added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER

Software

Rev.

Date

By

Description

5.12

110621

AS
JE

Chapter 29 'Display Drivers’
- New display drivers added:
GUIDRV_Dist
GUIDRV_SPage
- New display controller supported by
GUIDRV_CompactColor_16:
66709: Solomon SSD1961
- LCD_SetDevFunc(): LCD_DEVFUNC_COPYRECT added.
- GUIDRV_Lin: Support for
LCD_DEVFUNC_COPYRECT added.

5.10

110531

AS

Chapter 29 'Display Drivers
- New display driver: GUIDRV_FlexColor

5.10

110329

AS

Chapter 13 '‘Memory Devices’
- Default for GUI_USE_MEMDEV_1BPP_FOR_SCREEN set to 1.
- New function GUI_MEMDEV_MarkDirty() added.
New Chapter 18 ‘GUIBuilder’ added.
Chapter 29 'Display Drivers’
- New display controllers supported by
GUIDRV_CompactColor_16:
66708: Ilitek ILI9328
66709: Sitronix ST7715
66772: llitek ILI9221
- New function GUIDRV_BitPlains_Config() added.

5.08

110112

AS

Chapter 9 2D Graphic Library’

- New function GUI_CreateBitmapFromStreamRLEAlpha() added.

- New function GUI_CreateBitmapFromStreamRLE32() added.

- Function GUI_CreateBitmapFromStream() supports additional
formats.

Chapter 12 '‘Bitmap Converter’

- New format 'Alpha channel, compressed' added.

- New format 'True color with alpha channel, compressed' added.

- New function 'Image/Convert Into/Best Palette + transparency'
added.

Chapter 14 'Memory Devices’

- New functions GUI_MEMDEV_SetAnimationCallback() added.

- New functions GUI_MEMDEV_ShiftInWindow() added.

- New functions GUI_MEMDEV_ShiftOutWindow() added.

Chapter 15 ‘Execution Model’

- New function GUI_SetSignalEventFunc() added.

- New function GUI_SetWaitEventFunc() added.

- New function GUI_SetWaitEventTimedFunc() added.

- Definitions of configuration macros changed.

Chapter 16 'Window Manager’

- New function WM_MULTIBUF_Enable() added.

- New messages WM_PRE_PAINT and WM_POST_PAINT added.

Chapter 17 'Widgets’

- LISTVIEW_SetUserData() renamed in
LISTVIEW_SetUserDataRow().

- LISTVIEW_GetUserData() renamed in
LISTVIEW_GetUserDataRow().

- New function <WIDGET>_SetUserData() added for all widgets.

- New function <WIDGET>_GetUserData() added for all widgets.

- New function <WIDGET>_CreateUser() added for all widgets.

- New function BUTTON_GetTextAlign() added.

- New function BUTTON_SetReactOnLevel() added.

- New function ICONVIEW_Createlndirect() added.

- New function ICONVIEW_Deleteltem() added.

- New function LISTWHEEL_Createlndirect() added.

- New function SCROLLBAR_SetThumbSizeMin() added.

- New function SCROLLBAR_GetThumbSizeMin() added.

- New function TREEVIEW_ITEM_CollapseAll() added.

- New function TREEVIEW_ITEM_ExpandAll() added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Software

Rev.

Date

By

Description

5.08

110112

AS
JE

Chapter 19 ‘Skinning’

- New configuration macro WIDGET_USE_FLEX_SKIN added.

- New message WIDGET_ITEM_GET_RADIUS added to
frame window skin.

Chapter 20 'Multiple buffering’.

- New function GUI_MULTIBUF_Begin() added.

- New function GUI_MULTIBUF_End() added.

- New function GUI_MULTIBUF_Config() added.

Chapter 28 ‘Foreign Language Support’

- New function GUI_UC_EnableBIDI() added.

5.06

100907

JE

Chapter 9 ‘Fonts’:

- New function GUI_SetDefaultFont() added.

Chapter 12 'Memory Devices':

- New function GUI_MEMDEV_FadeDevices() added.

Chapter 15 'Widgets’:

- New functions added:
BUTTON_SetReactOnLevel()
GRAPH_DATA_XY_SetOwnerDraw()
LISTVIEW_SetItemBitmap()
LISTWHEEL_SetPos()
SCROLLBAR_GetNumItems()
SCROLLBAR_GetPageSize()

New chapter 17 ’‘Skinning”:

- Skinning for the most common widgets added.

Chapter 26 'Display Driver’:

- New function GUI_SetOrientation() added.

- New OXY-orientations for 16, 24 and 32 bpp added to
GUIDRV_Lin.

5.04

100526

AS

Chapter 'Widgets’:
- New function GRAPH_DATA_XY_SetOwnerDraw() added.
- New function LISTVIEW_SetItemBitmap() added.
Chapter ‘Fonts’:
- New function GUI_SetDefaultFont() added.
Chapter '2-D Graphic Library’:
- New function GUI_GetPixellndex() added.
Chapter ‘Execution Model’:
GUITASK_SetMaxTask()
- GUIDRV_CompactColor_16:
Support for the following display controllers added:
Himax HX8353
LGDP4551
Orisetech SPFD54124C
Renesas R61505
Sitronix ST7735, ST7787
Solomon SSD1284, SSD2119
- Added driver macros to each driver which uses them.

5.04

100505

AS

New Drivers ‘GUIDRV_S1D15G00’ and ‘GUIDRV_SLin" added.
Various corrections

Chapter '2-D Graphic Library’:

- New function GUI_DrawGradientRoundedV()

- New function GUI_DrawGradientRoundedH()

- New function GUI_DrawRoundedFrame()
Chapter '‘Memory Devices’:

- New function GUI_MEMDEV_MovelnWindow()
- New function GUI_MEMDEV_MoveOutWindow()
- New function GUI_MEMDEV_FadeInWindow()

- New function GUI_MEMDEV_FadeOutWindow()
Chapter 'Simulation’

- New function SIM_GUI_SetCallback()

- New function SIM_GUI_ShowDevice()

5.04

100104

JE

Chapter 5 ‘Displaying Text’:
- New function GUI_DispStringInRectWrap() added.
- New function GUI_WrapGetNumLines() added.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

10

CHAPTER

Software

Rev.

Date

By

Description

5.04

100104

JE

Chapter 7 '2-D Graphic Library’:

- New function GUI_EnableAlpha() added.

- New function GUI_RestoreUserAlpha() added.

- New function GUI_SetUserAlpha() added.

- New function GUI_CreateBitmapFromStream() added.

- New function GUI_DrawStreamedBitmapEx() added.

- New function GUI_GetStreamedBitmapInfo() added.

- New function GUI_GetStreamedBitmapInfoEx() added.

- New function GUI_SetStreamedBitmapHook() added.

- New function GUI_CreateBitmapFromStreamIDX() added.

- New function GUI_CreateBitmapFromStreamRLE4() added.

- New function GUI_CreateBitmapFromStreamRLE8() added.

- New function GUI_CreateBitmapFromStream565() added.

- New function GUI_CreateBitmapFromStreamM565() added.

- New function GUI_CreateBitmapFromStream555() added.

- New function GUI_CreateBitmapFromStreamM555() added.

- New function GUI_CreateBitmapFromStreamRLE16() added.

- New function GUI_CreateBitmapFromStreamRLEM16() added.

- New function GUI_CreateBitmapFromStream?24() added.

- New function GUI_CreateBitmapFromStreamAlpha() added.

Chapter 9 ‘Fonts’:

- New font F20F_ASCII (framed) added.

- New fonts F6x8_ASCII and F6x8_1 added.

- New fonts F8x8_ASCII and F8x8_1 added.

- New fonts F8x16_ASCII and F8x16_1 added.

- Support for new font formats extended AA2 and extended AA4
added.

Chapter 12 ‘'Memory Devices’:

- Considerations for multiple layers/displays added.

Chapter 14 'Window Manager’:

- WM_DeleteWindow() now also deletes any associated timer.

Chapter 15 ‘Widgets”:

- New function WINDOW_SetBkColor() added.

Chapter 19 'Pointer Input Devices’:

- PID buffer added.

- Explanation of touch calibration revised.

Chapter 20 'Keyboard’:

- Keyboard buffer added.

Chapter 25 'Display Driver’:

- New driver GUIDRV_BitPlains added.

- New driver GUIDRV_SLin added.

- New driver GUIDRV_SSD1926 added.

Driver GUIDRV_1611 added.

Driver GUIDRV_6331 added.

Driver GUIDRV_7529 added.

Driver GUIDRV_Pagelbpp added.

GUIDRV_CompactColor_16:

Support for the following display controllers added:

Himax HX8340, HX8352

Solomon SSD1298, SSD1355, SSD1963

Epson S1D19122

Orisetech SPFD5414D

Ilitek ILI9320, ILI9326

Chapter 26 '"VNC Server’:

- New function GUI_VNC_EnableKeyboardInput()

- New function GUI_VNC_GetNumConnections()

- New function GUI_VNC_SetPassword()

- New function GUI_VNC_SetProgName()

- New function GUI_VNC_SetSize()

- New function GUI_VNC_RingBell()

5.00

090409

JE

Chapter 3 ‘Simulator’:
- Completely revised.
Chapter 8 'Displaying bitmap files’
- PNG support added.

5.00

090326

JE

Software has been completely revised.
For the version history of earlier versions, refer to older docu-
ments.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

11

About this document

Assumptions
This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)
The C programming language
The target processor

e DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Text that you enter at the command-prompt or that appears on the display (that is
Keyword .)
system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Example code in program examples.

Sample comment Comments in program examples.

New Example Example code that has been added to an existing program example.
Reference Reference to chapters, sections, tables and figures or other documents.
GUIElement Buttons, dialog boxes, menu names, menu commands.

Warning Important cautions or reminders.

Emphasis Very important sections.

Table 0.1: Typographic conventions

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

12

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F FAT12, FAT16 and FAT32 support. Vari-
ous Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

13

Table of Contents

A Vo oo [8 T o] 0 (o I =T 0 1A T R 29
1.1 Purpose of this doCUmMENt ... e 29
1.2 =T LU 1 =T 0 1= 1 29
1.2.1 Target system (NardWare) c.oiviiii it i e e aeaas 29
1.2.2 Development environment (COMPIler)ccviiiiiiiiii i e 30
1.3 L= o T 30
1.4 EXamples and demOS .oiiiiiiiiii i i s 31
1.5 1) =1 =l] PP 31
1.6 Screen and CoordiNates ..vvvi i e 32
1.7 How to connect the display to the micro controllerc.coviiiiiiiiiiiiiiiic s 32
1.8 D)1= = T 0V 0 <P 33

A C 1= i1 o [0 [£= 1 (=0 HR PP PPPPPPPPPP 35
2.1 Recommended project StrUCtUIrEviiiiiii i e 36
2.1.1 1Y o o [=Tt w0 o =P 36
2.1.2 | Lol 18T <o | =T o o L= 36
2.2 Adding emWin to the target programcciiiiiiiiiiiii 37
2.3 Creating @ library ..o i e 37
2.3.1 Adapting the library batch files to a different systemccoooiiiiiiiiiiinnn, 38
2.4 C files to include in the Project ..cvi i e 39
2.5 (o] o) o 18T T g Yo I=T 0 1144 T o TP PP 40
2.6 INitialiZing @MV IN oo e s 40
2.7 Using emWin with target hardware ... 41
2.8 The "Hello world" example program ..o i eaeas 42

G TS 14101 = U1 T P 43
3.1 Using the simulation ... e 44
3.1.1 Using the simulation with the trial version of emWin..........ccooiiiiiiiiiiciie e, 44
3.1.1.1 (D[=T ot o] V=3 o U ot B | o = PP 44
3.1.1.2 ViSUGl CA 4 WOIKS DA .ttt ittt e e e e aeeaaneeas 44
3.1.1.3 Compiling the demo Program ..o e e e e 45
3.1.1.4 Compiling the eXampPles ..o 45
3.1.2 Using the simulation with the emWin source........ccoooiiiiiiiiiiiic i 46
3.1.2.1 (D[/=Tot o] VA3 o U ot B | ol = PP 46
3.1.2.2 ViSUAl CH 4 WOIKSPACE. ittt i e et eees 46
3.1.2.3 Compiling the application.. ..o 47
3.1.3 Advanced features of the simulation.........ccooiiiiiiii e 47
3.1.3.1 e IO =TI o B =] o L= PP 47
3.1.3.2 RV Y= =T o 1T J 47
3.1.3.3 Copy 0 Clipboard ..o 47
3.2 DeVvice SIMUIATION L.uvi s e 48
3.2.1 Generated frame VIEW ..uuiiii i e e e e rr e e e e enes 49
3.2.2 CUSEOM DItMaD VIBW et e e e e 49
3.2.3 LA AT T Lo AR AT P 50
3.3 Device simulation APL.....ciiiiiii i s 51
3.4 Hardkey Simulation ... e 56
3.4.1 Hardkey simulation APl ... e e 57
3.5 Integrating the emWin simulation into an existing simulation......................... 60
3.5.1 (D[/=Tot o] VA3 o U ot B | ol = PP 60
3.5.2 Using the simulation library ..o e 60

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

14

3.5.2.1 [\ oTa 1) 3 V4T aTe B LVAT o]\ - o PP 60
3.5.2.2 Example application.....cooiiiiii e 61
3.5.3 Integration into the embOS Simulation........cooiiiiiii s 62
3.5.3.1 R AT =T 62
3.5.3.2 Target program (IMaIN) ..o s s raa s ar s rar e rnaaasrnes 64
3.5.4 GUI SimMUIAtioN AP ..t e e e 65
R 1S 69
4.1 USING the VIEWET .. e et et e e aenes 70
4.1.1 Using the simulation and the viewer ... 70
4.1.2 Using the viewer with virtual Pages ... e 71
4.1.3 F A=)V £ o] I o o T PP 71
4.1.4 Open further windows of the display output ..o 71
4.1.5 74 o T o 0¥ 71
4.1.6 Copy the output to the clipboardcovveiiiii 72
4.1.7 Using the viewer with multiple displaysccvviiiiiiiii e 73
4.1.8 Using the viewer with multiple layerscoviii i 73
DISPIAYING TEXE ettt e e e e e e e e et r e aann 75
5.1 [T2 =] Lol o 161 1 = 76
5.2 TEXE APt e 77
5.3 Routings to display teXt. . cuviiiiiiii i e 78
5.4 Selecting text drawing MOAES ...iviiiiiiii i e e 85
5.5 Selecting text alignment. 87
5.6 Setting the current text PoSItioN ..o 89
5.7 Retrieving the current text posSition......ccciiiiiiii i 90
5.8 Routines to clear a window or parts of it....cccoiiiiiiiiiiii i 90
DISPIAYING VAIUES e e as 91
6.1 RV = 11 LY = P 92
6.2 Displaying decimal ValUgs. . ..c.ciiiiiiiiiiiii i e 93
6.3 Displaying floating point valugsc.ciiiiiiiii i i 97
6.4 Displaying binary Values......ciiiiiiiiii i e 100
6.5 Displaying hexadecimal valuescciiiiiiiiiiiic i i 101
6.6 RV 42T =1 o a T) A =Y 0 0 107 1 o PP 102
2-D GraphiC LIDIAry e ittt e e e e e e e e e e eeeeeeeeee 103
7.1 GraPNiC AP ettt e 104
7.2 [o= 1T o N 0 0 Lo o L= P 107
7.3 Query current client rectangle.. ..o 108
7.4 L] T 7.4 = 109
7.5 BasiC drawing rOULINES . i e e 110
7.6 Alpha BlEeNdiNg .o e 116
7.7 DraWing DM AP S . e 119
7.8 Drawing streamed bitmapscoooiiiiiii e 122
7.9 [o= 1T T N 1T o == P 129
7.10 DraWing POIYGONS . .t e e 133
7.11 [= 1T T I ol 1 o[P 138
7.12 DraWING Il PSS . ittt i e e 139
7.13 (DY r=)Y o o =Y ool 140
7.14 DraWiNg Graphs oo e e 142
7.15 Drawing Pie Charts .o e e 143
7.16 Saving and restoring the GUI-contextcciiiiiiiiiiiiiici e 144
7.17 L1 7Y 0 TR 145
Displaying bBitmap filE€Sooeeeiee e 147
8.1 BMP il SUP PO .ttt e 148
8.1.1 SUPPOrEd fOrMALS vttt e 148
8.1.2 BM P filE AP ... ittt 148

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

8.2) O 1 3=] o] o o] o v PP 155
8.2.1 Supported JPEG compression Methods ..ooovviiiiiiiiiiiiii i 155
8.2.2 Converting @ JPEG file £0 € SOUICE. .. uiuiieiiiii it et ae s 155
8.2.3 Displaying JPEG fil@S ..cuuiuuiiiii it e e 155
8.2.4 1 =T 0 g0 Y 7= T 156
8.2.5 Progressive JPEG fil@S ..o e 156
8.2.6 JPEG file AP L 156
8.3 ()] (=TT U]] oo] o CE PP 161
8.3.1 Converting @ GIF file £0 C SOUMCE .ouviuiiniiiiie it eaeeas 161
8.3.2 DiSplaying GIF fil@S ...ueurieii i et 161
8.3.3 1 =T 0 g0 Y 7= [161
8.3.4 (O] L= = PP 162
8.4 PNG fil@ SUPPOIT .t e et e e e e eas 170
8.4.1 Converting @ PNG file t0 € SOUICE ...uiiiiiiiii i e eenaaaens 170
8.4.2 Displaying PNG files ..uouuieiiii it et 170
8.4.3 N =T 0 a0 Y F7= T 170
8.4.4 PING file AP ..t e e 170
8.5 Getting data with the ...EX() functionsccoiiiiii i 174
O Y1 (g o o B O 0] 17T o (= PSR 177
9.1 WAt i dOBS it e e 178
9.2 Loading @ Ditmap ..o 179
9.2.1 Supported input file formats.......ooiiii i e 179
9.2.2 Loading from @ file ... 179
9.2.3 Using the clipboard ... 179
9.3 (0fo] [o] g ole] 01 VZ=T =1 o] o [PP 180
9.4 Using @ custom palette 181
9.4.1 Saving a palette file ..o e 181
9.4.2 Palette file format.....cviiii e 181
9.4.3 Palette files for fixed palette Modes......ccviiiiiiiiiii e 181
9.4.4 Converting @ bitmMap ..o s 182
9.5 Generating C files from bitmaps. ..o 182
9.5.1 Supported bitmap formatsocviiiii 182
9.5.2 Palette informationcooiiiii 182
9.5.3 LI =101 0= =] 1 [V 183
9.5.4 AlPha blENAING ... 183
9.5.5 Selecting the best format.o 184
9.5.6 SaVvINg the file ... s 185
9.6 Generating C stream files ... s 186
9.7 Compressed DitmMapS .. ot e e 187
9.8 Creating animated sprites / CUISOIS . ..uiiiiiiii i i i aae s 187
9.9 (@fo]n gl aaT=TaTe I 11 TSI UT=T= [[PP 190
9.9.1 Format for COmMMAaNAS .ot e e e areaaeaeas 190
9.9.2 Valid command lin€ OptioNS...c.iiiiiii i 190
9.10 Example of a converted bitmapccovviiiii i 192
O I o] o TSP 195
10.1 INErOdUCH ON e s 196
10.2 L0 1 oY 01T 196
10.3 (o] oYl o] o 0 0= 1 = PP 198
10.3.1 O 1T o] o o 0=} S PP 198
10.3.2 System Independent Font (SIF) format.......ccoviiiiiiiiiiiiiiii e 198
10.3.3 External Bitmap Font (XBF) formatc.ccviiiiiiiiiii i 199
10.3.4 iType foNt €NgiNe SUPPOI «iviiiiii i are e eanes 200
10.3.5 TrueType Font (TTF) format...ccooiiiii i e e e 201
10.4 Converting @ TTF file t0 C SOUMCE ...cuuiieiiiiie i eees 202
10.5 Declaring CUStOM fONES ... e 202
10.6 Selecting @ fONT ... e 202
10.7 o L o = 203
10.8 C file related font fUNCHIONS . .ciiiii e 204

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

16

10.9 'SIF' file related font fUNCLIONS.....ci i e 205
10.10 "TTF' file related font fUNCLIONScviiii i e 207
10.11 "XBF’ file related font fuNCHIONS....ciii i 210
10.12 Common font-related fuNCtions ... 212
10.13 Character SIS vttt i e 216
O A A 11 1 S 216
10.13.2 IS0 8859-1 Western Latin character set.......c.ccoiiiiiiiiiiiii i 216
10.13.3 L] oY Telo T L= T PP 218
10.14 (o] | B 0] Y= = o PP 219
10.14.1 Adding fONTS couuieiii ittt 219
10.15 StaNdard fONES ..o e 220
10.15.1 Font identifier naming CONVENTiON i e 220
10.15.2 Font file Nnaming CONVENTIONciniiii e e e 221
10.15.3 Measurement, ROM-size and character set of fonts........coovviiviiiiiiiiiinnnen. 221
10.15.4 Proportional fONES. ...t 222
O R i A @ 1V PP 222
10.15.4.2 Measurement, ROM size and used fileS......c.cciiiiiiiiiiiiiii e 222
10.15.4.3 CharaClers oot i i e d e e e e e 224
10.15.5 Proportional fonts, framedc.cciiiiiiiiii e 230
1O R T A @ 1V PP 230
10.15.5.2 Measurement, ROM size and Used fil€S......cciiiiiiiiiiiii i i i as 230
10.15.5.3 CharaClers oot i e e e e 230
10.15.6 MONOSPACEA fONES 1.iurineii ittt ettt e e e e aas 231
O R S T A @ 17 PP 231
10.15.6.2 Measurement, ROM size and used fileS........ccoviiiiiiiiiiiiiii e 232
10.15.6.3 CharaClers oot i et e e 233
10.15.7 Digit fonts (Proportional).......cceieiiiiiiii e 238
O R T R @ 17 PP 238
10.15.7.2 Measurement, ROM size and used files......c.ccoviiiiiiiiiiiiiic e 238
10.15.7.3 CRaraClers oot e e e 238
10.15.8 Digit fONtS (MONOSPACEA) ..vuuiieiiiiiii e ae e aaens 240
O R A A @ 1 o PP 240
10.15.8.2 Measurement, ROM size and used fileS......c.ccoviiiiiiiiiiiiiii e 240
10.15.8.3 CharaClers oot e e 240
0 T o T | A @] 1Y T T PP 243
11.1 [T 1 T =] 0.0 =]) o= 244
11.2 USIiNG the FONt CONVEITEr et eeeaens 245
11.2.1 Creating an emWin font file from a Windows fontcooiiiiiiiiens 245
11.2.2 Font generation options dialogccviiniiiii i 247
11.2.2.1 Type of foNt £0 generate. . .o iiiiii i e e 247
1 0] o Vol T I o o PP 248
11.2.2.3 ANtIali@sing c.oeieii i 248
11.2.3 (o] ool 711 [T PP 248
11.2.3.1 Font, FONt Style, and Sizecvviiiiiiiiii s e 249
1 A 0 A Y o o1 P 249
11.2.3.3 UNIE Of SIzZ 1ottt i e e e 249
11.2.4 WY ol g =T o = [ol PP 249
11.2.4.1 Selecting the current character ..o e 249
11.2.4.2 Toggling character Statuscoiiiiinii e e 249
11.2.4.3 SeleCting PiXeIS ..o 250
11.2.4.4 Modifying character bits ..o 250
1 S © o 1= o= Y (o] 1= 250
11.2.4.6 Modifying the VIeWing MoOdeoouiiiiiiiii e 251
11.3 L@ 5] [0 1= 251
11.3.1 SavINg the font ... e 252
11.3.1.1 Creating @ C file ..o e e ea 252
11.3.1.2 Creating a System Independent FONt (SIF) ...ccoviviiiiiiiiiiiiiii e 253
11.3.1.3 Creating an External Binary FONt (XBF) ...ccviiiiiiiiiiii i 253
11.3.2 Modifying an existing C font file.... ..o 254
11.3.3 Merging fonts with existing C font files ... 255

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

11.4 PatEErN filES oot e 256
11.4.1 Creating pattern files using Notepad........c.coviiiiiiiiii e 256
11.4.2 Creating pattern files using the Font Converter.........cooviiiiiiiiiiiiiii e 256
11.4.3 Enabling characters using a pattern filecoooiiiiiiii 256
11.5 Supported oULPUL MOAES ... e 256
11.5.1 StaNAArd MOAE .ot e e 257
11.5.2 ANtialiased MOAES. . ..ii i e 257
11.6 Command liNE OPLIONS ... i 258
11.6.1 Table Of COMMANAS .. . it e e e ae s 258
11.6.2 EXECULION EXaMIPIES .. e 259
11.7 FONEt EXamMIPIES .o 260
11.7.1 Resulting C code, standard mode........ooviiiiiiiiiii 260
11.8 Resulting C code, 2 bpp antialiased mode ... 261
11.9 Resulting C code, 4 bpp antialiased modecciiiiiiiiiiiiii e 262
11.10 Resulting C code, extended Modecooviiiiiiii i 263
152 O] o] £ 265
12.1 Predefined COlOrS .o e e 266
12.2 The color bar test roUtINgocviii i e e 266
12.3 Fixed palette Modes....oooiiii i e 267
12.4 Detailed fixed palette mode descriptioncciviiiiiiiiiii i 268
12.5 Application defined COlor CONVEISION ...iiviiiiii i e eas 279
12.6 CUSEOM Palette MOAE .. vttt e e e e aneanans 280
12.7 €F=] 0] g 0 1= T ole] o o/ =T ot f o] o S 280
12.8 1070 Fo] AN =3 AT PR 281
12.8.1 (ST=T] [l olo] (o] ol 1 U] oot (o] 1= P 282
12.8.2 INdeX & COlOr CONVEISION uuitiieiiti it i e e e e s e e e aneaanans 284
13 MEIMOIY DEBVICES ...coiiiiiieiei ittt e e e e e e e e e e st e e e e e e e et e e e e aeeeeeeas 287
13.1 Using Memory Devices: an illustrationc.ccoooiiiiiiiiiiiiii e 288
13.2 Supported color depth (BPP) cvvviiiiii 288
13.3 Memory Devices and the Window Manager.......ccoiviiiiiiiiii i e 289
13.4 Memory Devices and multiple layers. ... 289
13.5 1T g Yo VA o =To LU] (=T 0 g 1= o LT 289
13.6 o< o (o o = [L= P 290
13.7 2= 1= ol 8 Vo o o = 291
13.8 In order to be able to use MeMOry DEVICES....cciiiiiiiiii i e 291
13.9 Multi layer / multi display configurationsccoiiiiiiiiiiiin 291
13.10 Configuration OPLiONS .uiiiii i e 291
13.10.1 GUI_USE_MEMDEV_1BPP_FOR_SCREENciiiiiiiiiie i vne e ennennans 291
13.11 MEMOIY dEVICE APl ..o i e e e e 292
13.12 2= 1= (ol {8 Vo o o = 293
13.13 Banding Memory DeVICE ... e 307
13.14 AULO device ObJeCh ... e e 308
13.15 Measurement device 0bJeC ..o 311
13.16 ANiMation fUNCHIONS ... e e 313
13.17 Animation functions (Window Manager required)........ccviiviiiiiiiiniiieiinnnnnnnens 314
14 Execution Model: Single Task / MUIItasKcoiiiiiiiiiiii e 319
14.1 Supported execution MOdelsc.oiiiiiiiii 320
14.2 Single task system (SUPErIoOp) . c.iiiiiiii i 320
14.2.1 D T<1=T o] o] w0} o [P 320
14.2.2 Superloop example (without emWIin) ... 320
14.2.3 0 AV = 1) = [1= 320
14.2.4 DiSAAVANEAGES .ttt i i e 320
14.2.5 L0 1Y 1T =T 0 0 114 T o S PP 320
14.2.6 Superloop example (With @mWIiN) ..o 321
14.3 Multitask system: one task calling emWin ..o 321
14.3.1 DT <1=T o] o] w0} o [P 321
14.3.2 0 AV = 1) = [=P 321

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

18

14.3.3 D 1SE= Lo A V2= g =T =T PP 321
14.3.4 L =3 g o T =Y 0 0 1A 321
14.4 Multitask system: multiple tasks calling emWin ..o 322
14.4.1)72 of 5] o [0 322
14.4.2 AdVaANEAGES .o e 322
14.4.3 D 1=T=To A V2= g Lt= T =T 322
14.4.4 L =3 1 o T =T 0 0 1A 322
14.4.5 RECOMMIENAATIONS .ttt 322
14.4.6 E XA DIE e s 322
14.5 Configuration functions for multitasking support..........cocoiiiiiiiiiiiiiieeens 323
14.6 Configuration macros for multitasking suUpportcccoviiiiiiiiiiiii s 325
14.7 Kernel interface APl e 326
14.7.1 €=] 0] 1T P 329
15 The WIindow Manager (WIM)oooo oot e aaeeeees 331
15.1 [DISYYo gl s} (o] o) H =] o o o I PP 332
15.2 Callback mechanism, invalidation, rendering and keyboard input.................. 333
15.2.1 Rendering without callbacks....... ..o 333
15.2.2 Rendering using Callbacksco.oiiieiii e 334
15.2.3 Overwriting callback fUNCLIONS. ..o e 334
15.2.4 Background window redrawing and callback ... 335
15.2.5 INValidatioN ce e s 336
15.2.6 Rendering of transparent WiNAOWSoociiiiiiiii e e 336
15.2.7 Automatic use of MeMOry deVICES ...iiiviiii i i 336
15.2.8 Automatic use of multiple frame buffersccooeiiiiiiiiii i 336
15.2.9 Automatic use of display driver cacheccooiiiiiiiiiiiii 337
15.2.10 Keyboard INPUL ... e 337
15.3 [\ oY o] o =] U 0] Yo ot o 337
15.3.1 Enabling motion support of the WM ... e 337
15.3.2 Basic motion support for @ WiNdOWcciiiiiiii i e aeas 337
15.3.2.1 Using creation flags ..o e 337
15.3.2.2 USING APT fUNCHION .t e e e e e 337
15.3.3 Advanced MOtiON SUP PO ... it e aneaneaaes 338
15.3.3.1 WM_MOTION message and WM_MOTION_INFO....c.ccoiiiiiiiiiiiiiiie e 338
15.4 fL oo I 1T 1= PP 339
15.4.1 HOW they WOIK. .o s e e eaeaas 339
15.4.2 (@ g=T= 1o o [N oo N I 1o = PP 339
15.4.2.1 Creating ToolTips for dialog itemsS.......cciiiiii e 339
15.4.2.2 Creating ToolTips for simple WiNdOWS.......cciiiiiiiiiiiiiii i i aeas 340
15.5 1 ST T = 340
15.5.1 MESSAGE SEIUCEUIE ..uiisii i e 340
15.5.2 LiSt Of MESSAGES . et 341
15.5.3 System-defined MESSAGESiuuie it 342
15.5.4 Pointer input device (PID) MeESSAgeS .. uuiiiiiiriiiiiitiiiiite i easeaeeiaanneneans 346
15.5.5 System-defined notification CoOdesciiiiiiiiiiii 350
15.5.6 Application-defined MESSAgES . .iviiiiiii i e 350
15.6 Configuration OPIONS. ..cui e 351
15.7 L Y = PP 352
15.7.1 Using the WM APT fuNCHIONSuiriiie e e e 354
15.8 WM APIL: BasiC fUNCEIONS ..ttt it e r e e e e se e e aneaaeas 355
15.9 WM API: MOUION SUPPOIE. ... e e e e e e anae e as 385
15.10 WM API: ToolTip related funCtionscvii i e 389
15.11 WM API: Memory device support (optional)ccooeviiiiiiiiiiiii e 392
15.12 WM API: Timer related funcCtionsccooiiiiiiii e 393
15.13 WM API: Widget related functions........ccoiiiiii e 395
15.14 EX APl ot s 399
16 WINAOW ODJECES (WIHGEIS)uuuiiiiiiiiiieeiiiiiiii e e e e 401
16.1 SOMIE DaASICS 1ttt e 402
16.1.1 Available WIidgets ...oviiiii i 402

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

16.1.2 Understanding the redrawing mechanism........c.coooiviiiiiiiiic e 403
16.1.3 HOW t0 USE WIdGetS ... e e 403
16.2 Configuration OPLiONS ..u e e 405
16.3 LA T o = o 5 L= PP 406
16.4 General Widget AP ... i e 406
16.4.1 WM routines used for Widgets.....cooviriiiiiiii e 406
16.4.2 COMMON FOULINES La ittt e e s e s s r s se s na e aneaans 406
16.4.3 User drawn WIidgets ..ouiiiiii i s 410
16.5 BUTTON: BUtton Widget......oiieiii i e e es 412
16.5.1 Configuration OPLiONS ... 412
16.5.2 Predefined IDS ..o e 413
16.5.3 NOLIfiCAtiON COARS . uiininii i e e e e e 413
16.5.4 Keyboard reactionccoiiiiiiii e 413
16.5.5 21O I 0 1A Y o PP 413
16.5.6 EXAMIPIES et e 426
16.6 CHECKBOX: CheckboX Widgetc.oiviiiiiiiiiiiii e e 428
16.6.1 Configuration OPLiONS ... e 428
16.6.2 Predefined IDS ..o e 429
16.6.3 NOLIfiCAtION COARS . uiiniii e eas 429
16.6.4 Keyboard reactioncovieiiiiii e 429
16.6.5 CHECKBOX AP .ttt ettt ettt et et et e et e ea e aaeeneean 429
16.6.6 XAl e e 443
16.7 DROPDOWN: Dropdown WIidgetccoiuiiiiiiiiiiiiiii i e e s e e 444
16.7.1 Configuration OPLiONS ... e 444
16.7.2 Predefined IDS ..o e 445
16.7.3 NOLIfiCAtION COARS . uiininii e e e eas 445
16.7.4 Keyboard reactionccoviiiiii e 445
16.7.5 DROPDOWN AP .ttt ettt et et e e et e e e e e e e e e e e e e re e aens 445
16.7.6 XA O e e 458
16.8) B o [Y T e = PP 459
16.8.1 Configuration OPLiONS ... e 459
16.8.2 Predefined IDS ..o 459
16.8.3 NOLIfiCAtION COARS . uiniii i e e eas 459
16.8.4 Keyboard reactionccoiiiiiiii e 460
16.8.5]I AN = PP 460
16.8.6 EXAMIPIES i e 477
16.9 FRAMEWIN: Frame window widget........cooiiiiiiiii e 478
16.9.1 Structure of the frame WINAOWccviiniiii e 479
16.9.2 Configuration OPLiONS ... e 480
16.9.3 Keyboard reactionccoiiiiiiii e 480
16.9.4 FRAMEWIN AP ...ttt e e e e e e e e enenes 480
16.9.5 XA O e e 501
16.10 GRAPH: Graph Widgetccoiiiiiiii i e 502
16.10.1 Structure of the graph widget.......coiiiii i s 502
16.10.2 Creating and deleting a graph widgetccoiiiiiiiiii 503
16.10.3 [= 1 o T 0 0 o == 503
16.10.4 Supported Lypes Of CUNVES ...viiiiii i et aeaeaaens 503
16.10.4.1 GRAPH _DAT A XY ettt ettt r e et s e a e e e e e e e e e e aneaeaaeanens 504
16.10.4.2 GRAPH DA A Y T ittt e e e e s e e e e e eean e e aeaneanans 504
16.10.5 Configuration OplioNS ...ce i e 504
16.10.5.1 Graph wWidgelviiiiiii i e 504
16.10.5.2 Scale ObJeCt. ..o 504
16.10.6 PredefiN@d IDS ...oviieiie ittt e e e 504
16.10.7 Keyboard reactionocoiiiiiii e 504
16.10.8 GRAPH AP L.ttt ettt e e 504
16.10.8.1 COMMON FOULINES ..ttt s ar s e s e re s s se s s seaass 506
16.10.8.2 GRAPH_DATA_YT related routines........cooiviiiiiiii i 514
16.10.8.3 GRAPH_DATA_XY related roUtiNES. ..o iiiiiiiiieee s s s e rnnnnnnnssaereees 518
16.10.8.4 Scale related roUtingsc.viiiiiiiiii e 522
16.10.9 EXAMIPIES ot 527
16.11 HEADER: Header widgetoiviiiiiiii e 528

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

20

Configuration OPLiONS. ..o s 529
NOEIfICAtioN COAS ..o nini i e 529
Keyboard reactionc.oiiiiii i 529
HEADER AP ..ottt ettt ettt e e 529
EX APl e 541
ICONVIEW: Icon View Widget.....vouiiiiiiiiiii i e e ae e 542
Configuration OPLiONS. . .cui e 542
PredefiNed IDS .. vttt ettt e aaas 543
NOEIfICAtioN COAS .. v e e s 543
Keyboard reactionc.oiiiiii i 543
LCONVIEW AP ..t ettt e e e et e e e a e e e e e e e anens 543
EX ML e s 555
IMAGE: Image Widget....oiieiiiiiii i e eraeans 556
Configuration OPLIONS. ..o 556
PredefiNed IDS .. vttt e e e aaas 556
IM A GE APl .o e 556
LISTBOX: List bOX Widgetoiiiiiiii e 559
Configuration OPLiONS . .cu i 559
PredefiNed IDS .. vttt e e e aaas 559
NOEIfICAtioN COAS ..cnuiniiii e aeeaeas 559
Keyboard reaction ..o 560
[I =10) QY = PP 560
b= T o] 1= 576
LISTVIEW: Listview WIidgelcuiiiiiiiiii it e eneeas 577
Configuration OPLIONS. ..o s 578
PredefiNed IDS ...ttt e e raas 578
NOEIfICatioN COAS ..nniiiii e e 578
Keyboard reactionc.ooiiiii i 579
(IS YA L AN = PP 579
EXaAMIDIE e s 601
LISTWHEEL: Listwheel widget ..o 602
Configuration OPLiONS. . .ciui e 602
PredefiNed IDS .. vttt et aaas 602
NOEIfICAtioN COAS ..o.nii i e 602
Keyboard reactionc.oiiiiii i 603
LISTWHEEL APttt ettt ettt et e e e e e e e e e e e e aanenens 603
MENU: Menu WIidget ...ouiiiiiiii i e e e aeaas 616
MENU MESSAGES ..ttt ittt s s st r s s s e s s e st e aaneess 617
Data SErUCEUIES ..ttt e 618
Configuration OPLiONS. ..o 618
Keyboard reactionc.oiiiiii i 619
1 Y = PP 619
EX ML e e 633
MULTIEDIT: Multi line text widget.....cooo i 634
Configuration OPLiONS. ..o s 634
PredefiNed IDS .. vttt et e aaas 635
NOEIfICAtioN COAS ..onnini i e 635
Keyboard reactioncviiiiii i 635
Ly = I PP 635
EX ML o e 645
MULTIPAGE: Multiple page widgetcoviiiiiiiiiii e 646
Configuration OPLiONS. . .ciui e 647
PredefiNed IDS .. vttt et ettt raas 647
NOEIfICatioN COAS ..o.viii i e 647
Keyboard reactioncooiiiii i 647
MULT TP AGE APl .ottt ettt ettt e e et e e e r e e e eeneaeanens 647
EX ML e 659
PROGBAR: Progress bar widgetoviiiiiiiiii i 660
Configuration OPLiONS. ..o 660
PredefiNed IDS .. vttt et rans 660
Keyboard reactioncooiiiii i 660

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

ourwN R

ouhrwWN R

PROGBAR AP ..ttt et et ettt e e e e 660
EXAMIPIES et e 665
RADIO: Radio button Widgetoiiiiiiiiii i 666
Configuration OPLiONS ...e e 666
Predefined IDS ..ot 667
NOLIfiCAtiON COARS . uiininii i e e e eas 667
Keyboard reactionociiiiiii e 667
A O Y = PP 667
EXAMIPIES e 677
SCROLLBAR: Scroll bar widget.......ociiiiiiiiii e 678
Configuration OPLiONS ... e 678
Predefined IDS ..o e 678
NOLIfiCAtiON COARS . uiiniii e e e eas 678
Keyboard reactioncciiiiiii e 678
SCROLLBAR AP ettt et e et e e e aaaens 679
E XA O et e 686
SLIDER: Slider Widget .. uoeiiiie ittt e et e e e e e e 688
Configuration OPLiONS ... e 688
Predefined IDS ..ovie it e e 688
NOLIfiCAtiON COARS . uiininii e eas 688
Keyboard reactionoooiiiiiiii e 688
] B 2 N = PP 689
XA e e 694
SPINBOX: Spinning boX widget.......oiiiiiiiii i e 695
Configuration OPLiONS ... e 696
Predefined IDS ..o e 697
NOLIfiCAtiON COARS . uininii e eas 697
Keyboard reactionccoiiiiiii e 697
I 1\ 20) QY = PP 697
B XA O et e 704
TEXT: TexXt WIdGeT oot e e aeeees 705
Configuration OPLiONS ... e 705
Predefined IDS ..ot e 705
Keyboard reactionocieiiiii e 705
LI =5 - o PP 705
EXAMIPIES et e 711
TREEVIEW: Treeview Widget ..o e e 712
(DI ol o) [o] o) il =] o o oI PP 713
Configuration OPLiONS ... e 714
Predefined IDS ..ot e 714
NOLIfiCAtiON COARS . uiininii e eas 714
Keyboard reactionociiiiiii e 715
TREEVIEW AP i et 715
COMMON FOULINES .ui ittt e s e e s e s e s reaneanens 716
Item related roUtiNES ... e 728
E XAl e e 733
WINDOW: WIindoW Widget.....oiiiiiiiiiiii i e e e e r e e 735
Configuration OPLiONS ... e 735
Keyboard reactionocoiiiiiii e 735
WIND OW AP .ottt ettt ettt e e e e et e et e e e ae e e e reanaeaneaneenn 735
... 737
Dialog DaASICS .. 738
Creating @ dialog «..ovie e 739
RESOUICE tADIE ... e 739
[DIT=1[oe B o] g'o o =Te [8| o/ 739
Initializing the di@log ..o e 740
Defining dialog behavior ..o 741
D TT=1 Lo Y LY = PP 743
(@0o70 200] o e | =] (o o |30 PP 745
(@7 Y I = 7 o PP 745

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

22

17.4.1.1 NOtIfication COAS ... e e e 745
17.4.1.2 Keyboard reacCtionoeiiei i s 745
17.4.1.3 CALENDAR AP ..ttt et ettt e e e e aeanens 746
17.4.2 (0] 2 1070157 = 0(0 1 0] 2 PP 751
17.4.2.1 NOtIfication COAS ... e 751
17.4.2.2 Keyboard reacCtiono.ciiei i e 751
17.4.2.3 CHOOSECOLOR APl ...ttt ettt et e e e e e e aaaeanens 751
17.4.3 (0] 0 1010 1Y = o PP 756
17.4.3.1 Configuration OPtiONS....ovieii it 756
17.4.3.2 Keyboard reactionccciiei i e 756
17.4.3.3 File- and path Names ... 756
17.4.3.4 CHOOSEFILE AP ...ttt ettt e e e e e e e et e aneneanens 756
17.4.4 MES SAGEBOX .ottt ettt et et e e et ettt ae s 763
17.4.4.1 Configuration OPtiONS. ...t et 763
17.4.4.2 Keyboard reacCtionocciiei i e 763
17.4.4.3 MESSAGEBOX AP ...ttt ettt 763
RS €101 1 =T o = S 765
18.1 INErOdUCHION Lo e 766
18.2 Getting started ... s 767
18.3 Creating @ di@logoe e e 768
18.3.1 Selecting @ parent Widgeto 768
18.3.2 Resizing and positioning in the editor........coooiiiii i 768
18.3.3 Modifying the widget properties.......ccoviiiiiiiiii e 768
18.3.4 Adding additional functions to a widget ... 768
18.3.5 Deleting @ widget property .ovvvieiiii i e e 769
18.3.6 Deleting @ Widget ..c.vo e 769
18.4 Saving the current dialog(S) «.eveeiieii e 770
18.5 Output of the GUIBUIIAEt s aeaeaas 771
18.6 Modifying the C files ... e 773
18.7 HOW to USE the C files .. e e 773
R ST (] 1] 111 o [PPSO PPPPPPPPPPPPPP 775
19.1 L T o TR = T | o P 776
19.2 From using API functions to skinnNinNgcocoiiiiiiii i e 776
19.3 SKinnable WIidgets ..o 777
19.4 LU =3 o = T 4 777
19.4.1 RUNtiMeE CoNfigUIratioN ... oo e e 778
19.4.2 Compile time configurationo 778
19.5 Simple changes to the look of the "Flex’ skincciiiiiiiiiiiiiiiii e 778
19.6 Major changes to the look of the Flex’ skin......cccooiiiiiiiiiiiiiiiiiii e 779
19.6.1 The skinning callback mechanismooiiiiiiiiiii e 779
19.6.2 Changing the look of the default skincooo s 779
19.6.3 LiSt Of COMMANAS ... et e e ee s 780
19.7 General skinNiNG AP ... e 782
19.8 BUTTON_SKIN_FLEX. ..ttt ittt et et e e e e e e e e e e e e e eeaeanens 785
19.8.1 Configuration SErUCLUIEuiei e e e e e 785
19.8.2 Configuration OPIONS. . .cu e 785
19.8.3 1] LT 1 e 72N = 786
19.8.4 LiSt Of COMMANAS ... e et e e e 787
19.9 CHECKBOX_SKIN_FLEX. ..ttt e et e e e e e e e e e e e e e e e e ne e enenens 788
19.9.1 Configuration SErUCLUIE ...o.ui e e e e e 788
19.9.2 Configuration OPIONS. ..o e e 788
19.9.3 1] LT 1 e 72N = 789
19.9.4 LiSt Of COMMANAS ... et ee s 791
19.10 DROPDOWN_SKIN_FLEX ...ttt et et et e et e et e e e e eereaneneeenennens 793
19.10.1 Configuration SEFUCLUIEuie e e e e e e 793
19.10.2 Configuration OPtiONS. ... e 794
19.10.3 SKINNING APl ... ettt 794
19.10.4 List Of COMMANASueniieii et e e e anens 795

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

19.11 FRAMEWIN_SKIN_FLEX ..ttt et et et e e e e e e e e e ee e e e nneaeeeas 796
19.11.1 Configuration SErUCEUNE.t e e e eaens 796
19.11.2 Configuration OpioNS ..o i e 797
19.11.3 SKINNING AP Lo e s aa s 797
19.11.4 List Of COMMANGAS ..nuiiniiiii i et e e e e e e e nereaeanens 798
19.12 HEADER _SKIN_FLEX ..ttt et et et e e e e e e e e e e e eas 801
19.12.1 Configuration SErUCLUNE. et e e e eaens 801
19.12.2 Configuration OpioNS ..o i e 801
19.12.3 SKINNING AP .o 802
19.12.4 List Of COMMANGAS .onuiiiiiiii i et e e e e e e e e aeaeanens 802
19.13 PROGBAR _SKIN_FLEX ..ttt et st et e e e e e e e e e e e e e e e e enenes 804
19.13.1 Configuration SErUCLUNE. ... e et e e eaens 804
19.13.2 Configuration OpioNS ... i e 804
19.13.3 SKINNING AP Lot 805
19.13.4 List Of COMMANGAS ..nuiiiiiiii it e e e e e e aaeaeaeaaens 805
19.14 RADIO_SKIN_FLEX .ottt ittt e et et e e e e e e n e e e eas 808
19.14.1 Configuration SErUCLUNE.t et e e e eaens 808
19.14.2 Configuration OpioNS ... i e 809
19.14.3 SKINNING AP .ot 809
19.14.4 List Of COMMANAS ...uiiniiiii i et e e e e e e e e eeaeaneaaens 810
19.15 SCROLLBAR _SKIN_FLEX ...ttt ittt eieeeae et e eteaeeeeesaeneeeneaneneeneanens 812
19.15.1 Configuration SErUCLUNE.iiei et e e eaens 812
19.15.2 Configuration OplioNS ... i e 813
19.15.3 SKINNING AP Lot 813
19.15.4 List Of COMMANGAS ...uiiniiiii i et e e e e e e e eneaeaaeanens 814
19.16 SLIDER _SKIN_FLEX .ttt ittt et s et et e e e e e e e s e e e e eenneneeneanens 817
19.16.1 Configuration SErUCLUNE. ... e e e e e e eaens 817
19.16.2 Configuration OpioNS ... i e 818
19.16.3 SKINNING AP .ot s e e et aaa s 818
19.16.4 List Of COMMANGAS ..uuiiniiii i e e e e e e e anereaeanens 819
19.17 SPINBOX _SKIN_FLEX ..ttt ettt st e e e et et re e e e e nae e aneeneens 821
19.17.1 Configuration SErUCLUNE.o e et e e eaens 821
19.17.2 Configuration OplioNS ..o e 822
19.17.3 SKINNING AP .ot s s 822
19.17.4 List Of COMMANGAS ..nuiiniiiii i et e e e e e e e aeeaeaneanens 823
22 IV U1 o] = o101 =1 o T Vo U PPSRRR 825
20.1 HOW 18 WOIKS e e e e e eas 826
20.1.1 Double bBUFferingo 826
20.1.2 LI [0 1 (=30 T8 1 =] o 1 e 826
20.2 =T LU 1 =T 0 1= 1= 827
20.3 T) o= | 0 827
20.4 CONfIQUIATION .o 827
20.4.1 (O] D I G o] o) {1 () I PP 827
20.4.2 oI I G D111 F= 1Y Bl o V7= () PP 828
20.5 Automatic use of multiple buffers with the WM ... 829
20.6 MUItiple DUFfEr AP .. e e ees 830
21 Virtual Screens / Virtual PAgESoooiiiiiiiiiiiiiiiie ettt 835
21.1 INErOAUCHION . e 836
21.2 =T U =T 0 1= 1= 836
21.3 CONfIQUIATION e 837
21.4 o =] 0] o] 1T PP 837
21.4.1 BaSIC XA ettt e 837
21.4.2 Real time example using the Window Manager........ccoooiiiiiiiiiiii i, 839
21.4.3 Dialog example using the Window Managercccovieiiiiiiiiiiiiii e 840
21.5 Virtual SCre@n AP ... e 842
22 Multi layer / multi diSPlay SUPPOIT........cooiiiiiiiiie et 843
22.1 INErOdUCHION . e 844

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

24

22.1.1 Selecting a layer for drawing Operationsccouvieiiiiiiiii e 844
22.1.2 Selecting a layer for @ WiNAOWoiiriiiiiii e e e eas 844
22.1.2.1 Moving a window from one layer to an other...........ccooiiiiiiii 845
22.2 Using mMulti layer SUPPOIT .oueiii e raeaas 847
22.2.1 L= L5 5.1= 1 =] 0 T 847
22.2.2 Alpha BleNdiNg ... 848
22.2.3 [=T L= T R o U] =T o] = PP 849
22.2.4 MUIti layer @XamiPle ..o s 849
22.3 Using multi display SUPPOIT. ... e e rea s 849
22.3.1 Enabling multi display support ..o 849
22.3.2 Run-time screen rotation ..o e 850
22.3.3 Multi display eXample ..o e 850
22.4 Configuring mMulti layer SUPPOIteiei e e naens 850
22.5 Configuring multi display SUPPOITviee i e e e 851
22.6 T L oY= ol P 851
23 POINTEI INPUE DBVICES ...ttt ettt e e e e e e e e e e e e e e e e e e aaaeeaeees 855
23.1 [LTS o 1o] [0 1 856
23.2 Pointer iNpUL device AP ... s 856
23.3 o T U Y= I e [LY PP 858
23.3.1 LT =T a1t Toll o g To YU [T A = 858
23.3.2 YA 1 g o U [T L AV 2= PP 859
23.3.2.1 UsiNg the PS2 MOUSE AriVer ... it e e e aae e enees 859
23.3.2.2 PS2 mMOUSE AriVer AP ...ttt e e e 859
23.4 e 18 ola I=Tol r=T=T 0 I e [V= PP 860
23.4.1 Generic toUCh SCreen APl ... e 860
23.4.2 The analog touch SCreen driVercii i e 861
23.4.2.1 Setting up the analog touCh SCreeno e 862
23.4.2.2 Runtime calibrationcciiiiiiii i e 864
23.4.2.3 Hardware FOULINMES ..ttt ittt a e e s e e e e e e e e e e saeea e enanneaneans 864
23.4.2.4 Driver API for analog touCh SCreeNSccieiiiiiii e 866
23.4.2.5 Configuring the analog touch-screen driver......cccovviiiiiiiiiiiii e 867
23.5 Joystick INpUE @Xamiple .. 868
24 KEYDOAI INPUL......uiiiiiiiiiie ittt eeeeeees 869
24.1 (D T=T=To g 1] o [0 I P 870
24.1.1 DIVEN LAY B AP . i i i e e e 871
24.1.2 APPlICAtioN [@YEr AP .. i i e e 872
P T o] 5 PP 875
25.1 |l o Yo 18 T o o T PP 876
25.2 1Y o o S A PP 876
20 CUISOIS .ttt ettt ettt oo e ettt e e e et e et b e e e e e et baa e e e eeetb e e e e e enbn e e aeeeernn e aaaanes 883
26.1 AVaIlablE CUMSOIS ..t 884
26.2 LOH] =T gl Y = PP 885
A N 1 1=V 1F= V] Vo P 889
27.1 INErOdUCEION e s 890
27.1.1 Quality of @antialiasing c.oovveiiiii i e 890
27.1.2 Antialiased FONES ...t e 890
27.1.3 High-resolution coordinatescciiiiiiiii i 891
27.2 ANIaliasing APl e 892
27.3 (@0e T 1ol /e] I 181 [o o =30 892
27.4 Drawing fUNCLIONS ..uiiiii i e s re e aanes 893
27.5 = 1 0] o (=T P 897
28 LaNQUAGgE SUPPOIT . ovuieiiiii ettt ee ettt et e et e e et e e e et e e e et e e eat e e e eab e e e et e e eesneaeees 903
28.1 L] oY Telo T L= T PP 904

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

28.1.1 LI S I =T Tolo o T P 904
28.1.2 UNIcode CharaCters ... e e e e 905
28.1.3 L I S 2] v/ o e 905
28.1.3.1 Using U2C.exe to convert UTF-8 text into Ccodeovvviiniiiiiiiiiiiiiien, 905
28.1.4 L8] oY Teo T L= A = PP 906
28.1.4.1 UTF-8 fUNCHIONS . ittt e e e e aes 906
28.1.4.2 Double byte fUNCLIONS ...cvieiii e 909
28.2 Text- and language resource filesooviriiiiiii e 910
28.2.1 L8] a1 ol Yo [T ¥ o 0T] o 910
28.2.2 Loading files from RAM ... e e 910
28.2.3 Loading files from non addressable areas.........ccviiiiiiiiiiiiiic i 910
28.2.4 RUIES fOr CSV filES uiiiiiiiii i i e e 910
28.2.5 RUlESs for teXt filEs vt e 910
28.2.6 Text- and language resource file APTcoiiiiiiiiiii e 911
28.3 F N =1 o T Lol ¥ o 0o] o 916
28.3.1 NOLAEION FOI NS Lt e 916
28.3.2 I 11 T 917
28.3.3 Bidirectional text alignment........coooiiiiii 917
28.3.4 REQUITEMENES. i s 918
28.3.5 How to enable ArabiC SUPPOrt.....ccoieiiiiii e 918
28.3.6 XA O e e 918
28.3.7 Font files used with Arabic text......coiiiiiii 918
28.4 Thai language SUPPOIt....ui i e e e e e 919
28.4.1 REQUITEMENES. i e 919
28.4.2 How to enable Thai SUPPOrt.. . es 919
28.4.3 XA O e e 919
28.4.4 Font files used with Thai teXt.....ccoviiiiiiii 919
28.5 Shift JIS SUP PO« et 920
28.5.1 Creating Shift JIS fONTS ..oiviirii e naaaens 920
pZAS B B 1S o] F= 1A o [Y7 PSSR 921
29.1 Available display driVers ..uoviiii i e 922
29.1.1 Driver file Naming CONVENTION ..ot e e ee e 922
29.1.2 Run-time configurable drivers ... 923
29.1.3 Compile-time configurable drivers...... ..o e 924
29.1.4 Available, but not yet migrated driversc.ccoviiiiiiiii i 925
29.1.5 Special PUMPOSE AFIVEIS .uueiiti it ae e e eseeaeeaneanans 925
29.2 CPU / Display controller interface......ccoviiiiiii i i aea 926
29.2.1 DIreCt INEEI ACE Lvi it e e e 926
29.2.2 Indirect interface - Parallel buS.......cco i e 926
29.2.2.1 Example routines for connection to I/O PiNSccivviiiiiiiiiiii i 927
29.2.3 Indirect interface - 4 pin SPI ...t e e 927
29.2.3.1 Example routines for connection to I/O PiNScoivviiiiiiiiiii i 927
29.2.4 Indirect interface - 3 Pin SPI ...t e e 927
29.2.4.1 Example routines for connection to I/O PiNScoivvviiiiiiiiii i 928
29.2.5 Indirect interface - I2C DUS ...iiviiiiii e 928
29.2.5.1 Example routines for connection to I/O PiNSccccviiiiiiiiiii i 928
29.3 Hardware interface configuration ..o 929
29.3.1 DireCt LI ACE Lttt e e e 929
29.3.2 INdireCt iINTerfacE .cv i e e 929
29.3.2.1 Run-time configurationo e 929
29.3.2.2 Compile-time configurationo 931
29.4 NON readable diSplays .uoviiiiiii i e e 934
29.5 Display orientationcooiii i e 934
29.5.1 Driver based configuration of display orientation............cocviiiiiiiiiiiiiien s 934
29.5.1.1 Run-time configurationo e 934
29.5.1.2 Compile-time configurationcoiiiiii s 934
29.5.2 Function based configuration of display orientation.............ccooeviiiiiiiiinnnnn, 935
29.6 Display driver callback functionccoiiiiiiiii e 937
29.6.1 Commands passed to the callback function ... 937
29.7 Detailed display driver desCriptionsccvviiiiiiiii i e 939

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

26

29.7.1 GUIDRY _BitPlains. vttt ittt aaeaas 939
29.7.2 GUIDRY DAl e ittt e e e 942
29.7.3 GUID RV D ISt .ttt e e e et 944
29.7.4 LU D] Y A o LoDt @le] Lo] PPN 946
29.7.5 LU D Y I T 015 RPN 958
29.7.6 LU B 2 I o T PP 960
29.7.7 GUIDRY S I 13748 . ittt e e e et 964
29.7.8 GUIDRY S D 1378 i ittt it e e et 967
29.7.9 GUIDRY _SID15G00 .ttt i e e et et e et s a e eraeanans 970
29.7.10 GUIDRY SN titiitiiitiii i i e e ettt a et a e e 973
29.7.11 GUIDRY S P a0 .t ittt ittt it it et et 977
29.7.12 GUIDRY _SSD 10926 1iuuiiitiitiiitiii i it a et a e et a s 983
29.7.13 €1UN1D1 AV o] 0 0] o= Lo« 6o] [o] ol K C TP 986
29.7.14 GUIDRV _FUJIESU 16 . ittt e e e et s ae e aaeaas 991
A B N T €1 U 1B SV = Ta [= o] o] o 1P 993
29.7.16 GUIDRY 07X L 1ttt ittt i it e e ettt et ettt e et 996
29.7.17 GUIDRV 161l ittt it e e et et 999
29.7.18 GUIDRY B33 1ttt i it e 1002
29.7.19 GUIDRY 7520 ittt i e e e 1004
29.7.20 GUIDRV_Template - Template for a new drivercooviiiiiiiiiiiiiienenen 1007
29.8 LCD layer and display driver APcoiiiiiiiii i 1008
29.8.1 Display driVer APT ... s 1008
29.8.2 (OB I =1V 7= ol 0T U) 1 == 1009
290.8. 2.1 G GrOU D ittt e 1009
29.8.2.2 CoNfIGUIatioN GrOUP ..uueue ettt ettt et et e et et e s e r e e aeene e neanee e anenes 1012
29.8.2.3 CAChE GIOUP tuuiiiiiti ittt st e st s e e 1016
B0 VNG SBIVET ...t e et et e e et e e e et e et e e e e e e s 1017
30.1 INErOdUCION e e 1018
30.1.1 [T 1 T =T 0.0 =T) o= 1018
30.1.2 Notes on this implementation ... 1018
30.2 B TSI YA\ O 1 PP 1019
30.2.1 HOW to USe the VINC VIEWET .viiiiiiiii i it e s aae e 1019
30.3 EMWIN VINC SOV O 1ttt ittt et e et e ras e san e ra e raneesaneeanneaanneaannens 1020
30.3.1 Starting the emWin VNC Server......couiiiiii e e 1020
30.3.2 HOW the server starts... oo s e 1020
30.3.3 Integration of the VNC server on the target ... 1020
30.4 [T 1T =T 0 0 =T) o= N 1020
30.5 Configuration OPiONS. ... e 1021
30.6 RV LGS V7= ol = 1021
G 1 R o 10 Tl o [Y= P 1025
31.1 GUITDRY _ADS 7846 ... i tiitiiitii it it s i it a s a e e aeaanernes 1026
32 Timing- and execution-related fUNCLIONS ... 1029
32.1 Timing and eXeCULiON AP ... e 1030
33 Performance and RESOUICE USAQE.......uuuuiiiiiiiiieeeieiieeeeeeeiiitiiisa s e e e e e e e eeeeeeeeeaeeees 1033
33.1 (=T Vo] 1 = Lo =P 1034
33.1.1 (D AV =T ol o =T o Tl o = o G 1034
33.1.2 Image drawing PerformManCe .. .ot i i e e e e e e aans 1035
33.2 N T=T 0 a oY VA (=T 18 L =] g g 1= oL = 1036
33.2.1 Memory requirements of the GUI components..........cccoviiiiiiiiiiiiiic i, 1036
33.2.2 Y= [0l [=T LU [T =10 =] L = PP 1037
33.3 Memory requirements of example applicationsccccviiiiiiiiiiciiic i, 1037
G/ o 11110 [§ 1 7= U1 o] o U SPPPUPURPRN 1039
34.1 What needs to be configured?covviiiiiiii i e 1040
34.2 Run-time- and compile-time configurationccoiii i 1040

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

34.3 Initialization process of @MWIN ..o e 1040
34.4 RuN-time configurationccveieiiiii e 1041
34.4.1 O[S wo] aq] AT ale [€10 {6o] o] N o PP 1041
34.4.1.1 API functions to be used in GUI_X_Config()....coeevriiiiieiiiiiiiiiiiieneieeenes 1041
34.4.2 CUSTOMIZING LCDCONF.C ettt ittt et et e e e e e e aenes 1043
34.4.2.1 API functions to be used in LCD_X_Config() «.ccvvieiieiiiiiiiiiiiienieieeieeeees 1045
34.4.3 OINE=1we] 0 aT VA1 [e I C1U) H G ol PR 1045
34.4.3.1 TimMiNG FOULINES . .eieiiiiiii it r s e e s r s s n s e s raeaaneraeans 1046
34.4.3.2 DeEbUQG FOULINES. .. v e 1046
34.4.3.3 Kernel interface roUtingS.o i 1047
34.5 Compile time configurationcooiiii i 1048
34.5.1 Customizing GUICONF. N .. e e 1048
34.5.1.1 Configuring the available features of emWin..........ccoiiiiiiiiiiiiiii e 1048
34.5.1.2 Default font and default color configurationccoviiiiiiiiiiiii e 1048
34.5.1.3 Advanced GUI configuration options........cooviiiiiiiiiii e 1049
34.5.2 Customizing LCDCONF. N e e e 1050
34.6 Request available memory ... 1050
1SS T U o] 0L ¢ APPSR 1051
35.1 Problems with tool chain (compiler, linker)cooviiiiiiiiii e 1052
35.1.1 COMPIlEr Crash cvi i e e e 1052
35.1.2 (@0oT0 o] oT1 1= V7= T o oY1 o e =30 P 1052
35.1.3 (07e] 0 a1 0] (=] =T o /o] o= P 1052
35.1.4 LinKer Problems ..o e 1053
35.2 Problems with hardware/driver . ..o i i i i eaaees 1053
35.3 Problems with API fUNCEIONScini e 1054
35.4 Problems with the performanceooviiii i e 1054
35.5 10o] g} ur=To 1 e I 8] o 0o o o0 P 1055
35.6 F A S ettt ettt 1056

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

28

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

29

Chapter 1

Introduction to emWin

1.1

1.2

1.2.

This introduction gives some information about this document. It also gives an over-
view of what features emWin consists of and what it requires.

Purpose of this document

This guide describes how to install, configure and use the emWin graphical user
interface for embedded applications. It also explains the internal structure of the
software and all the functions which are offered by emWin and intended for direct
use (API, Application Programming Interface). Before actually using emWin, you
should read or at least glance through this manual in order to become familiar with
the software. The following steps are recommended:

e Copy the emWin files to your computer.
Go through the chapter “"Getting Started” on page 35.
Use the simulator in order to become more familiar with what the software can
do (refer to the chapter “Simulation” on page 43).

e Expand your program using the rest of the manual for reference.

Requirements

A target system is not required in order to develop software with emWin; most of the
software can be developed using the simulator. However, the final purpose is usually
to be able to run the software on a target system.

1 Target system (hardware)

Your target system must:

e Have a CPU (8/16/32/64 bits)
¢ Have a minimum of RAM and ROM
e Have a full graphic display (any type and any resolution)

The RAM needs to be 8-, 16- and 32-bit accessible. Memory requirements vary
depending on which parts of the software are used and how efficient your target
compiler is. It is therefore not possible to specify precise values, but the following
applies to typical systems.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

30

CHAPTER Introduction to emWin

Small systems (no Window Manager)

e RAM: 100 Bytes
e Stack: 600 Bytes
e ROM: 10-25 KBytes (depending on the functionality used)

Big systems (including Window Manager and widgets)

e RAM: 2-6 kb (depending on number of windows required)
e Stack: 1200-1800 bytes (depending on the functionality used)
e ROM: 30-60 kb (depending on the functionality used)

ROM requirements increase according to the number of fonts used in the application.
All values are rough estimates and cannot be guaranteed. Detailed information can
be found in the chapter “"Performance and Resource Usage” on page 1033.

1.2.2 Development environment (compiler)

The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

e ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
e ISO/IEC 9899:1999 (C99)
e ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well. A C++
compiler is not required, but can be used. The application program can therefore also
be programmed in C++ if desired.

1.3 Features

emWin is designed to provide an efficient, processor- and display controller-indepen-
dent graphical user interface for any application that operates with a graphical dis-
play. It is compatible with single-task and multitask environments, with a proprietary
operating system or with any commercial RTOS. emWin is shipped as C source code.
It may be adapted to any size physical and virtual display with any display controller
and CPU. Its features include the following:

General

e Any (monochrome, grayscale or color) display with any controller supported (if
the right driver is available).

e May work without display controller on smaller displays.

e Any interface supported using configuration macros.

e Display-size configurable.

e Characters and bitmaps may be written at any point on the display, not just on
even-numbered byte addresses.

e Routines are optimized for both size and speed.

e Compile time switches allow for different optimizations.

For slower display controllers, display can be cached in memory, reducing access
to a minimum and resulting in very high speed.

Clear structure.

Virtual display support; the virtual display can be larger than the actual display.

Graphic library

Bitmaps of different color depths supported.

Bitmap Converter available.

Absolutely no floating-point usage.

Fast line/point drawing (without floating-point usage).
Very fast drawing of circles/polygons.

Different drawing modes.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

31

Fonts

e A variety of different fonts are shipped with the basic software: 4*6, 6*8, 6*9,
8*8, 8*9, 8*%16, 8*17, 8*18, 24*32, and proportional fonts with pixel-heights of
8, 10, 13, 16. For more information, see chapter ‘Fonts’.

e New fonts can be defined and simply linked in.

e Only the fonts used by the application are actually linked to the resulting execut-
able, resulting in minimum ROM usage.

e Fonts are fully scalable, separately in X and Y.

e Font Converter available; any font available on your host system (that is,
Microsoft Windows) can be converted.

String/value output routines

e Routines to show values in decimal, binary, hexadecimal, any font.
e Routines to edit values in decimal, binary, hexadecimal, any font.

Window Manager (WM)

e Complete window management including clipping. Overwriting of areas outside a
window’s client area is impossible.

e Windows can be moved and resized.
Callback routines supported (usage optional).
WM uses minimum RAM (app. 50 bytes per window).

Optional widgets for PC look and feel

e Widgets (window objects, also known as controls) are available. They generally
operate automatically and are simple to use.

Touch-screen & mouse support

e For window objects such as the button widget, emWin offers touch-screen and
mouse support.

PC tools

e Simulation library for WIN32-Environments. The source code may be purchased
additionally.

emWinView.

Bitmap Converter.

Font Converter.

GUIBuilder.

1.4 Examples and demos

To give you a better idea of what emWin can do, we have different demos available
as "ready-to-use" simulation executables under sample\EXE. The source of the sam-
ple applications is located in the folder sample. The folder Sample\GUIDemo contains
an application program showing many features of emWin. All examples are also
available at www.segger. com.

1.5 Starter kits

Complete starter kits including a demo board with a display, a C compiler and an
example project are available. For more details, take a look at our website at
www.segger.com.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER Introduction to emWin

1.6 Screen and coordinates

The screen consists of many dots that can (D‘D) h"
be controlled individually. These dots are

called pixels. Most of the text and drawing

functions that emWin offers in its API to the

user program can write or draw on any

specified pixel.

The horizontal scale is called the X-axis,

whereas the vertical scale is called the Y-

axis. Coordinates are denoted as a pair

consisting of an X- and a Y-value (X, Y).

The X-coordinate is always first in routines Y

that require X and Y coordinates. The upper

left corner of the display (or a window) has

per default the coordinates (0,0). Positive

X-values are always to the right; positive Y-values are always down. The above graph
illustrates the coordinate system and directions of the X- and Y- axes. All coordinates
passed to an API function are always specified in pixels.

<

1.7 How to connect the display to the micro controller

emWin handles all access to the display. Virtually any display controller can be sup-
ported, independently of how it is accessed. For details, refer to the chapter “"Config-
uration” on page 1039. Also, get in contact with us if your display controller is not
supported. We are currently writing drivers for all display controllers available on the
market and may already have a proven driver for the display controller that you
intend to use. It is usually very simple to write the routines (or macros) used to
access the display in your application SEGGER Microcontroller GmbH & Co. KG offers
the service of making these customizations for you, if necessary with your target
hardware.

It does not really matter how the display is connected to the system as long as it is
somehow accessible by software, which may be accomplished in a variety of ways.
Most of these interfaces are supported by a driver which is supplied in source code
form. This driver does not normally require modifications, but is configured for your
hardware by making changes in the file LcDConf.h. Details about how to customize a
driver to your hardware as necessary are provided in the chapter “"Display drivers” on
page 921. The most common ways to access the display are described as follows. If
you simply want to understand how to use emWin, you may skip this section.

Display with memory-mapped display controller:

The display controller is connected directly to the data bus of the system, which
means the controller can be accessed just like a RAM. This is a very efficient way of
accessing the display controller and is most recommended. The display addresses are
defined to the segment LCDSEG, and in order to be able to access the display the
linker/locator simply needs to be told where to locate this segment. The location
must be identical to the access address in physical address space. Drivers are avail-
able for this type of interface and for different display controllers.

Display with display controller connected to port / buffer

For slower display controllers used on fast processors, the use of port-lines may be
the only solution. This method of accessing the display has the disadvantage of being
somewhat slower than direct bus-interface but, particularly with a cache that mini-
mizes the accesses to the display, the display update is not slowed down significantly.
All that needs to be done is to define routines or macros which set or read the hard-
ware ports/buffers that the display is connected to. This type of interface is also sup-
ported by different drivers for the different display controllers.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

33

Proprietary solutions: display without display controller

The display can also be connected without an display controller. In this case, the dis-
play data is usually supplied directly by the controller via a 4- or 8-bit shift register.
These proprietary hardware solutions have the advantage of being inexpensive, but
the disadvantage of using up much of the available computation time. Depending on
the CPU, this can be anything between 20 and almost 100 percent; with slower CPUs,
it is really not possible at all. This type of interface does not require a specific display
driver because emWin simply places all the display data into the display cache. You
yourself must write the hardware-dependent portion that periodically transfers the
data in the cache memory to your display.

Example code for transferring the video image into the display is available in both C
and optimized assembler for M16C and M16C/80.

1.8 Data types

Since C does not provide data types of fixed lengths which are identical on all plat-
forms, emWin uses, in most cases, its own data types as shown in the table below:

Data type Definition Explanation
18 signed char 8-bit signed value
us unsigned char 8-bit unsigned value
116 signed short 16-bit signed value
ulé6 unsigned short | 16-bit unsigned value
132 signed long 32-bit signed value
u32 unsigned long 32-bit unsigned value
I116P signed short 16-bit (or more) signed value
U1l6P unsigned short | 16-bit (or more) unsigned value

For most 16/32-bit controllers, the settings will work fine. However, if you have simi-
lar defines in other sections of your program, you might want to change or relocate
them. A recommended place is in the file Global.h.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER Introduction to emWin

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

35

Chapter 2
Getting Started

The following chapter provides an overview of the basic procedures for setting up and
configuring emWin on your target system. It also includes a simple program exam-
ple.

If you find yourself unsure about certain areas, keep in mind that most topics are
treated in greater detail in later chapters. You will most likely need to refer to other
parts of the manual before you begin more complicated programming.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

36

2.1

2.1.1

CHAPTER Getting Started
Recommended project structure G2 Config

We recommend keeping emWin separate from your application E"C__I__ﬁlnnm"as
files. It is good practice to keep all the program files (including (] CorvertColar
the header files) together in the GUI subdirectories of your {1 ConvertMono
project’s root directory. The directory structure should be simi- {7 Core

lar to the one pictured on the right. This practice has the advan- {33 Font

tage of being very easy to update to newer versions of emWin -{2) DisplayDriver
by simply replacing the cur\ directories. Your application files {22 MembDev
can be stored anywhere. {27 YNC
Warning: When updating to a newer emWin version: :g mgm

Since files may have been added, moved or
deleted, the project directories may need to be updated accordingly.

Subdirectories

The following table shows the contents of all GUI subdirectories:

Directory Contents

Config

Configuration files

GUI\AntiAlias

Antialiasing support *

GUI\ConvertMono

Color conversion routines used for grayscale displays *

GUI\ConvertColor

Color conversion routines used for color displays *

GUI\Core

emWin core files

GUI\Font

Font files

GUI\DisplayDriver

Display driver

GUI\MemDev Memory device support *
GUI\VNC VNC support *
GUI\Widget Widget library *

GUI\WM Window Manager *

2.1.2

UMO03001 User & Reference Guide for emWin V5.20

(* = optional)

Include directories

You should make sure that the include path contains the following directories (the
order of inclusion is of no importance):

Config

GUI\Core

GUI\DisplayDriver

GUI\Widget (if using the widget library)
GUI\WM (if using Window Manager)

Warning: Always make sure that you have only one version of each file!

It is frequently a major problem when updating to a new version of emWin if you
have old files included and therefore mix different versions. If you keep emWin in the
directories as suggested (and only in these), this type of problem cannot occur. When
updating to a newer version, you should be able to keep your configuration files and
leave them unchanged. For safety reasons, we recommend backing up (or at least
renaming) the gur\ directories prior to updating.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

37

2.2 Adding emWin to the target program

You basically have a choice between including only the source files that you are actu-
ally going to use in your project, which will then be compiled and linked, or creating
a library and linking the library file. If your tool chain supports "smart" linking (link-
ing in only the modules that are referenced and not those that are not referenced),
there is no real need to create a library at all, since only the functions and data struc-
tures which are required will be linked. If your tool chain does not support "smart"
linking, a library makes sense, because otherwise everything will be linked in and the
program size will be excessively large. For some CPUs, we have example projects
available to help you get started.

2.3 Creating a library

Building a library from the sources is a simple procedure. The

first step is to copy the batch files (located under sam- (Makelib.bat)
ple\Makelib) into your project’s root directory. That means the

parent directory containing the 'Config’ and the 'GUI’ folder v
explained in chapter 2.1. Then, make any necessary changes. (Prep.bat)
There are a total of four batch files which need to be copied,
described in the table below. The main file, Makelib.bat, will
be the same for all systems and requires no changes. To build a
library for your target system, you will normally need to make
slight modifications to the other three smaller files. Finally,
start the file Makelib.bat to create the library. The batch files
assume that your cuI and config subdirectories are set up as
recommended.

The procedure for creating a library is illustrated in the flow
chart to the right. The Makelib.bat file first calls prep.bat to
prepare the environment for the tool chain. Then it calls cc.bat
for every file to be included in the library. It does this as many
times as necessary. cc.bat adds each object file to a list that
will be used by lib.bat. When all files to be added to the
library have been listed, Makelib.bat then calls 1ib.bat,
which uses a librarian to put the listed object files into the actual library. Of course
you are free to create libraries in another way.

It is not recommended to create an emWin library including a compile-time config-
urable display driver. For further information about the configurability of display driv-
ers, please refer to “Available display drivers” on page 922.

A 4

No

All files
in library?

Yes

lib.bat

File Explanation
Makelib.bat Main batch file. No modification required.
Prep.bat Called by Makelib.bat to prepare environment for the tool chain to be used,

Called by Makelib.bat for every file to be added to the library; creates a list of these

CC.bat object files which will then be used in the next step by the librarian in the lib.bat
file.
lib.bat Called by Makelib.bat to put the object files listed by CC.bat into a library.

The files as shipped assume that a Microsoft compiler is installed in its default loca-
tion. If all batch files are copied to the root directory (directly above GUI) and no
changes are made at all, a simulation library will be generated for the emWin simula-
tion. In order to create a target library, however, it will be necessary to modify
Prep.bat, CC.bat, and 1lib.bat.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

38

CHAPTER Getting Started

2.3.1 Adapting the library batch files to a different system

The following will show how to adapt the files by an example adaptation for a Mitsub-
ishi M32C CPU.

Adapting Prep.bat

Prep.bat is called at the beginning of Makelib.bat. As described above its job is to
set the environment variables for the used tools and the environment variable PATH,
so that the batch files can call the tools without specifying an absolute path. Assum-
ing the compiler is installed in the folder c:\MToOL the file Prep.bat could look as fol-
lows:

@ECHO OFF

SET TOOLPATH=C:\MTOOL

REM RS SR RS SR E R R R EEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEE ISR
REM Set the variable PATH to be able to call the tools

SET PATH=%TOOLPATH%$\BIN; $TOOLPATH%\LIB308; $PATHS%

REM KA AR A A A R A A AR A A A A A A A AR A A AR A A A KA A A A A A A A KA A A A A AR I A A I AR AR K,k * k%
REM Set the tool internal used variables

SET BIN308=%TOOLPATH%\BIN

SET INC308=%TOOLPATH%\INC308

SET LIB308=%TOOLPATH%\LIB308

SET TMP308=%TOOLPATH%\TMP

Adapting CC.bat

The job of cC.bat is to compile the passed source file and adding the file name of the
object file to a link list. When starting MakeLib.bat it creates the following subdirec-
tories relative to its position:

Directory Contents

Lib This folder should contain the library file after the build process.

Should contain all the compiler output and the link list file. Will be deleted after

Temp\Output the build process.

MakeLib.bat uses this folder to copy all source and header files used for the

Temp\Source build process. Will be deleted after the build process.

The object file should be created (or moved) to Temp\Output. This makes sure all the
output will be deleted after the build process. Also the link list should be located in
the output folder. The following shows an example for the Mitsubishi compiler:

@ECHO OFF

GOTO START

REM R R R R I I S I I I I I I I R R I I S R I I S I I I R I I S R I S S R I I S I I R I I I 2 S I I I
REM Explanation of the used compiler options:

-silent : Suppresses the copyright message display at startup

-M82 : Generates object code for M32C/80 Series (Remove this switch
for M16C80 targets)
-c : Creates a relocatable file (extension .r30) and ends processing
-I : Specifies the directory containing the file(s) specified in #include
-dir : Specifies the destination directory
-0S : Maximum optimization of speed followed by ROM size
-fFRAM : Changes the default attribute of RAM data to far
-fETI : Performs operation after extending char-type data to the int type

(Extended according to ANSI standards)
: START
REM KA R A A A AR A A AR A A A A I A A A I A A AR A A AR A A A AT A A AT A A A A A AR A A A A dA Ak dh ko k k%
REM Compile the passed source file with the Mitsubishi NC308 compiler
NC308 -silent -M82 -c¢ -IInc -dir Temp\Output -0S -fFRAM -fETI Temp\Source\%l.c
REM R R R R I I S I I I I I I R R I I I R I I S I I I I R I I S R I S R I I S I R I I I 2 S R I I 2
REM Pause if any problem occurs
IF ERRORLEVEL 1 PAUSE
REM B R R R R R R R I I I I I I I I I
REM Add the file name of the object file to the link list
ECHO Temp\Output\%1l.R30>>Temp\Output\Lib.dat

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

39

Adapting Lib.bat

After all source files have been compiled Lib.bat will be called from MakeLib.bat.
The job is to create a library file using the link list created by cc.bat. The destination
folder of the library file should be the Lib folder created by MakeLib.bat. The follow-
ing shows an example for the Mitsubishi librarian:

@ECHO OFF

GOTO START

REM RS RS SR E RS EEEEEEEEE SR EEE RS
REM Explanation of the used options:

-C : Creates new library file

@ : Specifies command file

: START

REM R R S R R I R I I I I I R R S I I I R R I S I R R S R R I R
REM Create the first part of the linker command file

ECHO -C Lib\GUI>Temp\Output\PARA.DAT

REM RS RS SRR RS SR EEEEEEE SR EEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
REM Merge the first part with the link list to the linker command file
COPY Temp\Output\PARA.DAT+Temp\Output\Lib.dat Temp\Output\LINK.DAT

REM R R S R I I R I S I I R R S I I I R I I S I I R R S R R I R R I I
REM Call the Mitsubishi librarian

LB308 @Temp\Output\LINK.DAT

REM RS RS SR E RS SR EEEEEEE SR SRR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
REM Pause if any problem occurs

IF ERRORLEVEL 1 PAUSE

2.4 Cfiles to include in the project

Generally speaking, you need to include the core C files of emWin, the display driver,
all font files you plan to use and any optional modules you have ordered with emWin:

All C files of the folder config

All C files of the folder cuI\cCore

The fonts you plan to use (located in GUI\Font)

Display driver: All C files of the folder GuI\DisplayDriver.

Additional software packages
If you plan to use additional, optional modules you must also include their C files:

Gray scale converting functions: all C files located in GUI\ConvertMono
Color conversion functions: all C files located in GUI\ConvertColor
Antialiasing: all C files located in cuI\AntiAlias

Memory Devices: all C files located in GUI\MemDev

VNC support: all C files located in GUI\VNC

Widget library: all C files located in GuI\widget

Window Manager: all C files located in cuI\wMm

Target specifics

For displays with indirect interface hardware routines must be included. Examples for
several kinds of indirect interface routines are available under Samples\LCD_X.

RTOS specifics

e If emWin is intended to be used with an RTOS, some RTOS dependent functions
need to be implemented. emWin comes with several sample files including imple-
mentations for common RTOS packages (called GuI_x_<RT0S>.c), as well as the
file GUI_X_Ex.c which just contains place holders of the required functions and
might be used to make emWin work with any RTOS.

e If multitasking is not required (access of the display by one task only) the file
GUI_X.c may be used as a starting point for a custom implementation.

The sample files can be found in the folder sample\GUI_X which is contained in the
emWin package.

Additional information
Be sure to include GuI.h in all emWin accessing source files.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

40

CHAPTER Getting Started

2.5 Configuring emWin

2.6

The config folder should contain all configuration files. The chapter ‘Configuration’
explains in detail how emWin should be configured.
The following types of configuration macros are available:

Binary switches "B"

Switches can have a value of either 0 or 1, where 0 means deactivated and 1 means
activated (actually anything other than 0 would work, but using 1 makes it easier to
read a config file). These switches can enable or disable a certain functionality or
behavior. Switches are the simplest form of configuration macro.

Numerical values "N"

Numerical values are used somewhere in the code in place of a numerical constant.
Typical examples are in the configuration of the resolution of a display.

Selection switches "S"

Selection switches are used to select one out of multiple options where only one of
those options can be selected. A typical example might be the selection of the type of
display controller used, where the number selected denotes which source code (in
which display driver) is used to generate object code.

Alias "A"

A macro which operates like a simple text substitute. An example would be the define
U8, in which the preprocessor would replace with unsigned char.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations
apply, as a macro is still put into the code as simple text replacement. Function
replacements are mainly used to add specific functionality to a module (such as the
access to a display) which is highly hardware-dependent. This type of macro is
always declared using brackets (and optional parameters).

Initializing emWin

The following functions should be used to initialize and 'deinitialize’ emWin in order
to start the configuration process (see chapter “Configuration” on page 1039) or
clear internal data from memory again.

GUL Init()

Routine Explanation
GUI_Init () Initializes emWin internal data structures and variables.
GUI_Exit () Clears emWin internal data from memory.
Description

Initializes emWin internal data structures and variables.

Prototype
int GUI_Init(void);

Return value
0, if successful; another value if the initialization of the display driver fails.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

41

Additional information

Executing this function is mandatory before using any emWin functions. The only
exception is setting create flags for windows (see “WM_SetCreateFlags()” on
page 378). If the Window Manager is used, the background window is created from
within GUI_Init(). So if create flags are set up before GUI_Init() is called, the back-
ground window is created according to them.

GUI_Exit()

Description

Clears emWin internal data from memory to make further calls of GUI_Init() possi-
ble.

Prototype

void GUI_Exit (void);

Additional information

This function should be used if emWin represents a part of the application which is
not used continuously and therefore has to be able to be turned on and off again.
Please note that after GUI_Exit was called emWin will not work properly until
GUI_Init() is called again.

2.7 Using emWin with target hardware

The following is just a basic outline of the general steps that should be taken when
starting to program with emWin. All steps are explained further in subsequent chap-
ters.

Step 1: Configuring emWin

The first step is usually to customize emWin. For details about the configuration,
refer to the chapter “Configuration” on page 1039".

Step 2: Defining access addresses or access routines

For memory-mapped display controllers, the access addresses of the display simply
need to be defined in the configuration file of the display controller. For port/buffer-
accessed display controllers, interface routines must be defined. Examples of the
required routines are available under samples\LCD_X.

Step 3: Compiling, linking and testing the example code

emWin comes with example code for both single- and multitask environments. Com-
pile, link and test these little example programs until you feel comfortable doing so.
Step 4: Modifying the example program

Make simple modifications to the example programs. Add additional commands such
as displaying text in different sizes on the display, showing lines and so on.

Step 5: In multitask applications: adapt to your OS (if necessary)

If multiple tasks should be able to access the display simultaneously, the macros
GUI_MAXTASK and GUI_0Ss come into play, as well as the file cuITask.c. For details
and example adaptations, refer to the chapter “Configuration” on page 1039".

Step 6: Write your own application using emWin

By now you should have a clearer understanding of how to use emWin. Think about
how to structure the program your application requires and use emWin by calling the
appropriate routines. Consult the reference chapters later in this manual, as they dis-
cuss the specific emWin functions and configuration macros that are available.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER Getting Started

2.8 The "Hello world" example program

In the following we will show the "Hello world" example program. If you like to see a
wide range of emWin based sample applications as well as further simple tutorial
applications, please have a look in the sample folder of your emWin shipment or visit
the "emWin Samples" section on www.segger.com.

A "Hello world" program has been used as a starting point for C programming since
the early days, because it is essentially the smallest program that can be written. An
emWin "Hello world" program is shown below and is available as
BASIC_HelloWorld.c in the Sample\Tutorial folder shipped with emWin.

The whole purpose of the program is to write "Hello world" in the upper left corner of
the display. In order to be able to do this, the hardware of the application, the dis-
play controller and the GUI must be initialized first. emWin is initialized by a simple
call of GUI_1Init () in the beginning of the program. In this example, we assume that
the hardware of your application is already initialized.

The “Hello world” program looks as follows:

#include "GUI.h"

void MainTask (void) {
GUI_Init();
GUI_DispString("Hello world!");
while(1);

}

Adding functionality to the "Hello world" program

Our little program has not been doing too much so far. We can now extend the func-
tionality a bit: after displaying "Hello world", we would like the program to start
counting on the display in order to be able to estimate how fast outputs to the dis-
play can be made. We can simply add a bit of code to the loop at the end of the main
program, which is essentially a call to the function that displays a value in decimal
form.

The example is available as BASIC_Hellol.c in the sample folder.

#include "GUI.h"

void MainTask (void) {
int 1=0;
GUI_Init();
GUI_DispString("Hello world!");
while (1) {
GUI_DispDecAt (i++, 20,20,4);
if (1 > 9999) {
i =0;
}
}
}

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

43

Chapter 3

Simulation

The PC simulation of emWin allows you to compile the same C source on your Win-

dows PC using a native (typically Microsoft) compiler and create an executable for
your own application. Doing so allows the following:

e Design of the user interface on your PC (no hardware required!).
e Debugging of the user interface program.

e Creation of demos of your application, which can be used to discuss the user
interface.

The resulting executable can be sent easily via e-mail.

Ve Zoom and rotate

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER Simulation

Using the simulation

The emWin simulation requires Microsoft Visual C++ (version 6.00 or higher) and the
integrated development environment (IDE) which comes with it. You will see a simu-
lation of your LCD on your PC screen, which has the same resolution in X and Y and
can display the exact same colors as your LCD once it has been properly configured.
The entire graphic library API and Window Manager API of the simulation are identi-
cal to those on your target system; all functions will behave in the very same way as
on the target hardware since the simulation uses the same C source code as the tar-
get system. The difference lies only in the lower level of the software: the display
driver. Instead of using the actual display driver, the PC simulation uses a simulation
driver which writes into a bitmap. The bitmap is then displayed on your screen using
a second thread of the simulation. This second thread is invisible to the application;
it behaves just as if the LCD routines were writing directly to the display.

3.1.1 Using the simulation with the trial version of emWin

The trial version of emWin contains a full library which allows you to evaluate all
available features of emWin. It also includes the emWin viewer (used for debugging
applications), as well as demo versions of the Font Converter and the Bitmap Con-
verter. Keep in mind that, being a trial version, you will not be able to view the
source code of emWin or the simulation, but you will still be able to become familiar
with what emWin can do.

3.1.1.1 Directory structure

The directory structure of the simulation in the trial version is []apgiication
shown at the right side. The table below explains the contents of [>jranig

the folders: “1Exe
G0
Directory Content _15ample
1 Sirnulation
Application Source of the demo program. 1 Toal
Configuration files used to build the library. Note that] Clearlp. bt
Config changes at the header files do not have any effect on the L IR eadh e himl

precompiled library! il Simulation Trial. dsp

i8] Sirnulation T rial. dsw

Exe Ready-to-use demo program.

GUI Library files and include files needed to use the library.
Sample Simulation examples.

Simulation Files needed for the simulation.

The emWin viewer, a demo version of the Bitmap Con-

Tool verter and a demo version of the Font Converter.

3.1.1.2 Visual C++ workspace

The root directory shown above includes the =

Microsoft Visual C++ workspace (Simulation- s _ :
Trial.dsw) and project file (Simulation- -W':"k?pace'_S'm“'a_“':'”T”c"":1p":"ECt[S]E
Trial.dsp). The workspace allows you to E""S'm“'at_'“"_T"a”"Es

modify an application program and debug it s""gépplf'_cat":'”

before compiling it on your target system. :DGET'Q

Double-click the workspace file to open the -] Sample

Microsoft IDE. The directory structure of the -0 Simulljatim

Visual C++ workspace will look like the one

shown to the right. .8 Classifiow | [2] Fieiew |

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

45

3.1.1.3 Compiling the demo program

The source files for the demo program are located in the Application directory as a
ready-to-go simulation, meaning that you only need to rebuild and start it. Note that
to rebuild the executable, you will need to have Microsoft Visual C++ (version 6.00
or later) installed.

e Step 1: Open the Visual C++ workspace by double-clicking on Simulation-
Trial.dsw.

e Step 2: Rebuild the project by choosing Build/Rebuild aAll from the menu (or
by pressing F7).

e Step 3: Start the simulation by choosing Build/Start Debug/Go from the menu
(or by pressing F5).

The demo project will begin to run and may be closed at any time by right-clicking on
it and selecting Exit.

3.1.1.4 Compiling the examples

The sample directory contains ready-to-go examples that demonstrate different fea-
tures of emWin and provide examples of some of their typical uses. In order to build
any of these executables, their C source must be ‘activated’ in the project. This is
easily done with the following procedure:

e Step 1: Exclude the application folder from the build process by right-clicking
the application folder of the workspace and selecting 'Settings\General\Exclude
from build’.

e Step 2: Open the sample folder of the workspace by double-clicking on it. Include
the example which should be used by right-clicking on it and deselecting 'Set-
tings\General\Exclude’ from build.

e Step 3: If the example contains its own configuration files (LcbDConf.c and/or
siMconf.c) the default configuration files located in the config folder need to be
excluded from the build process.

e Step 4: Rebuild the example by choosing Build/Rebuild All from the menu (or
by pressing F7).

e Step 5: Start the simulation by choosing Build/Start Debug/Go from the menu
(or by pressing F5). The result of the example selected above is pictured below:

Border

[vL
[T
[r
[Te

Effect
* 3D

£ Flak
ol

—d
Spacing XTTTTTT |7 Lines F ::_:;z I— Hcrall III
Spacing ¥ —J——o |7 Points s raw. I_ Wacroll |7 Grid

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

46

CHAPTER

Simulation

3.1.2 Using the simulation with the emWin source

3.1.2.1

The root directory of the simulation can be anywhere on your PC, for
example cC:\Work\emWinSim. The directory structure will appear as
shown to the right. This structure is very similar to that which we rec-
ommend for your target application (see Chapter 3: "Getting Started"

3.1.2.2 Visual C++ workspace

UMO03001 User & Reference Guide for emWin V5.20

Directory structure

for more information).
The following table shows the contents of the folders:

I:I Do
3 Sample
[Skart
1 Toal

Directory Content
Doc Contains the emWin documentation.
Sample Code examples, described later in this documentation.
Start All you need to create a new project with emWin.
Tool Tools shipped with emWin.

A new project can be started by making a copy of the Start-
folder. It contains all required files for a new project. Subdirec-
tories containing the emWin sources are in the start\Guz folder
and should contain the exact same files as the directories of the
same names which are used for your target (cross) compiler.
The files of the cuI subdirectories should not be changed, as
this would make updating to a newer version of emWin more
difficult.

The Start\config directory contains configuration files which
need to be modified in order to reflect your target hardware set-
tings (mainly LCD-size and colors which can be displayed).

3 Application

3 iZonfig

LGl

|:| Swvskem
CleanUp.bat
Simulatinn.dsp
Simulatinn.dsw

The root directory shown above includes the ';?pa':le _S'mglf:_":'”f:_s Proiegls;
Microsoft Visual C++ workspace (Simulation.dsw) = ----[lllm: aT.'“'t'. p 1es
and project files (simulation.dsp). The workspace &0 Ezﬁf';a o
allows you to modify an application program and 525 GLI
debug it before compiling it on your target system. {0 Antidlias
The dlre_:ctory stru_ctu_re of the Visual C++ w_ork— ----[:I CanvertColor
space will appear similar to that shown to the right. -2 Converthiono
Here, the GuI folder is open to display the emWin m-{Z3 Core
subdirectories. Note that your Gul directory may -] DisplayDrives
not look exactly like the one pictured, depending -2 Font
on which additional features of emWin you have. -] MemDev
The folders Core, Font and DisplayDriver are ez R
part of the basic emWin package and will always -] Widget
appear in the workspace directory. -] WM
-2 Swstem
4| | -l

BA Class... I Hesu:uu...l Filetigw I_

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

47

3.1.2.3 Compiling the application

The simulation contains one or more application C files (located in the Application
directory), which can be modified or removed and additional files can be added to the
project. You should then rebuild the program within the Visual C++ workspace in
order to test/debug it. Once you have reached a point where you are satisfied with
the result and want to use the program in your application, you should be able to
compile these same files on your target system and get the same result on the target
display. The general procedure for using the simulation would be as follows:

Step 1: Open the Visual C++ workspace by double-clicking on Simulation.dsw.

Step 2: Compile the project by choosing Build/Rebuild All from the menu (or
by pressing F7).

Step 3: Run the simulation by choosing Build/Start Debug/Go from the menu
(or by pressing F5).

Step 4: Replace the bitmap with your own logo or image.

Step 5: Make further modifications to the application program as you wish, by
editing the source code or adding/deleting files.

Step 6: Compile and run the application program within Visual C++ to test the
results. Continue to modify and debug as needed.

Step 7: Compile and run the application program on your target system.

3.1.3 Advanced features of the simulation
Clicking the right mouse button shows a context
menu with several advanced functions: Pause Application F4
R Application FS
3.1.3.1 Pause and Resume il

These menu items allows to pause and to resume Wigw swskem info
the application currently running in the simulation.
The same can be done by pressing <F4> or <F5>.

Trying to pause an already paused application or Abaut ..
trying to resume an already running application _
causes an error message. Exit ALT-F4

Copy to clipboard

3.1.3.2 View system info

This menu item opens a further window
with information of the memory currently BHEEEEEYEEBHTE

used by the application. The window con- B"I’tES [FrEE."USEd]: 60500 { 56
tinuously shows the current status of

memory consumption by showing the free
and used bytes and the free and used

Blocks [Free [Used]: 481 }2

number of memory blocks.

3.1.3.3 Copy to clipboard

This menu item copies the current contents of the display into the clipboard. This
makes it easy to use it for documentation purpose with other applications.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER

3.2 Device simulation

The device simulation supports 3 views:
e Generated frame view

e Custom bitmap view

e Window view

The table below shows the different views:

Simulation

Generated frame view

Custom bitmap view

Zoom and rotate

Hardkey - Sample

Window view

emWin Simulation{Executing}
File Wiew Help
nLCD #0 320*240 8bpp

Laver @

enig S [u] B3| <5 LCD #2 160*..
m

ooooooooood
ENEEEEEEEEE

ooooooooood
EENEEEEONEEEE
o o o o o o o o

HH AU ELEPET el
132965:
Application continued

Laver @

The following will explain in detail how each option can be used.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

49

3.2.1 Generated frame view

The simulation shows the display inside an automati-
cally generated frame surrounding the display. The
frame contains a small button which per default closes
the application. This is the default behavior of the sim-
ulation for single layer systems. ‘Single layer system’
means that only the first layer is initialized.

3.2.2 Custom bitmap view

The simulation can show the simulated display in a bitmap of your choice, typically
your target device. The bitmap can be used to simulate the behavior of the entire
target device. In order to simulate the appearance of the device, bitmaps are
required.

Device bitmap

The first bitmap is usually a photo (top
view) of the device, and needs to be named

Device.bmp. It may be a separate file (in This is @ placeholder for a customized
the same directory as the executable), or it hitmap. To use it the function

. . . SIM_GUI_UseCustomBitmaps{) needs to
may be included as a resource in the appli- be called from SIM_X_Initg.

cation. How to do this is explained later in
this chapter.

The file should provide an area for the sim-
ulated display of the same size in pixels as
the physical display resolution.

If there are any hardkeys to be simulated
the bitmap should also show all of them in
unpressed state.

Transparent areas need to be colored with exact the same color as defined with the
function SIM_GUI_SetTransColor (), typically bright red (OxFFO000). These areas do
not have to be rectangular; they can have an arbitrary shape (up to a certain com-
plexity which is limited by your operating system, but is normally sufficient). Bright
red is the default color for transparent areas, mainly because it is not usually con-
tained in most bitmaps. To use a bitmap with bright red, the default transparency
color may be changed with the function sSIM_GUI_SetTransColor ().

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

50

CHAPTER Simulation

Hardkey bitmap

The second bitmap file is required for defin-
ing the hardkeys and must be named
Devicel.bmp. It contains the buttons in
pressed state. The non hardkey area has to
be filled with the transparent color. This is
only a short description. For more details
about how to simulate hardkeys, see “Hard-
key simulation” on page 56.

Using separate files

When starting the simulation, it checks if
the directory of the executable contains the
bitmap files Device.bmp and Devicel.bmp. If these files are available, they are used
automatically and the resource bitmaps are ignored. Note that this is only valid with
single layer systems.

Adding the bitmap to the application resources

The resource file of the simulation can be found under System\Simulation\Res\Sim-
ulation.rc. It contains the following section:

[11770777
//
// Customizable bitmaps

//
IDB_DEVICE BITMAP DISCARDABLE "Device.bmp"
IDB_DEVICE1l BITMAP DISCARDABLE "Devicel.bmp"

This section can be used to set custom device files. More information can be found in
the Win32 documentation.

3.2.3 Window view

Default for simulating a multiple layer system is showing each layer in a separate
window without using bitmaps or a generated frames.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

51

3.3 Device simulation API

All of the device simulation API functions should be called in the setup phase. The
calls should be done from within the routine sIM_X_cConfig (), which is located in the
file stMConf.c in the configuration folder. The example below calls SIM_SetLCDPos ()
in the setup:

#include "LCD_SIM.h"
void SIM_X_Config() {

SIM_GUI_SetLCDPos (50, 20); // Define the position of the LCD in the bitmap}
}

The table below lists the available device-simulation-related routines in alphabetical
order. Detailed descriptions of the routines follow:

Routine Explanation

SIM_GUI_ShowDevice () Manages the visibility of the device bitmap.

Sets a callback function for receiving the handles of
the simulation windows.

Sets the background color of the composite window.
(Only used with multi layer systems)

Sets the size of the composite window. (Only used with
multi layer systems)

Set the color to be used as black (color monochrome
displays).

Set the color to be used as white (color monochrome
displays).

Set the position for the simulated LCD within the target
device bitmap.

SIM_GUI_SetMag () Set magnification factors for X and/or Y axis.

Set the color to be used for transparent areas (default:
0xFF0000).

Tells the simulation to use the custom bitmaps from
the application resource file.

SIM_GUI_SetCallback()

SIM_GUI_SetCompositeColor ()

SIM_GUI_SetCompositeSize ()

SIM_GUI_SetLCDColorBlack()

SIM_GUI_SetLCDColorWhite ()

SIM_GUI_SetLCDPos ()

SIM_GUI_SetTransColor ()

SIM_GUI_UseCustomBitmaps ()

SIM_GUI_ShowDevice()

Description

This function can be used to manage the visibility of the surrounding device bitmap
of the simulation.

Prototype
void SIM_GUI_ShowDevice (int OnOff) ;

Parameter Description
OnOff 1 for showing the bitmap, 0 for hiding it.

Additional information

On systems with multiple layers the device bitmap is not shown per default and on
single layer systems the bitmap is visible. If a different behavior is required this
function can be used to set up the visibility of the device bitmap.

SIM_GUI_SetCallback()

Description

If it is required to simulate more than the display window or hardkeys, you can set a
callback function to receive the window handles of the simulation. This opens up the
possibility e.g. to add additional controls outside of the display window like leds or
sliders. Please note that the emWin functions can not be used there.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

52

SIM_

CHAPTER Simulation

Prototype
void SIM_GUI_SetCallback(int (* _pfInfoCallback) (SIM_GUI_INFO * pInfo));
Parameter Description
Pointer to the callback function. The function has to expect a pointer to a
—pfInfoCallback SIM_GUI_INFO structure as a parameter

Content of the SIM_GUI_INFO structure

Type Name Description
HWND hWndMain Handle to the main window
HWND ahWndLCD[16] Array of handles to the display layers
HWND ahWndColor[16] Array of handles to the palette layers

GUI_SetCompositeColor()

Description

When simulating a multiple layer system each layer can be shown in its own window.
However, the physical display has only one area. It shows the result of the blended
layers. The simulation shows the result in the composite window which can have its
own size independent of the layers. Each layer can have its own position and its own
size within the composite window. This means that not necessarily the complete area
is covered by the layers. For this case (and also for transparency effects) this func-
tion sets the default background color of the composite window.

Prototype

void SIM_GUI_SetCompositeColor (U32 Color);
Parameter Description

Color Background color to be used.

SIM_GUI_SetCompositeSize()

Description

As described above under SIM_GUI_SetCompositeColor () the size of the composite
window is independent of the size of the layers. This function is used to set the size

of the composite window.

Prototype

void SIM_GUI_SetCompositeSize(int xSize, int ySize);
Parameter Description

xSize Horizontal size in pixels.

ySize Vertical size in pixels.

Example

The following shows a typical use (with a multi layer system):

void SIM_X Config() {
SIM_GUI_SetCompositeSize (240, 320); // Set size of composite window
SIM_GUI_SetCompositeColor (0x800000); // Define background color of composite window

}

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

53

SIM_GUI_SetLCDColorBlack(), SIM_GUI_SetLCDColorWhite()

Description

Set the colors to be used as black or white, respectively, on color monochrome dis-
plays.

Prototypes

int SIM_GUI_SetLCDColorBlack(int DisplayIndex, int Color);
int SIM_GUI_SetLCDColorWhite (int DisplayIndex, int Color);

Parameter Description

DisplayIndex | Reserved for future use; must be 0.

Color RGB value of the color.

Additional information

These functions can be used to simulate the true background color of your display.
The default color values are black and white, or 0x000000 and OxFFFFFF.

Example using default settings
void SIM_X_Config() {

SIM_GUI_SetLCDPos (14,84); // Define the position of the LCD
// in the bitmap

SIM_GUI_SetLCDColorBlack (0, 0x000000); // Define the color used as black

SIM_GUI_SetLCDColorWhite (0, OxFFFFFF); // Define the color used as white

(used for colored monochrome displays)

www.seqger.com
FELE

Example using yellow instead of white
void SIM_X_Config() {

SIM_GUI_SetLCDPos (14,84); // Define the position of the LCD
// in the bitmap

SIM_GUI_SetLCDColorBlack (0, 0x000000); // Define the color used as black

SIM_GUI_SetLCDColorWhite (0, OxO00FFFF); // Define the color used as white

(used for colored monochrome displays)

\
’>/m

www.segger.com

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER Simulation

SIM_GUI_SetLCDPos()

Description
Sets the position for the simulated LCD within the target device bitmap.

Prototype
void SIM_GUI_SetLCDPos (int x, int vy);
Parameter Description
x X-position of the upper left corner for the simulated LCD (in pixels).
v Y-position of the upper left corner for the simulated LCD (in pixels).

Additional information

The X- and Y-positions are relative to the target device bitmap, therefore position
(0,0) refers to the upper left corner (origin) of the bitmap and not your actual LCD.
Only the origin of the simulated screen needs to be specified; the resolution of your
display should already be reflected in the configuration files in the config directory.
The use of this function enables the use of the bitmaps Device.bmp and
Devicel.bmp. Note that the values need to be >= 0 for enabling the use of the bit-
maps. If the use of the device bitmaps should be disabled, omit the call of this func-
tion in SIM_X_Init().

SIM_GUI_SetMag()

Description
Sets magnification factors for X and/or Y axis.

Prototype
void SIM_GUI_SetMag(int MagX, int Magy) ;

Parameter Description
MagX Magnification factor for X axis.
MagY Magnification factor for Y axis.

Additional information

Per default the simulation uses one pixel on the PC for each pixel of the simulated
display. The use of this function makes sense for small displays. If using a device bit-
map together with a magnification > 1 the device bitmap needs to be adapted to the
magnification. The device bitmap is not magnified automatically.

SIM_GUI_SetTransColor()

Description
Sets the color to be used for transparent areas of device or hardkey bitmaps.

Prototype
I32 SIM _GUI_SetTransColor (I32 Color);
Parameter Description
Color RGB value of the color in the format 00000000RRRRRRRRGGGGGGGGBBBBBBBB.

Additional information

The default setting for transparency is bright red (OxFF0000).
You would typically only need to change this setting if your bitmap contains the same
shade of red.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

55

SIM_GUI_UseCustomBitmaps()

Description

As described earlier in this chapter it is possible to use device bitmaps from the
application resources. This function tells the simulation to use the device- and hard-
key bitmaps from the application resources and not to generate the default frame bit-
map.

Prototype

void SIM_GUI_UseCustomBitmaps (void) ;

Additional information

The emWin shipment contains per default 2 bitmaps, Device.bmp and Devicel.bmp,
located in start\System\Simulation\Res which can be used as a starting point for
your own bitmaps.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER Simulation

3.4 Hardkey simulation

The hardkey simulation can only be used in the custom bitmap view. Hardkeys may
also be simulated as part of the device, and may be selected with the mouse pointer.
The idea is to be able to distinguish whether a key or button on the simulated device
is pressed or unpressed. A hardkey is considered "pressed" as long as the mouse
button is held down; releasing the mouse button or moving the pointer off of the
hardkey "unpresses"” the key. A toggle behavior between pressed and unpressed may
also be specified with the routine SIM_HARDKEY_SetMode().

In order to simulate hardkeys, you need a second bitmap of the device which is
transparent except for the keys themselves (in their pressed state). As described
earlier in this chapter, this bitmap can be in a separate file in the directory, or
included as a resource in the executable. Hardkeys may be any shape, as long as
they are exactly the same size in pixels in both Device.bmp and Devicel.bmp. The
following example illustrates this:

Device bitmap: unpressed hardkey Device hardkey bitmap: pressed
state (Device.bmp) hardkey state (Devicel.bmp)

When a key is "pressed" with the mouse, the corresponding section of the hardkey
bitmap (Devicel.bmp) will overlay the device bitmap in order to display the key in its
pressed state.

The keys may be polled periodically to determine if their states (pressed/unpressed)
have changed and whether they need to be updated. Alternatively, a callback routine
may be set to trigger a particular action to be carried out when the state of a hardkey
changes.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

57

3.4.1 Hardkey simulation API

The hardkey simulation functions are part of the standard simulation program
shipped with emWin. If using a user defined emWin simulation these functions may
not be available. The table below lists the available hardkey-simulation-related rou-
tines in alphabetical order within their respective categories. Detailed descriptions of
the routines follow:

Routine Explanation
SIM_HARDKEY_GetNum/() Return the number of available hardkeys.
Return the state of a specified hardkey (0: unpressed,

SIM_HARDKEY_GetState() 1: pressed)

Set a callback routine to be executed when the state of
a specified hardkey changes.

Set the behavior for a specified hardkey (default = 0:

no toggle).

Set the state for a specified hardkey (0: unpressed, 1:
pressed).

SIM_HARDKEY_SetCallback()

SIM_HARDKEY_SetMode ()

SIM_HARDKEY_SetState()

SIM_HARDKEY_GetNum()

Description
Returns the number of available hardkeys.

Prototype
int SIM_HARDKEY_GetNum(void) ;

Return value
The number of available hardkeys found in the bitmap.

Additional information

The numbering order for hardkeys is standard reading order (left to right, then top to
bottom). The topmost pixel of a hardkey is therefore found first, regardless of its
horizontal position. In the bitmap below, for example, the hardkeys are labeled as
they would be referenced by the KeyIndex parameter in other functions:

It is recommended to call this function in order to verify that a bitmap is properly
loaded.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER Simulation

SIM_HARDKEY_GetState()

Description
Returns the state of a specified hardkey.

Prototype

int SIM_HARDKEY_GetState (unsigned int KeyIndex) ;
Parameter Description

KeyIndex Index of hardkey (0 = index of first key).

Return value

State of the specified hardkey:
0: unpressed
1: pressed

SIM_HARDKEY_SetCallback()

Description
Sets a callback routine to be executed when the state of a specified hardkey changes.

Prototype

SIM_HARDKEY_CB * SIM_HARDKEY_ SetCallback(unsigned int KeyIndex,
SIM_HARDKEY_CB * pfCallback) ;

Parameter Description
KeyIndex Index of hardkey (0 = index of first key).
pfCallback Pointer to callback routine.

Return value
Pointer to the previous callback routine.

Additional information

Note that multi tasking support has to be enabled if GUI functions need to be called
within the callback functions. Without multi tasking support only the GUI functions
which are allowed to be called within an interrupt routine should be used.

The callback routine must have the following prototype:

Prototype

typedef void SIM_HARDKEY_ _CB(int KeyIndex, int State);
Parameter Description

KeyIndex Index of hardkey (0 = index of first key).

State State of the specified hardkey. See table below.

Permitted values for parameter state

0 Unpressed.

1 Pressed.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

59

SIM_HARDKEY_SetMode()

Description
Sets the behavior for a specified hardkey.
Prototype

int SIM_HARDKEY_SetMode (unsigned int KeyIndex, int Mode) ;

Parameter Description
KeyIndex Index of hardkey (0 = index of first key).
Mode Behavior mode. See table below.

Permitted values for parameter Mode

0 Normal behavior (default).

Toggle behavior.

Additional information

Normal (default) hardkey behavior means that a key is considered pressed only as
long as the mouse button is held down on it. When the mouse is released or moved
off of the hardkey, the key is considered unpressed.

With toggle behavior, each click of the mouse toggles the state of a hardkey to
pressed or unpressed. That means if you click the mouse on a hardkey and it
becomes pressed, it will remain pressed until you click the mouse on it again.

SIM_HARDKEY_SetState()

Description
Sets the state for a specified hardkey.

Prototype

int SIM_HARDKEY_SetState(unsigned int KeyIndex, int State);
Parameter Description

KeyIndex Index of hardkey (0 = index of first key).

State State of the specified hardkey. See table below.

Permitted values for parameter state

Unpressed.

Pressed.

Additional information
This function is only usable when SIM_HARDKEY_SetMode () is set to 1 (toggle mode).

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER Simulation

3.5 Integrating the emWin simulation into an existing
simulation

In order to integrate the emWin simulation into an existing simulation, the source
code of the simulation is not required. The source code of the simulation is not nor-
mally shipped with emWin. It is a separate (optional) software item and is not
included in the emWin basic package.

Normally the source code of the emWin simulation is not needed but available as an
optional software item. As described earlier in this chapter the basic package and the
trial version contains a simulation library. The API functions of this library can be
used if for example the emWin simulation should be added to an existing hardware or
real time kernel (RTOS) simulation.

To add the emWin simulation to an existing simulation (written in C or C++, using
the Win32 API), only a few lines of code need to be added.

3.5.1 Directory structure -] Simulation
The subfolder Simulation of the System folder contains the """ _| Res
emWin simulation. The directory structure is shown on the _| SIM_alI
right. The table below explains the contents of the subfolders: i _| WinMain

Directory Content
Simulation Simulation source and header files_ to be used with anq withc_)ut t_he simulation
source code. The folder also contains a ready to use simulation library.
Res Resource files.
SIM_GUI GUI simulation source code (optional).
WinMain Contains the WinMain routine.

3.5.2 Using the simulation library

The following steps will show how to use the simulation library to integrate the
emWin simulation into an existing simulation:

Step 1: Add the simulation library Gurisim.1ib to the project.
Step 2: Add all GUI files to the project as described in the chapter 2.1.1, "Subdi-
rectories".

e Step 3: Add the include directories to the project as described in the chapter
2.1.2, "Include Directories".

e Step 4: Modify WinMain.

3.5.2.1 Modifying WinMain

Every windows Win32 program starts with winMain () (contrary to a normal C pro-
gram from the command line, which starts with main (). All that needs to be done is
to add a few lines of code to this routine.
The following function calls need to be added (normally in the order as it'’s shown in
the following application code example):

. SIM_GUI_Enable

. SIM_GUI_Init

. SIM_GUI_CreateLCDWindow
. CreateThread

. SIM_GUI_Exit

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

UMO03001 User & Reference Guide for emWin V5.20

3.5.2.2 Example application

61

The following application is available under sample\WinMain\SampleApp.c and shows

how to integrate the emWin simulation into an existing application:

#include <windows.h>
#include "GUI_SIM Win32.h"

void MainTask (void) ;

/***
*
* _Thread
*/
static DWORD __ stdcall _Thread(void * Parameter) ({
MainTask () ;
return 0;

}

/***
*

* _WndProcMain
*/
static LRESULT CALLBACK _WndProcMain (HWND hind, UINT message,

WPARAM wParam, LPARAM lParam) {

SIM_GUI_HandleKeyEvents (message, wParam) ;
switch (message) {
case WM_DESTROY:

PostQuitMessage (0) ;

break;
}
return DefWindowProc (hWwnd, message, wParam, lParam) ;

}

/***
*

* _RegisterClass

*/

static void _RegisterClass (HINSTANCE hInstance) {
WNDCLASSEX wcex;

memset (&wcex, 0, sizeof (wcex)) ;

wcex.cbSize sizeof (WNDCLASSEX) ;
wcex.hInstance hInstance;

wcex.style CS_HREDRAW | CS_VREDRAW;
wcex . lpfnWndProc (WNDPROC) _WndProcMain;
wcex.hIcon 0;

wcex.hCursor LoadCursor (NULL, IDC_ARROW) ;
wcex . hbrBackground (HBRUSH) (COLOR_APPWORKSPACE + 1) ;
wcex . lpszMenuName 0;

wcex. lpszClassName "GUIApplication";

RegisterClassEx (&wcex) ;

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER Simulation

/***
*
*
*/
int APIENTRY WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR 1lpCmdLine, int nCmdShow) {

WinMain

DWORD ThreadID;
MSG Msg;
HWND hWwndMain;
//
// Register window class
//
_RegisterClass (hInstance) ;
//
// Make sure the driver configuration is done
//
SIM_GUI_Enable() ;
//
// Create main window
//
hWndMain = CreateWindow ("GUIApplication", "Application window",
WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_VISIBLE,
0, 0, 328, 267, NULL, NULL, hInstance, NULL) ;
//
// Initialize the emWin simulation and create an LCD window
//
SIM_GUI_Init (hInstance, hWndMain, lpCmdLine, "embOS - emWin Simulation");
SIM_GUI_CreateLCDWindow (hwndMain, 0, 0, 320, 240, 0);
//
// Create a thread which executes the code to be simulated
//
CreateThread (NULL, 0, (LPTHREAD_START ROUTINE)_Thread, NULL, 0, &ThreadID);
//
// Main message loop
//
while (GetMessage (&Msg, NULL, 0, 0)) {
TranslateMessage (&Msg) ;
DispatchMessage (&Msg) ;
}
SIM_GUI_Exit () ;
}

3.5.3 Integration into the embOS Simulation

3.5.3.1 WinMain

The following code example shows how to modify the existing WinMain of the embOS
simulation in order to integrate the emWin simulation. The red colored lines should
be added to WinMain to initialize the emWin simulation, to create a simulation win-
dow and to exit the emWin simulation:

#include "GUI_SIM Win32.h"

int APIENTRY WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR 1lpCmdLine, int nCmdShow) {
MSG Msg;
HACCEL hAccelTable;
HWND hwWwndMain;
BITMAP BmpDevice;
DWORD ThreadID;
//
// Init global data
//

_StopHyperThreading () ;

_hInst = hInstance;

//

// Register main window class

//

_RegisterClass() ;

//

// Load bitmap

//

_hBmpDevice = (HBITMAP)LoadImage (_hInst, (LPCTSTR) IDB_DEVICE,
IMAGE_BITMAP, 0, 0, 0);

LoadMenu (_hInst, (LPCSTR)IDC_CONTEXTMENU) ;

GetSubMenu (_hMenuPopup, 0);

_hMenuPopup
_hMenuPopup

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

63

//

// Make sure the driver configuration is done

//

SIM_GUI_Enable() ;

//

// Create main window

//

GetObject (_hBmpDevice, sizeof (BmpDevice), &BmpDevice) ;

hWwndMain = CreateWindowEx (WS_EX_TOPMOST, _sWindowClass, "embOS Simulation",
WS_SYSMENU | WS_CLIPCHILDREN | WS_POPUP | WS_VISIBLE,
10, 20, BmpDevice.bmWidth, BmpDevice.bmHeight,
NULL, NULL, _hInst, NULL);

if (!'hWwndMain) {

return 1; // Error
}
//
// Init emWin simulation and create window
//

SIM_GUI_Init (hInstance, hWndMain, lpCmdLine, "embOS - emWin Simulation");
SIM_GUI_CreateLCDWindow (hWwndMain, 80, 50, 128, 64, 0);

;j Show main window

éﬁowWindow(hWndMain, nCmdShow) ;

;j Load accelerator table

ééccelTable = LoadAccelerators(_hInst, (LPCTSTR)IDC_WINMAIN) ;

;j Application initialization

é;eateThread(NULL, 0, (LPTHREAD_START ROUTINE)Thread, NULL, 0, &ThreadID) ;
;j Main message loop

ié (SIM_Init (hWwndMain) == 0) {

while (GetMessage (&Msg, NULL, 0, 0)) {
if (!TranslateAccelerator (Msg.hwnd, hAccelTable, &Msg)) {
TranslateMessage (&Msg) ;
DispatchMessage (&Msg) ;
}
}
}
//
// Exit emWin simulation
//
SIM_GUI_Exit();
return 0;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER Simulation

3.5.3.2 Target program (main)

The emWin API can be called from one or more target threads. Without RTOS, the
WIN32 API function CreateThread is normally used to create a target thread which
calls the emWin API; within an RTOS simulation, a target task/thread (Created by the
simulated RTOS) is used to call the emWin API. In other words: Use 0S_CreateTask
to create a task for the user interface. Below a modified embOS start application:
#include <windows.h>

#include "RTOS.H"

#include "HW_LED.h"
#include "GUI.h"

OS_STACKPTR int Stack0[128], Stackl[128], Stack2[2000]; // Task stacks
0S_TASK TCBO, TCB1, TCB2; // Task-control-blocks

void TaskO (void) {
while (1) {
HW_LED_ToggleO () ;
0S_Delay (100) ;
}
}

void Taskl (void) {
while (1) {
HW_LED_Togglel () ;
0S_Delay (500) ;
}
}

void MainTask (void) {

int 1i;
GUI_COLOR aColor[] = {GUI_RED, GUI_YELLOW};
GUI_Init();
while (1) {
for (i = 0; 1 < 2; i++) {
GUI_Clear () ;

GUI_SetColor (aColor[il]);
GUI_SetFont (&GUI_FontComic24B_ASCII) ;
GUI_DispStringAt ("Hello world!", 1, 1);
0S_Delay (200) ;
}
}
}

/**
*

* main

*/

void main (void) {
0S_IncDI(); // Initially disable interrupts
OS_InitKern() ; // Initialize 0OS
OS_InitHW() ; // Initialize Hardware for 0S
//
// You need to create at least one task here!
//
OS_CREATETASK (&TCB0O, "HP Task", TaskO, 100, StackO0);
OS_CREATETASK (&TCB1, "LP Task", Taskl, 50, Stackl);
OS_CREATETASK (&TCB2, "GUI Task", MainTask, 80, Stack2?);
0S_Start () ; // Start multitasking

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

65

The following table shows the simulation before and after integrating the emWin sim-

ulation:

Before

After

ERRRREIREERRRRINERRRIRAEERI

ERRRREIREERRRRINERRRIRAEERI

3.5.4 GUI simulation API

The table below lists the available routines for user defined simulation programs in
alphabetical order within their respective categories. The functions are only available
with the source code of the emWin simulation. Detailed descriptions of the routines

follow:

Routine

Explanation

SIM_GUI_CreateLCDInfowWindow ()

Creates a window which shows the available colors of
the given layer with the given size and position.

SIM_GUI_CreateLCDWindow ()

Creates a LCD window with the given size and position.

SIM_GUI_Enable()

Executes memory and driver configuration.

SIM _GUI_Exit ()

Stops the GUI simulation.

SIM _GUI_TInit()

Initializes the GUI simulation.

SIM_GUI_SetLCDWindowHook ()

Sets a hook function to be called if the LCD window

receives a message.

SIM_GUI_CreateLCDInfoWindow()

Description

Creates a window which shows the available colors for the given layer.

Prototype

HWND SIM_GUI_CreateLCDInfoWindow (HWND hParent,

int x, int y, int xSize, int ySize
int LayerIndex) ;

Parameter Description
hParent Handle of the parent window.
X X position in parent coordinates.
v Y position in parent coordinates.

g X size in pixel of the new window. Should be 160 if using a color depth between 1 and
Hedze 8 or 128 if working in high color mode.

. Y size in pixel of the new window. Should be 160 if using a color depth between 1 and
ySize 8 or 128 if working in high color mode.
LayerIndex Index of layer to be shown.

Additional information

The created color window has no frame, no title bar and no buttons.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER Simulation

Example
SIM_GUI_CreateLCDInfoWindow (hwnd, 0, 0, 160, 160, 0);

Screenshot

OOoO0O0oooo0O0ooooooo

SIM_GUI_CreateLCDWindow()

Description
Creates a window which simulates a LCD display with the given size at the given
position.

Prototype

HWND SIM_GUI_CreateLCDWindow (HWND hParent,
int x, int y, int xSize, int ySize

int LayerIndex) ;

Parameter Description
hParent Handle of the parent window.
x X position in parent coordinates.
2% Y position in parent coordinates.
xSize X size in pixel of the new window.
ySize Y size in pixel of the new window.
LayerIndex Index of layer to be shown.

Additional information
All display output to the given layer will be shown in this window. The size of the win-

dow should be the same as configured in LCDConf.c.
The created simulation window has no frame, no title bar and no buttons.

SIM_GUI_Enable()

Description

The function needs to be called at the beginning of the application to make sure that
memory and driver will be configured at first.

Prototype
void SIM_GUI_Enable (void) ;
SIM_GUI_Exit()

Description
The function should be called before the simulation returns to the calling process.

Prototype
void SIM_GUI_Exit (void) ;
SIM_GUI_Init()

Description
This function initializes the emWin simulation and should be called before any other
SIM_GUI... function call.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Prototype

int SIM _GUI_Init (HINSTANCE hInst,

67

HWND hWwndMain,

char * pCmdLine, const char * sAppName) ;

Parameter Description
hInst Handle to current instance passed to WinMain.
hwWwndMain Handle of the simulations main window.
pCmdLine Pointer to command line passed to WinMain
sAppName Pointer to a string that contains the application name.

Additional information
The parameters hwndMain and sAppName are used if a message box should be dis-

played.

Description

SIM_GUI_SetLCDWindowHook()

Sets a hook function to be called from the simulation if the LCD window receives a

message.

Prototype

void SIM_GUI_SetLCDWindowHook (SIM_GUI_tfHook * pfHook) ;

Parameter

Description

pfHook

Pointer to hook function.

Prototype of hook function

int Hook (HWND hwnd, UINT Message, WPARAM wParam, LPARAM lParam,
int * pResult);

Parameter Description
hwnad Handle of LCD window.
Message Message received from the operating system.
wParam wParam message parameter passed by the system.
lParam IParam message parameter passed by the system.

Pointer to an integer which should be used as return code if the message has been

pResult processed by the hook function.

Return value

The hook function should return 0 if the message has been processed. In this case
the GUI simulation ignores the message.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER Simulation

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

69

Chapter 4

Viewer

If you use the simulation when debugging your application, you cannot see the dis-
play output when stepping through the source code. The primary purpose of the
viewer is to solve this problem. It shows the contents of the simulated display(s)
while debugging in the simulation.

The viewer gives you the following additional capabilities:

Multiple windows for each layer

Watching the whole virtual layer in one window
Magnification of each layer window

Composite view if using multiple layers

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

70

4.1

CHAPTER Viewer

Using the viewer

o emin¥iew ¥3.62

The viewer allows you to: n— m—
File Wiew Options ‘Window Help

e Open multiple windows for any
layer/display

e Zoom in on any area of a layer/
display

e See the contents of the individ-
ual layers/displays as well as
the composite view in multi-
layer configurations

e See the contents of the virtual
screen and the visible display
when using the virtual screen
support.

The screenshot shows the viewer

displaying the output of a single

layer configuration. The upper left

corner shows the simulated display.

In the upper right corner is a win-

dow, which shows the available col-

ors of the display configuration. At

the bottom of the viewer a second

display window shows a magnified 1

area of the simulated display. If you Meusemovedout

start to debug your application, the

viewer shows one display window per layer and one color window per layer. In a multi

layer configuration, a composite view window will also be visible.

o Layer #0, 320%2

4.1.1 Using the simulation and the viewer

If you use the simulation when debugging your application, you cannot see the dis-
play output when stepping through the source code. This is due to a limitation of
Win32: If one thread (the one being debugged) is halted, all other threads of the
process are also halted. This includes the thread which outputs the simulated display
on the screen.

The emWin viewer solves this problem by showing the display window and the color
window of your simulation in a separate process. It is your choice if you want to start
the viewer before debugging your application or while you are debugging. Our sug-
gestion:

e Step 1: Start the viewer. No display- or color window is shown until the simula-
tion has been started.
Step 2: Open the Visual C++ workspace.
Step 3: Compile and run the application program.

e Step 4: Debug the application as described previously.

The advantage is that you can now follow all drawing operations step by step in the
LCD window.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

71

4.1.2 Using the viewer with virtual pages

wmemWin¥iew ¥3.93

Eile

Mouse moved ouk Single display mode L

By default the viewer opens one window per layer which shows the visible part of the
video RAM, normally the display. If the configured virtual video RAM is larger than
the display, the command view/virtual Layer/Layer (0...4) can be used to show
the whole video RAM in one window. When using the function cui_setorg(), the con-
tents of the visible screen will change, but the virtual layer window remains
unchanged:

Wiew Options wWindow Help
i ¥irt.Layer #0, 320%720, 8bpp

Virtual screen sample

Horizontal min:

Horizonkal masx IDDDDDDDD

R
Werkical min: IDDDDDDDD ’> =

/— alibration
wWerkical max: IDDDDDDDD SEGGER

whwwWeseqggernr.coim

Horizontal min:

IDDDDODDD
IDDDDGDDD
IDDDDODDD

Horizonktal max

wWerkical min;

wWerkical max:

4.1.

4.1,

4.1.

For more information about virtual screens, refer to chapter “Virtual screens / Virtual
pages” on page 835.

3 Always on top

Per default the viewer window is always on top. You can change this behavior by
selecting options\Always on top from the menu.

4 Open further windows of the display output

If you want to show a magnified area of the LCD output or the composite view of a
multi layer configuration it could be useful to open more than one output window.
You can do this by view/Visible Layer/Layer (1...4), View/Virtual Layer/
Layer (1...4) Oor View/Composite.

5 Zooming

Zooming in or out is easy:
Right-click on a layer or composite window opens the Zoom popup menu.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER Viewer

Choose one of the zoom options:

Fit window to size

100%
200%
300%
300% (Grid)
400%
400%, (Grid)
600%
600% (Grid)
B00%
B00%, (Grid)
1000%
1000% {Grid)

Copy to clipboard
About ...

Using the grid
winemWinYiew ¥3.93
File Wiew Options Window Help

o Wis.Layer #0, 320*240, 8bpp @ 0,0
% < Default |

Magnified -»

| -

Rl [W
WM _MOUSEMOVE (x=65, y=53) |single display mode Y

If you magnify the LCD output >= 300%, you have the choice between showing the
output with or without a grid. It is possible to change the color of the grid. This can
be done choosing the Menu point Options/Grid color.

Adapting the size of the window

If you want to adapt the size of the window to the magnification choose Fit window
to size from the first popup menu.

4.1.6 Copy the output to the clipboard

Click onto a LCD window or a composite view with the right mouse key and choose
Copy to clipboard. Now you can paste the contents of the clipboard for example
into the Ms paint application.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

73

4.1.7 Using the viewer with multiple displays

If you are working with multiple displays you should set the viewer into 'Multi display
mode’ by using the command Options/Multi layer/display.

Multi layer/display mode E

= Multi layer mode

()3 I Cancel |

When starting the debugger the viewer will open one display window and one color
window for each display:

4.1.8 Using the viewer with multiple layers

If you are working with multiple layers you should set the viewer into 'Multi layer
mode’ by using the command Options/Multi layer/display.

Multi layer,

= Multi display mode

()3 I Cancel |

When starting the debugger the viewer will open one LCD window and one color win-
dow for each layer and one composite window for the result.

Example

The example below shows a screenshot of the viewer with 2 layers. Layer 0 shows
color bars with a high color configuration. Layer 1 shows a transparent circle on a
white background with colored rectangles. The composite window shows the result
which is actually visible on the display

onemin¥iew ¥3.42b

File Wiew Help
M =] E3 |} 5" Composite LCD 352%258

&N Colors #0 =] B3

—
_—

Mouse moved out

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER Viewer

Transparency

The composite window of the viewer shows all layers; layers with higher index are on
top of layers with lower index and can have transparent pixels:

Layer O

Layer 1

No transparency
Layern

Pixels can be transparent {

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

75

Chapter 5
Displaying Text

It is very easy to display text with emWin. Knowledge of only a few routines already
allows you to write any text, in any available font, at any point on the display. We
first provide a short introduction to displaying text, followed by more detailed expla-
nations of the individual routines that are available.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

76

5.1

CHAPTER Displaying Text

Basic routines

In order to display text on the LCD, simply call the routine GUI_DispString() with
the text you want to display as parameters. For example:

GUI_DispString("Hello world!");

The above code will display the text "Hello world" at the current text position. How-
ever, as you will see, there are routines to display text in a different font or in a cer-
tain position. In addition, it is possible to write not only strings but also decimal,
hexadecimal and binary values to the display. Even though the graphic displays are
usually byte-oriented, the text can be positioned at any pixel of the display, not only
at byte positions.

Control characters

Control characters are characters with a character code of less than 32. The control
characters are defined as part of ASCII. emWin ignores all control characters except
for the following:

(SIETE | Al C Description
Code code P

Line feed.

The current text position is changed to the beginning of the next line. Per
10 LF \n default, this is: X = 0.

Y + =font-distance in pixels (as delivered by GUI_GetFontDistY ()).

Carriage return.
13 CR \r The current text position is changed to the beginning of the current line. Per
default, this is: X = 0.

Usage of the control character Lr can be very convenient in strings. A line feed can
be made part of a string so that a string spanning multiple lines can be displayed
with a single routine call.

Positioning text at a selected position

This may be done by using the routine GUI_Gotoxy() as shown in the following
example:

GUI_GotoXY(10,10);// Set text position (in pixels)
GUI_DispString("Hello world!");// Show text

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

77

5.2 Text API

The table below lists the available text-related routines in alphabetical order within
their respective categories. Detailed descriptions of the routines can be found in the
sections that follow.

Routine Explanation
Routines to display text

GUI_DispChar () Displays single character at current position.
GUI_DispCharAt () Displays single character at specified position.
GUI_DispChars () Displays character a specified number of times.
GUI_DispNextLine () Moves the cursor to the beginning of the next line.
GUI_DispString/() Displays string at current position.
GUI_DispStringAt () Displays string at specified position.
GUI_DispStringAtCEOL () Displays string at specified position, then clear to end of line.
GUI_DispStringHCenterAt () Displays string centered horizontally at the given position.
GUI_DispStringInRect () Displays string in specified rectangle.
GUI_DispStringInRectEx () Displays string in specified rectangle and optionally rotates it.

GUI_DispStringInRectWrap () | Displays string in specified rectangle with optional wrapping.
Display string at current position with specified number of char-

GUI_DispStringLen ()

acters.
GUI_WrapGetNumLines () Get the number of text lines for the given wrap mode.
Selecting text drawing modes
GUI_GetTextMode () Returns the current text mode
GUI_SetTextMode () Sets text drawing mode.
GUI_SetTextStyle() Sets the text style to be used.
Selecting text alignment
GUI_GetTextAlign () Return current text alignment mode.
GUI_SetLBorder () Set left border after line feed.
GUI_SetTextAlign () Set text alignment mode.
Setting the current text position
GUI_GotoX () Set current X-position.
GUI_GotoXY () Set current (X,Y) position.
GUI_GotoY () Set current Y-position.
Retrieving the current text position
GUI_GetDispPosX() Return current X-position.
GUI_GetDispPosY () Return current Y-position.

Routines to clear a window or parts of it

Clear active window (or entire display if background is the active

GUI_Clear () window).

GUI_DispCEOL () Clear display from current text position to end of line.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER Displaying Text

5.3 Routines to display text
GUI_DispChar()

Description

Displays a single character at the current text position in the current window using
the current font.

Prototype
void GUI_DispChar (Ul6 c);

Parameter Description
c Character to display.

Additional information

This is the basic routine for displaying a single character. All other display routines
(GUI_DispCharAt (), GUI_DispString (), etc.) call this routine to output the individ-
ual characters.

Which characters are available depends on the selected font. If the character is not
available in the current font, nothing is displayed.

Example

Shows a capital o on the display:
GUI_DispChar('A'");

Related topics
GUI_DispChars (), GUI_DispCharAt /()

GUI_DispCharAt()

Description

Displays a single character at a specified position in the current window using the
current font.

Prototype
void GUI_DispCharAt (Ul6 c, I1l6P x, Il6P vy);
Parameter Description
c Character to display.
X X-position to write to in pixels of the client window.
v Y-position to write to in pixels of the client window.

Add information

Displays the character with its upper left corner at the specified (X,Y) position.
Writes the character using the routine cuI_bDispChar().

If the character is not available in the current font, nothing is displayed.
Example

Shows a capital 2 on the display in the upper left corner:
GUI_DispCharAt('A',0,0);

Related topics
GUI_DispChar (), GUI_DispChars/()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

GUI_DispChars()

Description

Displays a character a specified number of times at the current text position in the
current window using the current font.

Prototype
void GUI_DispChars(Ul6 ¢, int Cnt);

79

Parameter

Description

c
Cnt

Character to display.
Number of repetitions (0 <= Cnt <= 32767).

Additional information

Writes the character using the routine GUI_bDispChar ().
If the character is not available in the current font, nothing is displayed.

Example
Shows the line "*xxx*xkkxxxkkkkxxxxkkkkxxxx*xx*x" on the dlsplay

GUI_DispChars('*"',

Related topics

GUI_DispChar (),

GUI_DispNextLine()

Description
Moves the cursor to the beginning of the next line.

Prototype
void GUI_DispNextLine (void) ;

Related topics

GUI_SetLBorder ()

GUI_DispString()

Description

Displays the string passed as parameter at the current text position in the current
window using the current font.

Prototype
void GUI_DispString(const char GUI_FAR * s);

30);

GUI_DispCharAt ()

Parameter

Description

S

String to display.

Additional information

The string can contain the control character \n. This control character moves the cur-
rent text position to the beginning of the next line.

Example

Shows "Hello world" on the display and "Next line" on the next line:
GUI_DispString("Hello world"); //Disp text

GUI_DispString("\nNext line"); //Disp text

Related topics

GUI_DispStringAt (),

GUI_DispStringAtCEOL(), GUI_DispStringLen ()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

80

CHAPTER Displaying Text

GUI_DispStringAt()

Description
Displays the string passed as parameter at a specified position in the current window
using the current font.

Prototype

void GUI_DispStringAt (const char GUI_FAR * s, int x, int vy);
Parameter Description

S String to display.

X X-position to write to in pixels of the client window.

v Y-position to write to in pixels of the client window.

Example

Shows "Position 50,20" at position 50,20 on the display:

GUI_DispStringAt ("Position 50,20", 50, 20); // Disp text

Related topics

GUI_DispString (), GUI_DispStringAtCEOL(), GUI_DispStringLen(),

GUI_DispStringAtCEOL()

Description

This routine uses the exact same parameters as GUI_DispStringaAt (). It does the
same thing: displays a given string at a specified position. However, after doing so, it
clears the remaining part of the line to the end by calling the routine
GUI_DispCEOL (). This routine can be handy if one string is to overwrite another, and
the overwriting string is or may be shorter than the previous one.

GUI_DispStringHCenterAt()

Description

Displays the string passed as parameter horizontally centered at a specified position
in the current window using the current font.

Prototype
void GUI_DispStringHCenterAt (const char GUI_FAR * s, int x, int vy);
Parameter Description
s String to display.
X X-position to write to in pixels of the client window.
v Y-position to write to in pixels of the client window.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

81

GUI_DispStringinRect()

Description

Displays the string passed as parameter at a specified position within a specified
rectangle, in the current window using the current font.

Prototype
void GUI_DispStringInRect (const char GUI_UNI_PTR * s,
GUI_RECT * pRect,
int TextAlign) ;
Parameter Description
S String to display.
pRect Rectangle to write to in pixels of the client window.
Alignment flags; "OR" combinable. A flag for horizontal and a flag for vertical alignment
. should be combined. Available flags are:
TextAlign | 1 Ta TOP, GUI_TA_BOTTOM, GUI TA VCENTER for vertical alignment.
GUI_TA_LEFT, GUI_TA_RIGHT, GUI_TA_HCENTER for horizontal alignment.
Example

Shows the word "Text" centered horizontally and vertically in the current window:

GUI_RECT rClient;
GUI_GetClientRect (&rClient) ;
GUI_DispStringInRect ("Text", &rClient, GUI_TA_HCENTER | GUI_TA_VCENTER) ;

Additional information
If the specified rectangle is too small, the text will be clipped.

Related topics
GUI_DispString(), GUI_DispStringAtCEOL(), GUI_DispStringLen(),

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER Displaying Text

GUI_DispStringinRectEx()

Description

Displays the string passed as parameter at a specified position within a specified
rectangle, in the current window using the current font and (optionally) rotates it.

Prototype
void GUI_DispStringInRectEx(const char * s,
GUI_RECT * pRect,
int TextAlign,
int MaxLen,
const GUI_ROTATION * pLCD_Api);
Parameter Description
S String to display.
pRect Rectangle to write to in pixels of the client window.
Alignment flags; "OR" combinable. A flag for horizontal and a flag for vertical align-
T INE ment should be combined. Available flags are:
extAlign GUI_TA_TOP, GUI_TA_BOTTOM, GUI_TA VCENTER for vertical alignment.
GUI_TA_LEFT, GUI_TA_RIGHT, GUI_TA_HCENTER for horizontal alignment.
MaxLen Maximum number of characters to be shown.
pLCD_Api See table below.
Permitted values for parameter pL.CD_Api
GUI_ROTATE_O Does not rotate the text. Shows it from left to right.
GUI_ROTATE_180 Rotates the text by 180 degrees.
GUI_ROTATE_CCW Rotates the text counter clockwise.
GUI_ROTATE_CW Rotates the text clockwise.
Example

Shows the word "Text" centered horizontally and vertically in the given rectangle:
GUI_RECT Rect = {10, 10, 40, 80};
char acText[] = "Rotated\ntext";
GUI_SetTextMode (GUI_TM_XOR) ;
GUI_FillRectEx (&Rect) ;
GUI_DispStringInRectEx (acText,
&Rect,
GUI_TA_HCENTER | GUI_TA_VCENTER,
strlen(acText),
GUI_ROTATE_CCW) ;

Screenshot of above example

Eotated
text

Additional information

If the specified rectangle is too small, the text will be clipped.
To make the function available the configuration switch GUI_SUPPORT_ROTATION must
be activated (default).

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

GUI_DispStringinRectWrap()

Description

83

Displays a string at a specified position within a specified rectangle, in the current
window using the current font and (optionally) wraps the text.

Prototype
void GUI_DispStringInRectWrap (const char GUI_UNI_PTR * s,
GUI_RECT * pRect,
int TextAlign,
GUI_WRAPMODE WrapMode) ;
Parameter Description
S String to display.
pRect Rectangle to write to in pixels of the client window.
Alignment flags; "OR" combinable. A flag for horizontal and a flag for vertical align-
. ment should be combined. Available flags are:
Textalign GUI_TA_TOP, GUI_TA_BOTTOM, GUI_TA VCENTER for vertical alignment.
GUI_TA_LEFT, GUI_TA_RIGHT, GUI_TA_HCENTER for horizontal alignment.
WrapMode See table below.

Permitted values for parameter wrapMode

GUI_WRAPMODE_NONE No wrapping will be performed.

GUI_WRAPMODE_WORD Text is wrapped word wise.

GUI_WRAPMODE_CHAR | Text is wrapped char wise.

Additional information

If word wrapping should be performed and the given rectangle is too small for a word
char wrapping is executed at this word.

Example

Shows a text centered horizontally and vertically in the given rectangle with word

wrapping:
int 1i;

char acText][]
GUI_RECT Rect

GUI_WRAPMODE aWm[]

"This example demonstrates text wrapping";
{10, 10, 59, 59};

{GUI_WRAPMODE_NONE,

GUI_WRAPMODE_CHAR,

GUI_WRAPMODE_WORD} ;

GUI_SetTextMode (GUI_TM_TRANS) ;
for (i = 0; i < 3; i++) {
GUI_SetColor (GUI_BLUE) ;
GUI_FillRectEx (&Rect) ;
GUI_SetColor (GUI_WHITE) ;
GUI_DispStringInRectWrap (acText, &Rect, GUI_TA_LEFT, aWml[il]);

Rect.x0 += 60;
Rect.x1l += 60;

}

Screenshot of above example

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER Displaying Text

GUI_DispStringLen()

Description

Displays the string passed as parameter with a specified number of characters at the
current text position, in the current window using the current font.

Prototype
void GUI_DispStringLen (const char GUI_FAR * s, int Len);

Parameter Description

String to display. Should be a \0 terminated array of 8-bit character. Passing NULL as
parameter is permitted.

Len Number of characters to display.

S

Additional information

If the string has less characters than specified (is shorter), it is padded with spaces.
If the string has more characters than specified (is longer), then only the given num-
ber of characters is actually displayed.

This function is especially useful if text messages can be displayed in different lan-
guages (and will naturally differ in length), but only a certain number of characters
can be displayed.

Related topics

GUI_DispString (), GUI_DispStringAt(), GUI_DispStringAtCEOL(),
GUI_WrapGetNumLines()
Description
Returns the number of lines used to show the given text with the given wrap mode.
Prototype
int GUI_WrapGetNumLines (const char GUI_UNI_PTR * pText,
int xSize,
GUI_WRAPMODE WrapMode) ;
Parameter Description
String to display. Should be a \0 terminated array of 8-bit character. Passing NULL as
pText . ;
parameter is permitted.
xSize X-size to be used to draw the text.
WrapMode See table below.

Permitted values for parameter wrapMode

GUI_WRAPMODE_NONE No wrapping will be performed.
GUI_WRAPMODE_WORD Text is wrapped word wise.
GUI_WRAPMODE_CHAR | Text is wrapped char wise.

Additional information

Please remember that the number of lines required to draw text depends on the cur-
rently selected font.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

85

5.4 Selecting text drawing modes

Normally, text is written into the selected window at the current text position using
the selected font in normal text. Normal text means that the text overwrites what-
ever is already displayed where the bits set in the character mask are set on the dis-
play. In this mode, active bits are written using the foreground color, while inactive
bits are written with the background color. However, in some situations it may be
desirable to change this default behavior. emWin offers four flags for this purpose
(one default plus three modifiers), which may be combined:

Normal text
Text can be displayed normally by specifying GUI_TEXTMODE_NORMAL or 0.

Reverse text

Text can be displayed reverse by specifying cuIi_TEXTMODE_REV. What is usually dis-
played as white on black will be displayed as black on white.

Transparent text

Text can be displayed transparently by specifying GUI_TEXTMODE_TRANS. Transparent
text means that the text is written on top of whatever is already visible on the dis-
play. The difference is that whatever was previously on the screen can still be seen,
whereas with normal text the background is replaced with the currently selected
background color.

XOR text

Text can be displayed using the XOR mode by specifying GUI_TEXTMODE_XOR. What
usually is drawn white (the actual character) is inverted. The effect is identical to
that of the default mode (normal text) if the background is black. If the background
is white, the output is identical to reverse text. If you use colors, an inverted pixel is
calculated as follows:

New pixel color = number of colors - actual pixel color - 1.

Transparent reversed text

Text can be displayed in reverse transparently by specifying GUI_TEXTMODE_TRANS |
GUI_TEXTMODE_REV. As with transparent text, it does not overwrite the background,
and as with reverse text, the text is displayed in reverse.

Additional information
Please note that you can also use the abbreviated form: e.g. GUI_TM_NORMAL

Example

Displays normal, reverse, transparent, XOR, and transparent reversed text:

GUI_SetFont (&GUI_Font8x16) ;
GUI_SetBkColor (GUI_BLUE) ;
GUI_Clear();
GUI_SetPenSize(10) ;
GUI_SetColor (GUI_RED) ;
GUI_DrawLine (80, 10, 240, 90);
GUI_DrawLine (80, 90, 240, 10);
GUI_SetBkColor (GUI_BLACK) ;
GUI_SetColor (GUI_WHITE) ;
GUI_SetTextMode (GUI_TM_NORMAL) ;

GUI_SetTextMode (GUI_TM_TRANS | GUI_TM_REV);
GUI_DispStringHCenterAt ("GUI_TM_TRANS | GUI_TM REV", 160, 74);

GUI_DispStringHCenterAt ("GUI_TM_NORMAL" , 160, 10);
GUI_SetTextMode (GUI_TM_REV) ;

GUI_DispStringHCenterAt ("GUI_TM_REV" , 160, 26);
GUI_SetTextMode (GUI_TM_TRANS) ;

GUI_DispStringHCenterAt ("GUI_TM_TRANS" , 160, 42);
GUI_SetTextMode (GUI_TM_XOR) ;

GUI_DispStringHCenterAt ("GUI_TM_XOR" , 160, 58);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

86

Screen shot of above exampl

CHAPTER Displaying Text

e

GUI_TH_NORMAL

GUI_TH_TRANS

GUI_THM_xOR

GUI_GetTextMode()

Description
Returns the currently selected t

Prototype
int GUI_GetTextMode (void) ;

Return value
The currently selected text mod

GUI_SetTextMode()

ext mode.

e.

Description
Sets the text mode to the parameter specified.
Prototype
int GUI_SetTextMode (int TextMode) ;
Parameter Description
TextMode Text mode to set. May be any combination of the TEXTMODE flags.

Permitted values for parameter TextMode (OR-combinable)

GUI TEXTMODE NORMAL

Causes text to be displayed normally. This is the
default setting; the value is identical to 0.

GUI TEXTMODE REV Causes text to be displayed reverse.
GUI TEXTMODE TRANS Causes text to be displayed transparent.
GUI TEXTMODE XOR Causes text to invert the background.

Return value

The previous selected text mode.

Example

Shows "The value is" at positio
then sets the text mode back to
int i = 20;

GUI_DispStringAt ("The value is",

n 0,0 on the display, shows a value in reverse text,
normal:

0, 0);

GUI_SetTextMode (GUI_TEXTMODE_REV) ;

GUI_DispDec (20, 3);

GUI_SetTextMode (GUI_TEXTMODE_NORMAL) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

87

GUI_SetTextStyle()

Description
Sets the text style to the parameter specified.

Prototype
char GUI_SetTextStyle(char Style);

Parameter

Description

Style

Text style to set. See table below.

Return value

Permitted values for parameter style

GUI TS NORMAL Renders text normal (default).

GUI TS UNDERLINE Renders text underlined.

GUI TS STRIKETHRU Renders text in strike through type.
GUI TS OVERLINE Renders text in overline type.

The previous selected text style.

5.5 Selecting text alignment
GUI_GetTextAlign()

Description
Returns the current text alignment mode.

Prototype
int GUI_GetTextAlign (void) ;

GUI_SetLBorder()

Description
Sets the left border for line feeds in the current window.

Prototype
void GUI_SetLBorder (int Xx)

Parameter Description
X New left border (in pixels, 0 is left border).

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER Displaying Text

GUI_SetTextAlign()

Description

Sets the text alignment mode for the next string output operation in the current win-
dow.

Prototype
int GUI_SetTextAlign (int TextAlign) ;

Parameter Description

Text alignment mode to set. May be a combination of a horizontal and a vertical
alignment flag.

TextAlign

Permitted values for parameter TextAlign
(horizontal and vertical flags are orR-combinable)

Horizontal alignment

GUI TA LEFT Align X-position left (default).
GUI TA HCENTER | Center X-position.
GUI TA RIGHT Align X-position right.
Vertical alignment
GUI TA TOP Align Y-position with top of characters (default).
GUI TA VCENTER | Center Y-position.
GUI TA BOTTOM Align Y-position with bottom pixel line of font.

Return value
The selected text alignment mode.

Additional information

Setting the text alignment does not affect Gul_bDispcChar... ()-functions. Text align-
ment is valid only for the current window.

Example

Displays the value 1234 with the center of the text at x=100, y=100:

GUI_SetTextAlign (GUI_TA_HCENTER | GUI_TA_VCENTER) ;
GUI_DispDecAt (1234,100,100,4) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

89

5.6 Setting the current text position

Every task has a current text position. This is the position relative to the origin of the
window (usually (0,0)) where the next character will be written if a text output rou-
tine is called. Initially, this position is (0,0), which is the upper left corner of the cur-
rent window. There are 3 functions which can be used to set the current text
position.

GUI_GotoXY(), GUI_GotoX(), GUI_GotoY()

Description
Set the current text write position.

Prototypes

char GUI_GotoXY(int x, int vy);
char GUI_GotoX(int x);
char GUI_GotoY (int vy);

Parameter Description
x New X-position (in pixels, 0 is left border).
2% New Y-position (in pixels, 0 is top border).

Return value

Usually 0.
If a value !'= 0 is returned, then the current text position is outside of the window (to
the right or below), so a following write operation can be omitted.

Additional information

GUI_GotoXY () sets both the X- and Y-components of the current text position.
GUI_GotoX () sets the X-component of the current text position; the Y-component
remains unchanged.

GUI_GotoY () sets the Y-component of the current text position; the X-component
remains unchanged.

Example

Shows "(20,20)" at position 20,20 on the display:

GUI_GotoXY (20,20)
GUI_DispString("The value is");

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER Displaying Text

5.7 Retrieving the current text position

GUI_GetDispPosX()
Description

Returns the current X-position.

Prototype
int GUI_GetDispPosX(void) ;

GUI_GetDispPosY()
Description
Returns the current Y-position.

Prototype
int GUI_GetDispPosY (void) ;

5.8 Routines to clear a window or parts of it
GUI_Clear()

Description
Clears the current window.

Prototype
void GUI_Clear (void) ;

Additional information

If no window has been defined, the current window is the entire display. In this case,
the entire display is cleared.

Example

Shows "Hello world" on the display, waits 1 second and then clears the display:
GUI_DispStringAt ("Hello world", 0, 0); // Disp text

GUI_Delay (1000) ; // Wait 1 second (not part of emWin)

GUI_Clear () ; // Clear screen
GUI_DispCEOL()

Description

Clears the current window (or the display) from the current text position to the end
of the line using the height of the current font.

Prototype
void GUI_DispCEOL (void) ;

Example

Shows "Hello world" on the display, waits 1 second and then displays "Hi" in the same
place, replacing the old string:

GUI_DispStringAt("Hello world", 0, 0);// Disp text

Delay (1000);

GUI_DispStringAt ("Hi", 0, 0);

GUI_DispCEOL () ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

91

Chapter 6
Displaying Values

The preceding chapter explained how to show strings on the display. Of course you
may use strings and the functions of the standard C library to display values. How-
ever, this can sometimes be a difficult task. It is usually much easier (and much more
efficient) to call a routine that displays the value in the form that you want. emWin
supports different decimal, hexadecimal and binary outputs. The individual routines
are explained in this chapter.

All functions work without the usage of a floating-point library and are optimized for
both speed and size. Of course sprintf may also be used on any system. Using the
routines in this chapter can sometimes simplify things and save both ROM space and
execution time.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Value API

CHAPTER Displaying Values

The table below lists the available value-related routines in alphabetical order within
their respective categories. Detailed descriptions of the routines can be found in the

sections that follow.

Routine

Explanation

Displaying decimal values

GUI_DispDec ()

Display value in decimal form at current position with specified number
of characters.

GUI_DispDecAt ()

Display value in decimal form at specified position with specified num-
ber of characters.

GUI_DispDecMin ()

Display value in decimal form at current position with minimum number
of characters.

GUI_DispDecShift ()

Display long value in decimal form with decimal point at current posi-
tion with specified number of characters.

GUI_DispDecSpace ()

Display value in decimal form at current position with specified number
of characters, replace leading zeros with spaces.

GUI_DispSDhec ()

Display value in decimal form at current position with specified number
of characters and sign.

GUI_DispSDecShift ()

Display long value in decimal form with decimal point at current posi-
tion with specified number of characters and sign.

Displaying floating-point values

GUI_DispFloat ()

Display floating-point value with specified humber of characters.

GUI_DispFloatFix ()

Display floating-point value with fixed no. of digits to the right of deci-
mal point.

GUI_DispFloatMin ()

Display floating-point value with minimum number of characters.

GUI_DispSFloatFix ()

Display floating-point value with fixed no. of digits to the right of deci-
mal point and sign.

GUI_DispSFloatMin ()

Display floating-point value with minimum number of characters and
sign.

Displaying binary values

GUI_DispBin ()

Display value in binary form at current position.

GUI_DispBinAt ()

Display value in binary form at specified position.

Displaying hexadecimal values

GUI_DispHex ()

Display value in hexadecimal form at current position.

GUI_DispHexAt ()

Display value in hexadecimal form at specified position.

Version of emWin

GUI_GetVersionString ()

Return the current version of emWin.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

93

6.2 Displaying decimal values

GUI_DispDec()

Description

Displays a value in decimal form with a specified humber of characters at the current
text position, in the current window using the current font.

Prototype
void GUI_DispDec(I32 v, U8 Len);
Parameter Description
Value to display.
v Minimum -2147483648 (= -2/31).
Maximum 2147483647 (= 2731 -1).
Len No. of digits to display (max. 10).

Additional information
Leading zeros are not suppressed (are shown as 0).
If the value is negative, a minus sign is shown.
Example
// Display time as minutes and seconds
GUI_DispString("Min:");
GUI_DispDec (Min, 2) ;
GUI_DispString (" Sec:");
GUI_DispDec (Sec,2) ;
Related topics

GUI_DispSDec (), GUI_DispDecAt (), GUI_DispDecMin(), GUI_DispDecSpace()

GUI_DispDecAt()

Description

Displays a value in decimal form with a specified number of characters at a specified
position, in the current window using the current font.

Prototype
void GUI_DispDecAt(I32 v, I1l6P x, I16P y, U8 Len);
Parameter Description

Value to display.

A% Minimum -2147483648 (= -2731).
Maximum 2147483647 (= 2731 -1).

x X-position to write to in pixels of the client window.

v Y-position to write to in pixels of the client window.

Len No. of digits to display (max. 10).

Additional information

Leading zeros are not suppressed.
If the value is negative, a minus sign is shown.

Example

// Update seconds in upper right corner
GUI_DispDecAT(Sec, 200, 0, 2);

Related topics
GUI_DispDec (), GUI_DispSDec (), GUI_DispDecMin (), GUI_DispDecSpace ()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER Displaying Values

GUI_DispDecMin()

Description

Displays a value in decimal form at the current text position in the current window
using the current font. The length of the value does not require to be specified. The
minimum length will automatically be used.

Prototype

void GUI_DispDecMin (I32 Vv);

Parameter Description

Value to display.
Minimum: -2147483648 (= -2/31); maximum 2147483647 (= 2~31 -1).

Additional information

The maximum number of displayed digits is 10. This function should not be used if
values have to be aligned but differ in the number of digits. Try one of the functions
which require specification of the number of digits to use in this case.

Example

// Show result
GUI_DispString("The result is :");
GUI_DispDecMin (Result) ;

Related topics

GUI_DispDec (), GUI_DispDecAt (), GUI_DispSDec(), GUI_DispDecSpace()
GUI_DispDecShift()
Description

Displays a long value in decimal form with a specified number of characters and with
decimal point at the current text position, in the current window using the current

font.
Prototype
void GUI_DispDecShift(I32 v, U8 Len, U8 Shift);

Parameter Description

Value to display.

v Minimum: -2147483648 (= -2/~31); maximum: 2147483647 (= 2~31 -1).
Len No. of digits to display (max. 10).
Shift No. of digits to show to right of decimal point.

Additional information
Watch the maximum number of 9 characters (including sign and decimal point).

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

95

GUI_DispDecSpace()

Description

Displays a value in decimal form at the current text position in the current window
using the current font. Leading zeros are suppressed (replaced by spaces).

Prototype
void DispDecSpace (I32 v, U8 MaxDigits) ;

Parameter Description

Value to display.

Minimum: -2147483648 (= -2/~31); maximum: 2147483647 (= 2731 -1).
No. of digits to display, including leading spaces.

Maximum no. of digits displayed is 10 (excluding leading spaces).

v

MaxDigits

Additional information

If values have to be aligned but differ in the number of digits, this function is a good
choice.

Example

// Show result
GUI_DispString("The result is :");
GUI_DispDecSpace (Result, 200);

Related topics
GUI_DispDbec (), GUI_DispDecAt (), GUI_DispSDec (), GUI_DispDecMin ()

GUI_DispSDec()

Description

Displays a value in decimal form (with sign) with a specified number of characters at
the current text position, in the current window using the current font.

Prototype
void GUI_DispSDec(I32 v, U8 Len);
Parameter Description
Value to display.
v Minimum: -2147483648 (= -2731); maximum: 2147483647 (= 2731 -1).
Len No. of digits to display (max. 10).

Additional information

Leading zeros are not suppressed.
This function is similar to GUI_DispbDec, but a sign is always shown in front of the
value, even if the value is positive.

Related topics
GUI_DispDec (), GUI_DispDecAt (), GUI_DispDecMin (), GUI_DispDecSpace()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER Displaying Values

GUI_DispSDecShift()

Description

Displays a 1long value in decimal form (with sign) with a specified number of charac-
ters and with decimal point at the current text position, in the current window using
the current font.

Prototype
void GUI_DispSDecShift (I32 v, U8 Len, U8 Shift);
Parameter Description
Value to display.
v Minimum: -2147483648 (= -2/~31); maximum: 2147483647 (= 2731 -1).
Len No. of digits to display (max. 10).
Shift No. of digits to show to right of decimal point.

Additional information

A sign is always shown in front of the value.
Watch the maximum number of 9 characters (including sign and decimal point).

Example

void DemoDec (void) {
long 1 = 12345;
GUI_Clear();
GUI_SetFont (&GUI_Font8x8) ;
GUI_DispStringAt ("GUI_DispDecShift:\n",0,0);
GUI_DispSDecShift(l, 7, 3);
GUI_SetFont (&GUI_Font6x8) ;
GUI_DispStringAt ("Press any key",0,GUI_VYSIZE-8) ;
WaitKey () ;
}

Screen shot of above example

GUI _DispDecihift:

+12 . 3145

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

97

6.3 Displaying floating point values

GUI_DispFloat()

Description

Displays a floating point value with a specified number of characters at the current
text position in the current window using the current font.

Prototype
void GUI_DispFloat (float v, char Len);
Parameter Description
. Vglge to display. _
Minimum 1.2 E-38; maximum 3.4 E38.
Len Number of digits to display (max. 10).

Additional information

Leading zeros are suppressed. The decimal point counts as one character.
If the value is negative, a minus sign is shown.

Example

/* Shows all features for displaying floating point values */
void DemoFloat (void) ({
float £ = 123.45678;
GUI_Clear();
GUI_SetFont (&GUI_Font8x8) ;
GUI_DispStringAt ("GUI_DispFloat:\n",0,0);
GUI_DispFloat (f,9);
GUI_GotoX(100) ;
GUI_DispFloat (-f£,9);
GUI_DispStringAt ("GUI_DispFloatFix:\n",0,20);
GUI_DispFloatFix (£,9,2);
GUI_GotoX(100) ;
GUI_DispFloatFix (-£,9,2);
GUI_DispStringAt ("GUI_DispSFloatFix:\n",0,40);
GUI_DispSFloatFix (£,9,2);
GUI_GotoX(100) ;
GUI_DispSFloatFix (-£,9,2);
GUI_DispStringAt ("GUI_DispFloatMin:\n",0,60);
GUI_DispFloatMin (f,3);
GUI_GotoX(100) ;
GUI_DispFloatMin (-f£,3);
GUI_DispStringAt ("GUI_DispSFloatMin:\n",0,80) ;
GUI_DispSFloatMin (f,3);
GUI_GotoX(100) ;
GUI_DispSFloatMin (-£f,3);
GUI_SetFont (&GUI_Font6x8) ;
GUI_DispStringAt ("Press any key",0,GUI_VYSIZE-8);
WaitKey () ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER Displaying Values

Screen shot of above example
LUI_DispFloat:

123.45678 1232 4568
GUI_Dis Fluatle.

Qoo TI23. —O00123 .46
GUI_Dis EFlnatle.
+007123 .46 —O00123 .46
GUI_DispFloatMin:

123 .45%F -123 .45%
GUI _DispiSFloatMin:
+1273 .45 —123.45%Y

GUI_DispFloatFix()
Description

Displays a floating-point value with specified humber of total characters and a speci-
fied number of characters to the right of the decimal point, at the current text posi-
tion in the current window using the current font.

Prototype
void GUI_DispFloatFix(float v, char Len, char Decs);
Parameter Description
v Vglge to display. .
Minimum 1.2 E-38; maximum 3.4 E38.
Len Number of digits to display (max. 10).
Decs Number of digits to show to the right of the decimal point.

Additional information

Leading zeros are not suppressed.
If the value is negative, a minus sign is shown.

GUI_DispFloatMin()

Description

Displays a floating-point value with a minimum number of decimals to the right of the
decimal point, at the current text position in the current window using the current

font.
Prototype
void GUI_DispFloatMin(float £, char Fract);
Parameter Description
Value to display.
v Minimum 1.2 E-38; maximum 3.4 E38.
Fract Minimum number of characters to display.

Additional information

Leading zeros are suppressed. If the value is negative, a minus sign is shown. The
length does not need to be specified. The minimum length will automatically be used.
If values have to be aligned but differ in the number of digits, one of the "...Fix()"-
functions should be used instead.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

99

GUI_DispSFloatFix()

Description

Displays a floating-point value (with sign) with a specified number of total characters
and a specified number of characters to the right of the decimal point, in the current
window using the current font.

Prototype

void GUI_DispSFloatFix(float v, char Len, char Decs);

Parameter Description

Value to display.

v Minimum 1.2 E-38; maximum 3.4 E38.
Len Number of digits to display (max. 10).
Decs Number of digits to show to the right of the decimal point.

Additional information
Leading zeros are not suppressed. A sign is always shown in front of the value.

GUI_DispSFloatMin()

Description

Displays a floating-point value (with sign) with a minimum number of decimals to the
right of the decimal point, at the current text position in the current window using
the current font.

Prototype

void GUI_DispSFloatMin(float f, char Fract);

Parameter Description

Value to display.
Minimum 1.2 E-38; maximum 3.4 E38.

Fract Minimum number of digits to display.

v

Additional information

Leading zeros are suppressed. A sign is always shown in front of the value. The
length does not need to be specified. The minimum length will automatically be used.
If values have to be aligned but differ in the number of digits, one of the "...Fix()"-
functions should be used instead.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER Displaying Values

6.4 Displaying binary values

GUI_DispBin()

Description

Displays a value in binary form at the current text position in the current window
using the current font.

Prototype
void GUI_DispBin(U32 v, U8 Len);
Parameter Description
v Value to display, 32-bit.
Len No. of digits to display (including leading zeros).

Additional information
As with decimal and hexadecimal values, the least significant bit is rightmost.

Example

//
// Show binary value 7, result: 000111
//

U32 Input = 0x7;

GUI_DispBin (Input, 6);

Related topics
GUI_DispBinAt ()

GUI_DispBinAt()

Description

Displays a value in binary form at a specified position in the current window using the
current font.

Prototype
void GUI_DispBinAt (U32 v, I1l6P x, I16P y, U8 Len);

Parameter Description
v Value to display, 16-bit.
x X-position to write to in pixels of the client window.
v Y-position to write to in pixels of the client window.
Len No. of digits to display (including leading zeroes).

Additional information
As with decimal and hexadecimal values, the least significant bit is rightmost.

Example

//
// Show binary input status
//
GUI_DispBinAt (Input, 0,0, 8);

Related topics
GUI_DispBin(), GUI_DispHex/()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

101

6.5 Displaying hexadecimal values

GUI_DispHex()

Description

Displays a value in hexadecimal form at the current text position in the current win-
dow using the current font.

Prototype
void GUI_DispHex (U32 v, U8 Len);

Parameter Description

A% Value to display, 16-bit.

Len No. of digits to display.

Additional information
As with decimal and binary values, the least significant bit is rightmost.

Example

/* Show value of AD-converter */

GUI_DispHex (Input, 4);

Related topics

GUI_DispDec (), GUI_DispBin(), GUI_DispHexAt ()

GUI_DispHexAt()

Description

Displays a value in hexadecimal form at a specified position in the current window
using the current font.

Prototype

void GUI_DispHexAt (U32 v, Il6P x, Il6P vy, U8 Len);
Parameter Description

v Value to display, 16-bit.

x X-position to write to in pixels of the client window.

v Y-position to write to in pixels of the client window.

Len No. of digits to display.

Additional information
As with decimal and binary values, the least significant bit is rightmost.

Example

//

// Show value of AD-converter at specified position
//

GUI_DispHexAt (Input, 0, 0, 4);

Related topics
GUI_DispDec (), GUI_DispBin(), GUI_DispHex/()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER Displaying Values

6.6 Version of emWin

GUI_GetVersionString()

Description
Returns a string containing the current version of emWin.

Prototype

const char * GUI GetVersionString(void);

Example

//

// Displays the current version at the current cursor position
//

GUI_DispString (GUI_GetVersionString());

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

103

Chapter 7
2-D Graphic Library

emWin contains a complete 2-D graphic library which should be sufficient for most
applications. The routines supplied with emWin can be used with or without clipping
(refer to the chapter "The Window Manager (WM)” on page 331) and are based on

fast and efficient algorithms. Currently, only the GUI_brawarc() function requires
floating-point calculations.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

104

7.1

UMO03001 User & Reference Guide for emWin V5.20

Graphic API

CHAPTER

2-D Graphic Library

The table below lists the available graphic-related routines in alphabetical order
within their respective categories. Detailed descriptions can be found in the sections
that follow.

Routine

Description

GUI_GetPixelIndex ()

Returns the color index of a given position.

Drawing m

odes

GUI_GetDrawMode ()

Returns the current drawing mode.

GUI_SetDrawMode ()

Sets the drawing mode.

Pen siz

e

GUI_GetPenSize ()

Returns the current pen size in pixels.

GUI_SetPenSize ()

Sets the pen size in pixels.

Query current clie

nt rectangle

GUI_GetClientRect ()

Returns the current available drawing area.

Basic drawing

routines

GUI_ClearRect ()

Fills a rectangular area with the background
color.

GUI_CopyRect ()

Copies a rectangle area on the display

GUI_DrawGradientH/ ()

Draws a rectangle filled with a horizontal color
gradient.

GUI_DrawGradientV ()

Draws a rectangle filled with a vertical color gra-
dient.

GUI_DrawGradientRoundedH ()

Draws a rectangle with rounded corners filled
with a horizontal color gradient.

GUI_DrawGradientRoundedV ()

Draws a rectangle with rounded corners filled
with a vertical color gradient.

GUI_DrawPixel ()

Draws a single pixel.

GUI_DrawPoint ()

Draws a point.

GUI_DrawRect ()

Draws a rectangle.

GUI_DrawRectEx()

Draws a rectangle.

GUI_DrawRoundedFrame ()

Draws a frame with rounded corners.

GUI_DrawRoundedRect ()

Draws a rectangle with rounded corners.

GUI_FillRect ()

Draws a filled rectangle.

GUI_FillRectEx()

Draws a filled rectangle.

GUI_FillRoundedRect ()

Draws a filled rectangle with rounded corners.

GUI_InvertRect ()

Invert a rectangular area.

Alpha blending

GUI_EnableAlpha ()

Enables/disables automatic alpha blending

GUI_RestoreUserAlphal()

Restores the previous state of user alpha blend-
ing

GUI_SetAlpha ()

Sets the current alpha blending value. (Obso-
lete)

GUI_SetUserAlphal()

Sets an additional value which is used to calcu-
late the actual alpha blending value to be used.

Drawing bit

maps

GUI_DrawBitmap ()

Draws a bitmap.

GUI_DrawBitmapEx ()

Draws a scaled bitmap.

GUI_DrawBitmapHWAlpha ()

Draws a bitmap with alpha blending information
on a system with hardware alpha blending sup-
port.

GUI_DrawBitmapMag ()

Draws a magnified bitmap.

Drawing streamed bitmaps

GUI_CreateBitmapFromStream ()

Creates a bitmap from a given stream of any
type.

GUI_CreateBitmapFromStreamIDX ()

Creates a bitmap from an index based bitmap
stream.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

105

Routine

Description

GUI_CreateBitmapFromStreamRLE4 ()

Creates a bitmap from an RLE4 bitmap stream.

GUI_CreateBitmapFromStreamRLES ()

Creates a bitmap from an RLE8 bitmap stream.

GUI_CreateBitmapFromStream565 ()

Creates a bitmap from a 16bpp (565) bitmap
stream.

GUI_CreateBitmapFromStreamM565 ()

Creates a bitmap from a 16bpp (M565) bitmap
stream with red and blue swapped.

GUI_CreateBitmapFromStream555 ()

Creates a bitmap from a 16bpp (555) bitmap
stream.

GUI_CreateBitmapFromStreamM555 ()

Creates a bitmap from a 16bpp (M555) bitmap
stream with red and blue swapped.

GUI_CreateBitmapFromStreamRLE16 ()

Creates a bitmap from an RLE16 (565) bitmap
stream.

GUI_CreateBitmapFromStreamRLEM16 ()

Creates a bitmap from an RLEM16 (M565) bit-
map stream with red and blue swapped.

GUI_CreateBitmapFromStream24 ()

Creates a bitmap from a 24 bit bitmap stream.

GUI_CreateBitmapFromStreamAlpha ()

Creates a bitmap from a 32 bit bitmap stream.

GUI_CreateBitmapFromStreamRLEAlpha ()

Creates a bitmap from an RLE compressed 8 bit
alpha bitmap stream.

GUI_CreateBitmapFromStreamRLE32 ()

Creates a bitmap from an RLE32 bitmap stream.

GUI_DrawStreamedBitmap ()

Draws a bitmap from an indexed based bitmap
stream (1 - 8bpp).

GUI_DrawStreamedBitmapAuto ()

Draws a bitmap from a bitmap stream of any
supported format.

GUI_DrawStreamedBitmapEx ()

Draws a bitmap from an indexed based bitmap
stream (1 - 8bpp) without loading the complete
image.

GUI_DrawStreamedBitmapExAuto ()

Draws a bitmap from a bitmap stream of any
supported format without loading the complete
image.

GUI_DrawStreamedBitmap555Ex ()

Draws a bitmap from a 16bpp (555) bitmap
stream without loading the complete image.

GUI_DrawStreamedBitmapM555Ex ()

Draws a bitmap from a 16bpp (M555) bitmap
stream without loading the complete image.

GUI_DrawStreamedBitmap565Ex ()

Draws a bitmap from a 16bpp (565) bitmap
stream without loading the complete image.

GUI_DrawStreamedBitmapM565Ex ()

Draws a bitmap from a 16bpp (M565) bitmap
stream without loading the complete image.

GUI_DrawStreamedBitmap24Ex ()

Draws a bitmap from a 24bpp bitmap stream
without loading the complete image.

GUI_GetStreamedBitmapInfo ()

Returns information about the given stream.

GUI_GetStreamedBitmapInfoEx ()

Returns information about the given stream
which can be located on any kind of media.

GUI_SetStreamedBitmapHook ()

Sets a hook function for
GUI_DrawStreamedBitmapEx().

Drawing li

nes

GUI_DrawHLine ()

Draws a horizontal line.

GUI_DrawLine ()

Draws a line from a specified start point to a
specified end point (absolute coordinates).

GUI_DrawLineRel ()

Draws a line from the current position to an
endpoint specified by X- and Y-distances (rela-
tive coordinates).

GUI_DrawLineTo ()

Draws a line from the current position to a spec-
ified endpoint.

GUI_DrawPolyLine ()

Draws a polyline.

GUI_DrawVLine ()

Draws a vertical line.

GUI_GetLineStyle ()

Returns the current line style.

GUI_MoveRel ()

Moves the line pointer relative to its current
position.

GUI_MoveTo ()

Moves the line pointer to the given position.

GUI_SetLineStyle ()

Sets the current line style.

Drawing polygons

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 2-D Graphic Library
Routine Description

GUI_DrawPolygon () Draws the outline of a polygon.
GUI_EnlargePolygon () Enlarges a polygon.
GUI_FillPolygon() Draws a filled polygon.
GUI_MagnifyPolygon () Magnifies a polygon.
GUI_RotatePolygon() Rotates a polygon by a specified angle.

Drawing circles
GUI_DrawCircle () Draws the outline of a circle.
GUI_FillCircle() Draws a filled circle.

Drawing ellipses
GUI_DrawEllipse() Draws the outline of an ellipse.
GUI_FillEllipse() Draws a filled ellipse.

Drawing arcs

GUI_DrawArc () Draws an arc.

Drawing a graph
GUI_DrawGraph () Draws a graph.

Drawing a pie chart
GUI_DrawPie () Draws a circle sector.
Saving and restoring the GUI-context
GUI_RestoreContext () Restores the GUI-context.
GUI_SaveContext () Saves the GUI-context.
Clipping
GUI_SetClipRect () Sets the rectangle used for clipping.
GUI_GetPixellndex()

Description

Returns the color index of a given position.

Prototype

unsigned GUI_GetPixelIndex (int x,

int y);

Parameter

Description

X absolute x-position of the pixel
absolute y-position of the pixel

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

7.2

107

Drawing modes

emWin can draw in NORMAL mode or in XOR mode. The default is NORMAL mode, in
which the content of the display is overdrawn by the graphic. In XOR mode, the con-
tent of the display is inverted when it is overdrawn.

Restrictions associated with GUl_ DRAWMODE_XOR

XOR mode is only useful when using two displayed colors inside the active win-
dow or screen.

Some drawing functions of emWin do not work precisely with this drawing mode.
Generally, this mode works only with a pen size of one pixel. That means before
using functions like GUI_DrawLine (), GUI_DrawCircle(), GUI_DrawRect () and
so on, you must make sure that the pen size is set to 1 when you are working in
XOR mode.

When drawing bitmaps with a color depth greater than 1 bit per pixel (bpp) this
drawing mode takes no effect.

When using drawing functions such as GUI_DrawPolyLine() or multiple calls of
GUI_DrawLineTo (), the fulcrums are inverted twice. The result is that these pix-
els remain in the background color.

GUI_GetDrawMode()

Description
Returns the current drawing mode.

Prototype
GUI_DRAWMODE GUI_GetDrawMode (void) ;

Return value
The currently selected drawing mode.

GUI_SetDrawMode()

Description
Selects the specified drawing mode.

Prototype
GUI_DRAWMODE GUI_SetDrawMode (GUI_DRAWMODE mode) ;

Parameter Description

mode

Drawing mode to set. May be a value returned by any routine which sets the drawing
mode or one of the constants below.

Permitted values for parameter mode

GUI_DM_NORMAL Default: Draws points, lines, areas, bitmaps.

Inverts points, lines, areas when overwriting the
color of another object on the display.

GUI_DM_XOR

Return value
The selected drawing mode.

Additional information

In addition to setting the drawing mode, this routine may also be used to restore a
drawing mode that has previously been changed.

If using colors, an inverted pixel is calculated as follows:

New pixel color = number of colors - actual pixel color - 1.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 2-D Graphic Library

Example

//

// Showing two circles, the second one XOR-combined with the first:
//

GUI_Clear () ;

GUI_SetDrawMode (GUI_DRAWMODE_NORMAL) ;

GUI_FillCircle (120, 64, 40);

GUI_SetDrawMode (GUI_DRAWMODE_XOR) ;

GUI_FillCircle (140, 84, 40);

Screen shot of above example

7.3 Query current client rectangle

GUI_GetClientRect()

Description

The current client rectangle depends on using the Window Manager or not. If using
the Window Manager the function uses WM_GetClientRect to retrieve the client rect-
angle. If not using the Window Manager the client rectangle corresponds to the com-

plete LCD display.

Prototype
void GUI_GetClientRect (GUI_RECT * pRect);

Parameter Description
pRect Pointer to the GUI_RECT-structure to store result in.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

109

7.4 Pen size

The pen size determines the thickness of the following vector drawing operations:
GUI_DrawPoint()

GUI_DrawlLine()

GUI_DrawlLineRel()

GUI_DrawlLineTo()

GUI_DrawPolyLine()

GUI_DrawPolygon()

GUI_DrawEllipse()

GUI_DrawArc()

Please note that it is not possible to combine line styles with a pen size > 1.

GUI_GetPenSize()

Description
Returns the current pen size.

Prototype
U8 GUI_GetPenSize(void) ;

GUI_SetPenSize()

Description
Sets the pen size to be used for further drawing operations.

Prototype
U8 GUI_SetPenSize (U8 PenSize) ;
Parameter Description
PenSize Pen size in pixels to be used.

Return value
Previous pen size.

Add information
The pen size should be >= 1.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

110

7.5

CHAPTER 2-D Graphic Library

Basic drawing routines

The basic drawing routines allow drawing of individual points, horizontal and vertical
lines and shapes at any position on the display. Any available drawing mode can be
used. Since these routines are called frequently in most applications, they are opti-
mized for speed as much as possible. For example, the horizontal and vertical line
functions do not require the use of single-dot routines.

GUI_ClearRect()

Description

Clears a rectangular area at a specified position in the current window by filling it
with the background color.

Prototype
void GUI_ClearRect(int x0, int y0, int x1, int y1);
Parameter Description
x0 Upper left X-position.
y0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.

Related topics

GUI_InvertRect (), GUI_FillRect ()
GUI_CopyRect()
Description
Copies the content of the given rectangular area to the specified position.
Prototype
void GUI_CopyRect (int x0, int y0, int x1, int yl, int xSize, int ySize);
Parameter Description
x0 Upper left X-position of the source rectangle.
v0 Upper left Y-position of the source rectangle.
x1 Upper left X-position of the destination rectangle.
vl Upper left Y-position of the destination rectangle.
xSize X-size of the rectangle.
ySize Y-size of the rectangle.

Additional information
The source and destination rectangle may overlap each other.

GUI_DrawGradientH()

Description
Draws a rectangle filled with a horizontal color gradient.

Prototype
void GUI_DrawGradientH(int x0, int y0, int x1, int v1,

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

111

GUI_COLOR Color0O, GUI_COLOR Colorl);

Parameter Description
x0 Upper left X-position.
v0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
Color0 Color to be drawn on the leftmost side of the rectangle.
Colorl Color to be drawn on the rightmost side of the rectangle.
Example

GUI_DrawGradientH(0, 0, 99, 99, 0x0000FF, OxOO0FFFF) ;
Screenshot of above example

GUI_DrawGradientV()

Description
Draws a rectangle filled with a vertical color gradient.

Prototype

void GUI_DrawGradientV(int x0, int y0, int x1, int y1,
GUI_COLOR Color0, GUI_COLOR Colorl);

Parameter Description
x0 Upper left X-position.
v0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
Color0 Color to be drawn on the topmost side of the rectangle.
Colorl Color to be drawn on the bottommost side of the rectangle.
Example

GUI_DrawGradientv (0, 0, 99, 99, 0x0000FF, OxOO0FFFF) ;

Screenshot of above example

GUI_DrawGradientRoundedH()

Description
Draws a rectangle with rounded corners filled with a horizontal color gradient.

Prototype

void GUI_DrawGradientRoundedH (int x0, int y0, int x1, int y1, int rd

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 2-D Graphic Library

GUI_COLOR Color0, GUI_COLOR Colorl) ;

Parameter Description
x0 Upper left X-position.
v0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
rd Radius to be used for the rounded corners.
Color0 Color to be drawn on the leftmost side of the rectangle.
Colorl Color to be drawn on the rightmost side of the rectangle.
Example

GUI_DrawGradientRoundedH (0, O, 99, 99, 25, 0x0000FF, OxOOFFFF) ;
Screenshot of above example

GUI_DrawGradientRoundedV()

Description
Draws a rectangle with rounded corners filled with a vertical color gradient.

Prototype
void GUI_DrawGradientRoundedV (int x0, int y0, int x1, int vy1,
GUI_COLOR Color0, GUI_COLOR Colorl);
Parameter Description
x0 Upper left X-position.
y0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
Color0 Color to be drawn on the leftmost side of the rectangle.
Colorl Color to be drawn on the rightmost side of the rectangle.
Example

GUI_DrawGradientRoundedv (0, 0, 99, 99, 25, 0x0000FF, OxOOFFFF) ;

Screenshot of above example

GUI_DrawPixel()

Description
Draws a pixel at a specified position in the current window.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

113

Prototype

void GUI_DrawPixel (int x, int vy);

Parameter Description

X X-position of pixel.

% Y-position of pixel.

Related topics
GUI_DrawPoint ()

GUI_DrawPoint()

Description
Draws a point with the current pen size at a specified position in the current window.

Prototype

void GUI_DrawPoint (int x, int vy);

Parameter Description

X X-position of point.

v Y-position of point.

Related topics
GUI_DrawPixel ()

GUI_DrawRect()

Description
Draws a rectangle at a specified position in the current window.

Prototype
void GUI_DrawRect (int x0, int y0, int x1, int y1);
Parameter Description
x0 Upper left X-position.
vO0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.

GUI_DrawRectEXx()

Description
Draws a rectangle at a specified position in the current window.

Prototype
void GUI_DrawRectEx(const GUI_RECT * pRect);
Parameter Description
pRect Pointer to a GUI_RECT-structure containing the coordinates of the rectangle

GUI_DrawRoundedFrame()

Description

Draws a frame at a specified position in the current window with rounded corners an
a specified width.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

114

CHAPTER 2-D Graphic Library
Prototype
void GUI_DrawRoundedFrame (int x0, int y0, int x1, int yl1, int r, int w);
Parameter Description

x0 Upper left X-position.

vO0 Upper left Y-position.

x1 Lower right X-position.

vl Lower right Y-position.

r Radius to be used for the rounded corners.

Width in which the frame is drawn.

GUI_DrawRoundedRect()

Description
Draws a rectangle at a specified position in the current window with rounded corners.
Prototype
void GUI_DrawRoundedRect (int x0, int y0, int x1, int yl1, int r);
Parameter Description
x0 Upper left X-position.
v0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
r Radius to be used for the rounded corners.

GUI_FillRect()

Description
Draws a filled rectangular area at a specified position in the current window.
Prototype
void GUI_FillRect (int x0, int y0, int x1, int yl);
Parameter Description
x0 Upper left X-position.
y0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.

Additional information

Uses the current drawing mode, which normally means all pixels inside the rectangle
are set.

Related topics
GUI_InvertRect (), GUI_ClearRect()

GUI_FillRectEx()

Description
Draws a filled rectangle at a specified position in the current window.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Prototype

115

void GUI_FillRectEx(const GUI_RECT * pRect);

Parameter

Description

pRect

Pointer to a GUI_RECT-structure containing the coordinates of the rectangle

GUI_FillRoundedRect()
Description

Draws a filled rectangle at a specified position in the current window with rounded

corners.

Prototype
void GUI_FillRoundedRect (int xO0,

int yoO0,

int x1, int yl, int r);

Parameter Description
x0 Upper left X-position.
v 0 Upper left Y-position.
x1 Lower right X-position.
vl Lower right Y-position.
r Radius to be used for the rounded corners.

GUI_InvertRect()
Description

Draws an inverted rectangular area at a specified position in the current window.

Prototype

void GUI_InvertRect (int x0, int yO0,

int x1, int vyl);

Parameter Description
x0 Upper left X-position.

v0 Upper left Y-position.

x1 Lower right X-position.

vl Lower right Y-position.

Related topics

GUI_FillRect (), GUI_ClearRect()

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER 2-D Graphic Library

7.6 Alpha blending

Alpha blending is a method of combining a foreground image with the background to
create the appearance of semi transparency. An alpha value determines how much of
a pixel should be visible and how much of the background should show through.

Color information
emWin internally works with 32 bits of color information:

Bits 0-7: Red

Bits 8-15: Green

Bits 16-23: Blue

Bits 24-31: Alpha information

An alpha value of 0 means opaque and a value of 255 means completely transparent.

How it works

The alpha blending is done completely automatically once it is enabled by using the
function GUI_Enablealpha (). This makes emWin regard the upper 8 bits of the color
information as alpha value. Enabling alpha blending is required only for functions
which use the background or foreground color. Bitmaps which already contain alpha
values (32bpp) are automatically displayed properly, so enabling alpha blending is
not required in this case.

Example

The following small example shows how it works:

GUI_EnableAlpha(l) ;

GUI_SetBkColor (GUI_WHITE) ;

GUI_Clear () ;

GUI_SetColor (GUI_BLACK) ;

GUI_DispStringHCenterAt ("Alphablending", 45, 41);

GUI_SetColor ((0x40ul << 24) | GUI_RED); niding
GUI_FillRect (0, 0, 49, 49);

GUI_SetColor ((0x80uL << 24) | GUI_GREEN) ;
GUI_SetColor ((0xCOuL << 24) | GUI_BLUE) ;

(0,

(
GUI_FillRect (20, 20, 69, 69);

(

(

GUI_FillRect (40, 40, 89, 89);

Older versions

In older versions it was required to use the function GuI_setalpha () for blending the
foreground with the current background color information. This also works but is no
longer required.

GUI_EnableAlpha()

Description

Enables or disables automatic alpha blending.

Prototype

unsigned GUI_EnableAlpha (unsigned OnOff) ;
Parameter Description

OnOff 1 enables automatic alpha blending, 0 disables it.

Return value
Old state.

Additional information

After enabling automatic alpha blending the color information of each object auto-
matically determines its transparency.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

117

GUI_SetAlpha()
(Obsolete)

Description
Enables software alpha blending for all subsequent drawing operations.

Prototype
unsigned GUI_SetAlpha (U8 Value) ;

Parameter Description

Alpha value to be used for all subsequent drawing operations. Default is 0 which means
no alpha blending.

Alpha

Return value
Previous value used for alpha blending.

Additional information

The function sets the alpha value to be used for all subsequent drawing operations. A
value of 0 for parameter Alpha means opaque (alpha blending disabled) and a value
of 255 means completely transparent (invisible).

Note that software alpha blending increases the CPU load. Further it is strongly rec-
ommended to set the alpha value back to the default value after finishing the draw-
ing operations.

Example
extern const GUI_BITMAP _LogoBitmap;

GUI_SetColor (GUI_BLUE) ;
GUI_FillCircle (100, 50, 49);
GUI_SetColor (GUI_YELLOW) ;
for (i = 0; 1 < 100; i++) {
U8 Alpha;
Alpha = (i * 255 / 100);
GUI_SetAlpha (Alpha) ;
GUI_DrawHLine(i, 100 - i, 100 + 1i);
}
GUI_SetAlpha (0x80) ;
GUI_DrawBitmap (&_LogoBitmap, 30, 30);
GUI_SetColor (GUI_MAGENTA) ;
GUI_SetFont (&GUI_Font24B_ASCII) ;
GUI_SetTextMode (GUI_TM_TRANS) ;
GUI_DispStringHCenterAt ("Alphablending", 100, 3);
GUI_SetAlpha(0) ; /* Set back to default (opaque) */

Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER

GUI_SetUserAlpha()
Description

2-D Graphic Library

Sets an additional value which is used to calculate the actual alpha value to be used.

The actual alpha value is calculated as follows:

Alpha = AlphaFromObject + ((255 - AlphaFromObject) * UserAlpha) / 255

Prototype

U32 GUI_SetUserAlpha (GUI_ALPHA_STATE * pAlphaState, U32 UserAlpha);
Parameter Description

pAlphaState Pointer to an GUI_ALPHA_STATE structure to be used to save the current state.

UserAlpha Value to be used.

Return value
Previous user alpha value.

Additional information

The following function GUI_RestoreUserAlpha () can be used to restore the previous
state of the function.

GUI_RestoreUserAlpha()

UMO03001 User & Reference Guide for emWin V5.20

Description
Restores the previous state of user alpha blending. saved in the structure pointed by.

Prototype
U32 GUI_RestoreUserAlpha (GUI_ALPHA_STATE * pAlphaState);

Parameter Description

Pointer to an GUI_ALPHA_STATE structure containing information of the previous
state to be restored.

pAlphaState

Return value
Current user alpha value.

Example

{
GUI_ALPHA_STATE AlphaState;

GUI_EnableAlpha(l) ;

GUI_SetBkColor (GUI_WHITE) ;

GUI_Clear();

GUI_SetColor (GUI_BLACK) ;
GUI_DispStringHCenterAt ("Alphablending",
GUI_SetUserAlpha (&AlphaState, 0xCO) ;
GUI_SetColor (GUI_RED) ;

45, 41);

Alphablending

GUI_FillRect (0, 0, 49, 49);
GUI_SetColor (GUI_GREEN) ;
GUI_FillRect (20, 20, 69, 69);
GUI_SetColor (GUI_BLUE) ;
GUI_FillRect (40, 40, 89, 89);

GUI_RestoreUserAlpha (&AlphaState) ;

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

119

7.7 Drawing bitmaps

Generally emWin is able to display any bitmap image at any display position. On 16
bit CPUs (sizeof(int) == 2), the size of one bitmap per default is limited to 64 kb. If
larger bitmaps should be displayed with a 16 bit CPU, refer to the chapter “"Configu-
ration” on page 1039.

GUI_DrawBitmap()

Description
Draws a bitmap image at a specified position in the current window.

Prototype
void GUI_DrawBitmap (const GUI_BITMAP * pBM, int x, int vy);

Parameter Description

pPBM Pointer to the bitmap to display.
X X-position of the upper left corner of the bitmap in the display.

v Y-position of the upper left corner of the bitmap in the display.

Additional information

The picture data is interpreted as bit stream starting with the most significant bit
(msb) of the first byte.

A new line always starts at an even byte address, as the nth line of the bitmap starts
at offset n*BytesPerLine. The bitmap can be shown at any point in the client area.
Usually, the Bitmap Converter is used to generate bitmaps. For more information,
refer to the chapter "Bitmap Converter” on page 177.

Example
extern const GUI_BITMAP bmSeggerLogoBlue; /* declare external Bitmap */
void main() {

GUI_Init();

GUI_DrawBitmap (&bmSeggerLogoBlue, 45, 20);
}

Screen shot of above example

D——
/SEGGER

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

120

CHAPTER 2-D Graphic Library

GUI_DrawBitmapEx()

Description
This routine makes it possible to scale and/or to mirror a bitmap on the display.
Prototype
void GUI_DrawBitmapEx (const GUI_BITMAP * pBitmap,
int x0, int yoO0,
int xCenter, int yCenter,
int xMag, int yMag) ;
Parameter Description
pPBM Pointer to the bitmap to display.
%0 X-position of the anchor point in the display.
vO0 Y-position of the anchor point in the display.
xCenter X-position of the anchor point in the bitmap.
yvCenter Y-position of the anchor point in the bitmap.
xMag Scale factor of X-direction.
vMag Scale factor of Y-direction.

Additional information

A negative value of the xMag-parameter would mirror the bitmap in the X-axis and a
negative value of the yMag-parameter would mirror the bitmap in the Y-axis. The unit
of xMag- and yMag are thousandth. The position given by the parameter xCenter and
yCenter specifies the pixel of the bitmap which should be displayed at the display at
position x0/y0 independent of scaling or mirroring.

This function can not be used to draw RLE-compressed bitmaps.

GUI_DrawBitmapHWAIpha()

Description

Draws a bitmap with alpha information on a multi layer system with hardware alpha
blending support.

Prototype

void GUI_DrawBitmapHWAlpha (const GUI_BITMAP GUI_UNI_PTR * pBM,
int x0, int yO0);

Parameter Description
pPBM Pointer to the bitmap to display.
x0 X-position of the upper left corner of the bitmap in the display.
yO0 Y-position of the upper left corner of the bitmap in the display.

Additional information

In emWin logical colors are handled as 32 bit values. The lower 24 bits are used for
the color information and the upper 8 bits are used to manage the alpha value. An
alpha value of 0 means the image is opaque and a value of OxFF means completely
transparent (invisible).

On systems with hardware support for alpha blending the alpha values need to be
written to the display controller which does the alpha blending.

Normally the alpha format of the hardware is not the same as the alpha definition in
emWin described above. Mostly a value of 0 means fully transparent and higher val-
ues means the pixel becomes more visible.

Because of this in the most cases custom color conversion routines are required to
translate a logical color to the required hardware format. The sample folder contains
the example ALPHA_DrawBitmapHWAlpha which shows how to consider the require-
ment of custom color conversion.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

121

GUI_DrawBitmapMag()

Description
This routine makes it possible to magnify a bitmap on the display.

Prototype

void GUI_DrawBitmapMag (const GUI_BITMAP * pBM,
int x0, int vyoO0,
int XMul, int YMul);

Parameter Description
PBM Pointer to the bitmap to display.
x0 X-position of the upper left corner of the bitmap in the display.
vO0 Y-position of the upper left corner of the bitmap in the display.
XMul Magnification factor of X-direction.
YMul Magnification factor of Y-direction.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 2-D Graphic Library

7.8 Drawing streamed bitmaps

Streamed bitmaps can be located in addressable area (RAM or ROM) as well as exter-
nal memory (e.g. on removable devices).

Drawing from addressable memory

There are 2 possibilities to display streamed bitmaps which are located on address-
able memory. The first one is to use the function GUI_DrawStreamedBitmap() or the
function GUI_DrawStreamedBitmapAuto(). The second one is to create a
GUI_BITMAP according to the streamed bitmap and use it for a regular call of e.g.
GUI_DrawBitmap().

Drawing from external memory

Streamed bitmaps which are located on external memory can be drawn using the
...Ex() functions. ...Ex() functions require a pointer to a user defined GetData() func-
tion (see “Getting data with the ...Ex() functions” on page 174) in order to have
emWin retrieve the stream self-dependently. If the format of the streamed bitmap is
unknown at run-time, the function GUI_DrawStreamedBitmapExAuto() should be
used.

Requirements

The ...Ex() functions require to have enough free memory which is assigned to
emWin to store at least one line of pixel data. If there is not enough free memory,
the function will return immediately without having anything drawn.

Using the ...Auto() function causes the linker to add all functions referenced by the
...Auto() function. If there is not enough memory the according function for the spe-
cific format should be used (e.g. GUI_DrawStreamedBitmap565Ex()).

Available bitmap formats

The following table shows the currently supported formats and the availability of
according ...Ex() functions:

...Ex()

Format Description function

available
IDX Index based* bitmaps 1-8bpp. Yes
555 16bpp high color bitmaps, 5 bits blue, 5 bits green, 5 bits red. Yes
M555 16bpp high color bitmaps, 5 bits red, 5 bits green, 5 bits blue. Yes
565 16bpp high color bitmaps, 5 bits blue, 6 bits green, 5 bits red. Yes
M565 16bpp high color bitmaps, 5 bits red, 6 bits green, 5 bits blue. Yes
24 24bpp true color bitmaps, 8 bits blue, 8 bits green, 8 bits red. Yes
Alpha 32bpp true color bitmaps, 8 bits alpha, 8 bits blue, 8 bits green, 8 bits red. No
RLEAIpha 8bpp alpha channel bitmaps, compressed. No
RLE4 4bpp index based bitmaps, RLE compressed. Yes
RLE8 8bpp index based bitmaps, RLE compressed. Yes
RLE16 16bpp (565) high color bitmaps, RLE compressed. Yes
RLEM16 16bpp (M565) high color bitmaps, RLE compressed. Yes
RLE32 32bpp (8888) true color bitmaps with alpha channel, RLE compressed. Yes

* Index based bitmaps consist of a palette of colors stated as 32bit values. All other
bitmaps do not have a palette and therefore have the bitmap data stored in the for-
mat specified in the table.

GUI_CreateBitmapFromStream()

Description

The function creates a bitmap structure by passing any type of bitmap stream.
Prototype

int GUI_CreateBitmapFromStream (GUI_BITMAP * pBMP,

GUI_LOGPALETTE * pPAL,

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

123

const void * p);
Parameter Description
PBMP Pointer to a GUI_BITMAP structure to be initialized by the function.
pPAL Pointer to a GUI_LOGPALETTE structure to be initialized by the function.
P Pointer to the data stream.

Return value
0 on success, 1 on error.

Additional information

This function should be used if the data stream can consist of several kinds of bitmap
formats or unknown. Disadvantage of using this function is that it has a significant
memory footprint. If memory usage (ROM) is a concern, it may be better to use the
format specific functions below.

Example

The following example shows how the GUI_CreateBitmapFromStream() - functions
can be used to create and draw a bitmap:

void DrawBitmap (const void * pData, int xPos, int yPos) {
GUI_BITMAP Bitmap;
GUI_LOGPALETTE Palette;

GUI_CreateBitmapFromStream (&Bitmap, &Palette, pData);
GUI_DrawBitmap (&Bitmap, xPos, yPos);
}

GUI_CreateBitmapFromStreamIDX(),
GUI_CreateBitmapFromStreamRLE4(),
GUI_CreateBitmapFromStreamRLES(),
GUI_CreateBitmapFromStream565(),
GUI_CreateBitmapFromStreamM565(),
GUI_CreateBitmapFromStream555(),
GUI_CreateBitmapFromStreamM555(),
GUI_CreateBitmapFromStreamRLE16(),
GUI_CreateBitmapFromStreamRLEM16(),
GUI_CreateBitmapFromStream24(),
GUI_CreateBitmapFromStreamAlpha(),
GUI_CreateBitmapFromStreamRLEAIlpha(),
GUI_CreateBitmapFromStreamRLE32()

Description

These functions create bitmap structures by passing bitmap streams of a known for-

mat.

Prototype

int GUI_CreateBitmapFromStream<FORMAT> (GUI_BITMAP * pBMP,
GUI_LOGPALETTE * pPAL,
const void * p);

Parameter Description

pPBMP Pointer to a GUI_BITMAP structure to be initialized by the function.

pPAL Pointer to a GUI_LOGPALETTE structure to be initialized by the function.

) Pointer to the data stream.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 2-D Graphic Library

Supported data stream formats
The following table shows the supported data stream formats for each function:

Function Supported stream format
GUI_CreateBitmapFromStreamIDX () Streams of index based bitmaps.
GUI_CreateBitmapFromStreamRLE4 () Streams of RLE4 compressed bitmaps.
GUI_CreateBitmapFromStreamRLES () Streams of RLE8 compressed bitmaps.
GUI_CreateBitmapFromStream565 () Streams of high color bitmaps (565).
GUI_CreateBitmapFromStreamM565 () Streams of high color bitmaps (M565).
GUI_CreateBitmapFromStream555 () Streams of high color bitmaps (555).
GUI_CreateBitmapFromStreamM555 () Streams of high color bitmaps (M565).
GUI_CreateBitmapFromStreamRLE16 () Streams of RLE16 compressed bitmaps.

Streams of RLE16 compressed bitmaps, red

GUI_CreateBitmapFromStreamRLEM16 () and blue swapped

GUI_CreateBitmapFromStream24 () Streams of 24bpp bitmaps (true color).

Streams of 32bpp bitmaps (true color with

GUI_CreateBitmapFromStreamAlpha () alpha channel)

Streams of RLE compressed 8bpp alpha bit-

GUI_CreateBitmapFromStreamRLEAlpha () maps

Streams of RLE32 compressed bitmaps (true

GUI_CreateBitmapFromStreamRLE32 () color with alpha channel)

Return value
0 on success, 1 on error.

Additional information

These functions should be used if the data stream consists of a known format. This
avoids linking of unused code and keeps the binary code small.

GUI_DrawStreamedBitmap()

Description
Draws a bitmap from an indexed based bitmap data stream.

Prototype
void GUI_DrawStreamedBitmap (const void * p, int x, int y);
Parameter Description
P Pointer to the data stream.
X X-position of the upper left corner of the bitmap in the display.
Yy Y-position of the upper left corner of the bitmap in the display.

Additional information

The Bitmap Converter (see “Bitmap Converter” on page 177) can be used to create
bitmap data streams. The format of these streams is not the same as the format of a
bmp file.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

125

GUI_DrawStreamedBitmapAuto()

Description
Draws a bitmap from a bitmap data stream of any supported format.

Prototype

void GUI_DrawStreamedBitmapAuto (const void * p, int x, int vy);

Parameter Description

P Pointer to the data stream.
X X-position of the upper left corner of the bitmap in the display.

v Y-position of the upper left corner of the bitmap in the display.

Additional information
Please refer to "GUI_DrawStreamedBitmap()” on page 124.

GUI_DrawStreamedBitmapEx()

Description

This function can be used for drawing index based bitmap data streams if not enough
RAM or ROM is available to keep the whole file within the addressable memory (RAM
or ROM). The GUI library calls the function pointed by the parameter pfGetData to
read the data. This GetData function needs to return the number of read bytes.

Prototype

int GUI_DrawStreamedBitmapEx (GUI_GET_DATA_ FUNC * pfGetData,
const void * p, int x, int vy);

Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “"Getting data with the ...Ex() functions” on page 174.
P Void pointer passed to the function pointed by pfGetData.
X X-position of the upper left corner of the bitmap in the display.
v Y-position of the upper left corner of the bitmap in the display.

Return value
0 on success, 1 on error.

Additional information

The function requires at least memory for one line of bitmap data.
For more details please also refer to the function GUI_SetStreamedBitmapHook ().

GUI_DrawStreamedBitmapExAuto()

Description

This function can be used for drawing bitmap data streams of any supported format if
not enough RAM or ROM is available to keep the whole file within the addressable
memory (RAM or ROM). The GUI library calls the function pointed by the parameter
pfGetData to read the data. This Getbata function needs to return the number of
read bytes.

Prototype

int GUI_DrawStreamedBitmapExAuto (GUI_GET_DATA_FUNC * pfGetData,
const void * p, int x, int vy);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 2-D Graphic Library

Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “Getting data with the ...Ex() functions” on page 174.
o) Void pointer passed to the function pointed by pfGetData.
x X-position of the upper left corner of the bitmap in the display.
v Y-position of the upper left corner of the bitmap in the display.

Return value
0 on success, 1 on error.

Additional information
The function requires at least memory for one line of bitmap data.

GUI_DrawStreamedBitmap555Ex()
GUI_DrawStreamedBitmapM555Ex()
GUI_DrawStreamedBitmap565Ex()
GUI_DrawStreamedBitmapM565Ex()
GUI_DrawStreamedBitmap24Ex()

Description

This function can be used for drawing bitmap data streams of the respective format if
not enough RAM or ROM is available to keep the whole file within the addressable
memory (RAM or ROM). The GUI library calls the function pointed by the parameter
pfGetData to read the data. This Getbata function needs to return the number of
read bytes.

Prototype

int GUI_DrawStreamedBitmap<XXX>Ex (GUI_GET_DATA_FUNC * pfGetData,
const void * p, int x, int vy);

Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “Getting data with the ...Ex() functions” on page 174.
P Void pointer passed to the function pointed by pfGetData.
X X-position of the upper left corner of the bitmap in the display.
v Y-position of the upper left corner of the bitmap in the display.

Return value
0 on success, 1 on error.

Additional information
The functions require at least memory for one line of bitmap data.

GUI_GetStreamedBitmaplInfo()

Description
Returns a structure with information about the given data stream.

Prototype

void GUI_GetStreamedBitmapInfo (const void * p,
GUI_BITMAPSTREAM_INFO * pInfo);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

127

Parameter Description

) Pointer to the data stream.
pInfo Pointer to a GUI_BITMAPSTREAM_INFO structure to be filled by the function.

Elements of GUI_BITMAPSTREAM_INFO

Data type Element Description

int XSize Pixel size in X of the image.

int YSize Pixel size in Y of the image.

int BitsPerPixel | Number of bits per pixel.

int NumColors Number of colors in case of an index based image.

int HasTrans In case of an index based image 1 if transparency exist, 0 if not.

GUI_GetStreamedBitmapInfoEx()

Description

Returns a structure with information about the given data stream which does not
need to be located in the addressable ROM or RAM area of the CPU.

Prototype
int GUI_GetStreamedBitmapInfoEx (GUI_GET_DATA_FUNC * pfGetData,
const void * p,
GUI_BITMAPSTREAM_INFO * pInfo);
Parameter Description
fGetData Pointer to a function which is called for getting data. For details about the GetData
P function, refer to “"Getting data with the ...Ex() functions” on page 174.
P Void pointer passed to the function pointed by pfGetData.
pInfo Pointer to a GUI_BITMAPSTREAM_INFO structure to be filled by the function.

Return value
0 on success, 1 on error.

Elements of GUI_BITMAPSTREAM_INFO

Please refer to GUI_GetStreamedBitmapInfo ().

GUI_SetStreamedBitmapHook()

Description

Sets a hook function to be able to manipulate the palette of a streamed bitmap which
is not located in the addressable area of the CPU. The hook function is called when
executing GUI_DrawStreamedBitmapEx ().

Prototype

void GUI_SetStreamedBitmapHook (
GUI_BITMAPSTREAM_CALLBACK pfStreamedBitmapHook) ;

Parameter Description
pfStreamedBitmapHook Hook function to be called by GUI_DrawStreamedBitmapEx ().

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 2-D Graphic Library

Prototype of hook function
void * Hook (GUI_BITMAPSTREAM_PARAM * pParam) ;

Parameter Description
pParam Pointer to a GUI_BITMAPSTREAM_PARAM structure

Elements of GUI_BITMAPSTREAM_PARAM

Data type| Element Description
int Cmd Command to be executed.

U32 v Depends on the command to be executed.
void * s} Depends on the command to be executed.

Supported values for parameter cmd

When receiving this command the
application can spend a buffer for the
palette of a bitmap stream. Parame-
ters:

p - Pointer to the buffer or NULL

v - Requested buffer size

If the application has spend a buffer
for the palette here the buffer should
GUI_BITMAPSTREAM_RELEASE_BUFFER| be released. Parameters:

p - Pointer to buffer to be released

v - not used

This command is send after loading
the palette and before drawing the
image to be able to modify the pal-
GUI_BITMAPSTREAM_MODIFY_ PALETTE | ette of the streamed image. Parame-
ters:

p - Pointer to palette data

v - Number of colors in palette

GUI_BITMAPSTREAM_GET_BUFFER

Example

static void * _cbStreamedBitmapHook (GUI_BITMAPSTREAM PARAM * pParam) {
void * p = NULL;
int i, NumColors;
U32 Color;
U32 * pColor;

switch (pParam->Cmd) {
case GUI_BITMAPSTREAM GET_BUFFER:

//
// Allocate buffer for palette data
//
p = malloc (pParam->v) ;
break;
case GUI_BITMAPSTREAM RELEASE_BUFFER:
//
// Release buffer
//
free (pParam->p) ;
break;
case GUI_BITMAPSTREAM MODIFY_ PALETTE:
//
// Do something with the palette...
//
NumColors = pParam->v;
pColor = (U32 *)pParam->p;
Color = *(pColor + pParam->v - 1);

for (i = NumColors - 2; i >= 0; i--) {
*(pColor + 1 + 1) = *(pColor + 1i);
}
*pColor = Color;
break;
}

return p;

}

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

129

7.9 Drawing lines

The most frequently used drawing routines are those that draw a line from one point
to another.

GUI_DrawHLine()

Description

Draws a horizontal line one pixel thick from a specified starting point to a specified
endpoint in the current window.

Prototype
void GUI_DrawHLine(int vy, int x0, int x1);
Parameter Description
2% Y-position.
x0 X-starting position.
x1 X-end position.

Additional information

If x1 < x0, nothing will be displayed.

With most LCD controllers, this routine is executed very quickly because multiple pix-
els can be set at once and no calculations are needed. If it is clear that horizontal
lines are to be drawn, this routine executes faster than the GUI_bDrawLine () routine.

GUI_DrawLine()

Description

Draws a line from a specified starting point to a specified endpoint in the current win-
dow (absolute coordinates).

Prototype

void GUI_DrawLine(int x0, int y0, int x1, int yl1);
Parameter Description

x0 X-starting position.

v0 Y-starting position.

x1 X-end position.

vl Y-end position.

Additional information

If part of the line is not visible because it is not in the current window or because
part of the current window is not visible, this is due to clipping.

GUI_DrawLineRel()

Description

Draws a line from the current (x, y) position to an endpoint specified by X-distance
and Y-distance in the current window (relative coordinates).

Prototype
void GUI_DrawLineRel (int dx, int dy);
Parameter Description
dx Distance in X-direction to end of line to draw.
dy Distance in Y-direction to end of line to draw.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 2-D Graphic Library

GUI_DrawLineTo()

Description

Draws a line from the current (X,Y) position to an endpoint specified by X- and Y-
coordinates in the current window.

Prototype
void GUI_DrawLineTo(int x, int vy);
Parameter Description
x X-end position.
v Y-end position.
GUI_DrawPolyLine()
Description

Connects a predefined list of points with lines in the current window.

Prototype

void GUI_DrawPolyLine (const GUI_POINT * pPoint, int NumPoints,
int x, int vy);

Parameter Description
pPoint Pointer to the polyline to display.
NumPoints Number of points specified in the list of points.
X X-position of origin.
v Y-position of origin.

Additional information
The starting point and endpoint of the polyline need not be identical.

GUI_DrawVLine()

Description

Draws a vertical line one pixel thick from a specified starting point to a specified end-
point in the current window.

Prototype
void GUI_DrawVLine(int x, int y0, int v1);
Parameter Description
x X-position.
v0 Y-starting position.
vl Y-end position.

Additional information

If v1 < y0, nothing will be displayed.

With most LCD controllers, this routine is executed very quickly because multiple pix-
els can be set at once and no calculations are needed. If it is clear that vertical lines
are to be drawn, this routine executes faster than the GUI_DrawLine () routine.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

131

GUI_GetLineStyle()

Description
Returns the current line style used by the function GUI_DrawlLine.

Prototype
U8 GUI_GetLineStyle(void) ;

Return value
Current line style used by the function GUI_DrawlLine.

GUI_MoveRel()

Description
Moves the current line pointer relative to its current position.

Prototype
void GUI_MoveRel (int dx, int dy);
Parameter Description
dx Distance to move in X.
dy Distance to move in Y.

Related topics
GUI_DrawLineTo (), GUI_MoveTo ()

GUI_MoveTo()

Description
Moves the current line pointer to the given position.

Prototype
void GUI_MoveTo (int x, int vy);
Parameter Description
x New position in X.
v New position in Y.

GUI_SetLineStyle()

Description
Sets the current line style used by the function GUI_DrawLine.

Prototype
U8 GUI_SetLineStyle (U8 LineStyle) ;

Parameter Description
LineStyle New line style to be used. See table below.

Permitted values for parameter LineStyle

GUI_LS_SOLID Lines would be drawn solid (default).
GUI_LS_DASH Lines would be drawn dashed.
GUI_LS_DOT Lines would be drawn dotted.

Lines would be drawn alternating with dashes and
dots.

Lines would be drawn alternating with dashes and
double dots.

GUI_LS_DASHDOT

GUI_LS_DASHDOTDOT

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 2-D Graphic Library

Return value
Previous line style used by the function GUI_DrawLine.

Additional information
This function sets only the line style used by GUI_DrawLine. The style will be used

only with a pen size of 1.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

133

7.10 Drawing polygons

The polygon drawing routines can be helpful when drawing vectorized symbols.

GUI_DrawPolygon()

Description
Draws the outline of a polygon defined by a list of points in the current window.

Prototype

void GUI_DrawPolygon (const GUI_POINT * pPoint, int NumPoints,
int x, int y);

Parameter Description
pPoint Pointer to the polygon to display.
NumPoints Number of points specified in the list of points.
x X-position of origin.
v Y-position of origin.

Additional information

The polyline drawn is automatically closed by connecting the endpoint to the starting
point.

GUI_EnlargePolygon()

Description
Enlarges a polygon on all sides by a specified length in pixels.

Prototype

void GUI_EnlargePolygon (GUI_POINT * pDest,
const GUI_POINT * pSrc,
int NumPoints,
int Len) ;

Parameter Description
pDest Pointer to the destination polygon.
pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Len Length (in pixels) by which to enlarge the polygon.

Additional information
Make sure the destination array of points is equal to or larger than the source array.

Example

const GUI_POINT aPoints[] = {
{ 40, 20},
{ 0, 20},
{ 20, 03}

}i

GUI_POINT aEnlargedPoints[GUI_COUNTOF (aPoints)];

void Sample(void) {
int 1i;
GUI_Clear();
GUI_SetDrawMode (GUI_DM_XOR) ;
GUI_FillPolygon (aPoints, GUI_COUNTOF (aPoints), 140, 110);
for (1 = 1; i < 10; i++) {
GUI_EnlargePolygon (aEnlargedPoints, aPoints, GUI_COUNTOF (aPoints), i * 5);
GUI_FillPolygon (aEnlargedPoints, GUI_COUNTOF (aPoints), 140, 110);
}
}

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 2-D Graphic Library

Screen shot of above example

GUIL_FillPolygon()

Description

Draws a filled polygon defined by a list of points in the current window.

Prototype

void GUI_FillPolygon(const GUI_POINT * pPoint, int NumPoints, int x, int y);
Parameter Description

pPoint Pointer to the polygon to display and to fill.

NumPoints Number of points specified in the list of points.

X X-position of origin.

v Y-position of origin.

Additional information

The polyline drawn is automatically closed by connecting the endpoint to the starting
point. It is not required that the endpoint touches the outline of the polygon.
Rendering a polygon is done by drawing one or more horizontal lines for each y-posi-
tion of the polygon. Per default the maximum number of points used to draw the hor-
izontal lines for one y-position is 12 (which means 6 lines per y-position). If this
value needs to be increased, the macro GUI_FP_MAXCOUNT can be used to set the
maximum number of points.

Example
#define GUI_FP_MAXCOUNT 50
GUI_MagnifyPolygon()

Description
Magnifies a polygon by a specified factor.

Prototype

void GUI_MagnifyPolygon (GUI_POINT * pDest,
const GUI_POINT * pSrc,
int NumPoints,
int Mag) ;

Parameter Description

pDest Pointer to the destination polygon.

pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Mag Factor used to magnify the polygon.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

135

Additional information

Make sure the destination array of points is equal to or larger than the source array.
Note the difference between enlarging and magnifying a polygon. Calling the function
GUI_EnlargePolygon () with the parameter Len = 1 will enlarge the polygon by one
pixel on all sides, whereas the call of GUI_MagnifyPolygon () with the parameter Mag
= 1 will have no effect.

Example

const GUI_POINT aPoints[] = {
{ 0, 20},
{ 40, 20},
{ 20, 0}
}i

GUI_POINT aMagnifiedPoints[GUI_COUNTOF (aPoints)];

void Sample (void) {
int Mag, v = 0, Count = 4;
GUI_Clear () ;
GUI_SetColor (GUI_GREEN) ;
for (Mag = 1; Mag <= 4; Mag *= 2, Count /= 2) {
int i, x = 0;
GUI_MagnifyPolygon (aMagnifiedPoints, aPoints, GUI_COUNTOF (aPoints), Mag);
for (i = Count; i > 0; i--, x += 40 * Mag) {
GUI_FillPolygon (aMagnifiedPoints, GUI_COUNTOF (aPoints), x, V);
}
v += 20 * Mag;
}
}

Screen shot of above example

GUI_RotatePolygon()

Description
Rotates a polygon by a specified angle.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 2-D Graphic Library

Prototype

void GUI_RotatePolygon (GUI_POINT * pDest,
const GUI_POINT * pSrc,
int NumPoints,
float Angle) ;

Parameter Description

pDest Pointer to the destination polygon.

pSrc Pointer to the source polygon.

NumPoints Number of points specified in the list of points.

Angle Angle in radian used to rotate the polygon.

Additional information
Make sure the destination array of points is equal to or larger than the source array.

Example

The following example shows how to draw a polygon. It is available as
2DGL_DrawPolygon.c in the examples shipped with emWin.

#include "gui.h"
/*‘k*‘k***‘k**********‘k*‘k*‘k*‘k’k*********‘k*****‘k’k************************

*

* The points of the arrow
*/
static const GUI_POINT aPointArrow[] = {
{ 0, -5},
{-40, -35},
{-10, -253%,
{-10, -85},
{ 10, -85},
{ 10, -253},
{ 40, -353},
}i

/*‘k*‘k*‘k*‘k**********‘k*‘k*‘k*‘k’k***********‘k***‘k’k************************
*

* Draws a polygon

*/

static void DrawPolygon (void) {
int Cnt =0;
GUI_SetBkColor (GUI_WHITE) ;
GUI_Clear();

GUI_SetFont (&GUI_Font8x16) ;
GUI_SetColor (0x0) ;
GUI_DispStringAt ("Polygons of arbitrary shape ", 0, 0);
GUI_DispStringAt("in any color", 120, 20);
GUI_SetColor (GUI_BLUE) ;
/* Draw filled polygon */
GUI_FillPolygon (&aPointArrow[0],7,100,100);
}

/***
*
* main
*/
void main(void) {

GUI_Init();

DrawPolygon () ;

while (1)

GUI_Delay (100);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

137

Screen shot of above example

Polygons of arbitrary shape
in any color

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 2-D Graphic Library

7.11 Drawing circles

GUI_DrawCircle()

Description

Draws the outline of a circle of specified dimensions, at a specified position in the
current window.

Prototype
void GUI_DrawCircle(int x0, int y0, int r);
Parameter Description
x0 X-position of the center of the circle in pixels of the client window.
v0 Y-position of the center of the circle in pixels of the client window.
r Radius of the circle (half the diameter). Must be a positive value.
Example

// Draw concentric circles
void ShowCircles(void) {
int 1i;
for (i=10; 1i<50; 1 += 3)
GUI_DrawCircle (120, 60, 1);
}

Screen shot of above example

GUI_FillCircle()

Description

Draws a filled circle of specified dimensions at a specified position in the current win-
dow.

Prototype
void GUI_FillCircle(int x0, int y0, int r);

Parameter Description

x0 X-position of the center of the circle in pixels of the client window.

v0 Y-position of the center of the circle in pixels of the client window.

r Radius of the circle (half the diameter). Must be a positive value.

Example

GUI_FillCircle(120,60,50);
Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

139

7.12 Drawing ellipses

GUI_DrawEllipse()

Description

Draws the outline of an ellipse of specified dimensions, at a specified position in the
current window.

Prototype
void GUI_DrawEllipse(int x0, int y0, int rx, int ry);
Parameter Description
x0 X-position of the center of the circle in pixels of the client window.
vO0 Y-position of the center of the circle in pixels of the client window.
rx X-radius of the ellipse (half the diameter). Must be a positive value.
ry Y-radius of the ellipse (half the diameter). Must be a positive value.
Example

See the GUI_FillEllipse() example.

GUIL_FillElipse()

Description
Draws a filled ellipse of specified dimensions at a specified position in the current
window.
Prototype
void GUI_FillEllipse(int x0, int y0, int rx, int ry);
Parameter Description
x0 X-position of the center of the circle in pixels of the client window.
v0 Y-position of the center of the circle in pixels of the client window.
rx X-radius of the ellipse (half the diameter). Must be a positive value.
ry Y-radius of the ellipse (half the diameter). Must be a positive value.
Example

// Demo ellipses

GUI_SetColor (0xff) ;
GUI_FillEllipse (100, 180, 50, 70);
GUI_SetColor (0x0) ;
GUI_DrawEllipse (100, 180, 50, 70);
GUI_SetColor (0x000000) ;
GUI_FillEllipse (100, 180, 10, 50);

Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 2-D Graphic Library

7.13 Drawing arcs

GUI_DrawArc()

Description

Draws an arc of specified dimensions at a specified position in the current window. An
arc is a section of the outline of a circle.

Prototype
void GUI_DrawArc (int xCenter, int yCenter, int rx, int ry, int a0, int al);
Parameter Description
xCenter Horizontal position of the center in pixels of the client window.
yCenter Vertical position of the center in pixels of the client window.
rx X-radius (pixels).
ry Y-radius (pixels).
a0 Starting angle (degrees).
al Ending angle (degrees).
Limitations
Currently the ry parameter is not used. The rx parameter is used instead.
Example
void DrawArcScale (void) {
int x0 = 160;
?nt yO = 180;
int 1;

char acl[4];
GUI_SetBkColor (GUI_WHITE) ;
GUI_Clear();
GUI_SetPenSize(5);
GUI_SetTextMode (GUI_TM_TRANS) ;
GUI_SetFont (&GUI_FontComicl8B_ASCII) ;
GUI_SetColor(GUI_BLACK) ;
GUI_DrawArc(x0,y0,150, 150,-30, 210);
GUI_Delay (1000) ;
for (i=0; i<= 23; i++) {

float a = (-30+i*10)*3.1415926/180;

int x = -141*cos(a)+x0;
int y = -141*sin(a)+y0;
if (1%2 == 0)

GUI_SetPenSize(5);
else

GUI_SetPenSize(4);
GUI_DrawPoint (xX,V) ;
if (1%2 == 0) {
x = -123*cos(a)+x0;
vy = -130*sin(a)+y0;
sprintf (ac, "%d", 10*i);
GUI_SetTextAlign (GUI_TA_VCENTER) ;
GUI_DispStringHCenterAt (ac,x,v) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

141

Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

142

7.14 Drawing graphs

GUI_DrawGraph()

Description
Draws a graph at once.

Prototype
void GUI_DrawGraph(Ilé * pay,

CHAPTER 2-D Graphic Library

int NumPoints, int x0, int yO0);

Parameter

Description

x0 Starting point in x.

v0 Starting point in y.

paY Pointer to an array containing the Y-values of the graph.
NumPoints Number of Y-values to be displayed.

Additional information

The function first sets the line-cursor to the position specified with x0, y0 and the
first Y-value of the given array. Then it starts drawing lines to x0 + 1, yO + *(paY +

1), x0 + 2, yO + *(paY + 2) and so on.

Example

#include "GUI.h"
#include <stdlib.h>

I16 aY[100];
void MainTask (void) {

int 1i;
GUI_Init();

for (i = 0; i < GUI_COUNTOF (aY) ;

o

ay[i] = rand()

}

50;

GUI_DrawGraph(aY, GUI_COUNTOF (aY),

}
Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20

0);

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

143

7.15 Drawing pie charts

GUI_DrawPie()

Description
Draws a circle sector.

Prototype
void GUI_DrawPie(int x0, int y0, int r, int a0, int al, int Type);
Parameter Description
x0 X-position of the center of the circle in pixels of the client window.
vO0 Y-position of the center of the circle in pixels of the client window.
r Radius of the circle (half the diameter).
a0 Starting angle (degrees).
al End angle (degrees).
Type (reserved for future use, should be 0)
Example

int i, a0, al;
const unsigned aValues]|]
const GUI_COLOR aColors/[]

{ 100, 135, 190, 240, 340, 360};
{ GUI_BLUE, GUI_GREEN, GUI_RED,
GUI_CYAN, GUI_MAGENTA, GUI_YELLOW };

for (i = 0; i < GUI_COUNTOF (avValues); i++) {
a0 = (1 == 0) ?2 0 : avalues[i - 1];
al = avalues|[i];

GUI_SetColor (aColors[il]);
GUI_DrawPie (100, 100, 50, a0, al, 0);
}

Screen shot of above example

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 2-D Graphic Library

7.16 Saving and restoring the GUI-context

GUI_RestoreContext()

Description
The function restores the GUI-context.

Prototype
void GUI_RestoreContext (const GUI_CONTEXT * pContext) ;
Parameter Description
pContext Pointer to a GUI_CONTEXT structure containing the new context.

Additional information

The GUI-context contains the current state of the GUI like the text cursor position, a
pointer to the current font and so on. Sometimes it could be useful to save the cur-
rent state ant to restore it later. For this you can use these functions.

GUI_SaveContext()

Description
The function saves the current GUI-context. (See also GUI_RestoreContext)

Prototype
void GUI_SaveContext (GUI_CONTEXT * pContext) ;
Parameter Description
pContext Pointer to a GUI_CONTEXT structure for saving the current context.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

145

7.17 Clipping
GUI_SetClipRect()

Description
Sets the clipping rectangle used for limiting the output.

Prototype
void GUI_SetClipRect (const GUI_RECT * pRect);
Parameter Description
Rect Pointer to the rectangle which should be used for clipping. A NULL pointer should be
pRrec used to restore the default value.

Additional information

The clipping area is per default limited to the configured (virtual) display size.

Under some circumstances it can be useful to use a smaller clipping rectangle, which
can be set using this function.

The rectangle referred to should remain unchanged until the function is called again
with a NULL pointer.

Example
The following example shows how to use the function:

GUI_RECT Rect = {10, 10, 100, 100};
GUI_SetClipRect (&Rect) ;

/* Use the clipping area ... */

GUI_SetClipRect (NULL) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 2-D Graphic Library

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

147

Chapter 8
Displaying bitmap files

The recommended and most efficient way to display a bitmap known at compile time
is to use the Bitmap Converter to convert it into a C file and add it to the project /
makefile. For details about the Bitmap Converter, refer to the chapter “Bitmap Con-
verter” on page 177.

If the application needs to display images not known at compile time, the image
needs to be available in a graphic file format supported by emWin. In this case, the
image file can reside in memory or on an other storage device; it can be displayed
even if the amount of available memory is less than the size of the image file.
emWin currently supports BMP, JPEG, GIF and PNG file formats.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

148

8.1

tions support bmp files which have been loaded into memory.

CHAPTER

BMP file support

Although bitmaps which can be used with emWin are normally compiled and linked as
C files with the application, there may be situations when using these types of struc-
tures is not desirable. A typical example would be an application that continuously
references new images, such as bitmaps downloaded by the user. The following func-

Displaying bitmap files

For images that you plan to re-use (that is, a company logo) it is much more efficient
to compile and link it as C file which can be used directly by emWin. This may be eas-
ily done with the Bitmap Converter.

8.1.1

Supported formats

The BMP file format has been defined by Microsoft. There are a number of different
formats as shown in the table below:

Bits per pixel Indexed Compression Supported
1 ves no ves
4 ves no ves
4 ves yves ves
8 ves no ves
8 ves ves ves
16 no no ves
24 no no ves
32 no no ves
8.1.2 BMP file API

UMO03001 User & Reference Guide for emWin V5.20

The table below lists the available BMP file related routines in alphabetical order.

Detailed descriptions follows:

Routine

Explanation

GUI_BMP_Draw ()

Draws a BMP file which has been loaded into memory.

GUI_BMP_DrawEx ()

Draws a BMP file which needs not to be loaded into memory.

GUI_BMP_DrawScaled()

Draws a BMP file with scaling which has been loaded into
memory.

GUI_BMP_DrawScaledEx ()

Draws a BMP file with scaling which needs not to be loaded into
memory.

GUI_BMP_GetXSize ()

Returns the X-size of a BMP file loaded into memory.

GUI_BMP_GetXSizeEx ()

Returns the X-size of a BMP file which needs not to be loaded into
memory.

GUI_BMP_GetYSize ()

Returns the Y-size of a bitmap loaded into memory.

GUI_BMP_GetYSizeEx ()

Returns the Y-size of a BMP file which needs not to be loaded into
memory.

GUI_BMP_Serialize()

Creates a BMP file.

GUI_BMP_SerializeEx()

Creates a BMP file from the given rectangle.

GUI_BMP_SerializeExBpp ()

Creates a BMP file from the given rectangle using the specified
color depth.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

149

GUI_BMP_Draw()

Description

Draws a Windows bmp file, which has been loaded into memory, at a specified posi-
tion in the current window.

Prototype

int GUI_BMP_Draw(const void * pFileData, int x0, int yO0);
Parameter Description

pFileData Pointer to the start of the memory area in which the bmp file resides.

x0 X-position of the upper left corner of the bitmap in the display.

vO0 Y-position of the upper left corner of the bitmap in the display.

Additional information

The table at the beginning of the chapter shows the supported BMP file formats. The
example 2DGL_DrawBMP.c shows how to use the function.

GUI_BMP_DrawEx()

Description

Draws a bmp file, which does not have to be loaded into memory, at a specified posi-
tion in the current window.

Prototype
int GUI_BMP_DrawEx (GUI_GET_DATA_FUNC * pfGetData, void * p, int x0, int yO0);
Parameter Description
Pointer to a function which is called for getting data. For details about the GetData
ptGetData function, refer to “"Getting data with the ...Ex() functions” on page 174.
P Void pointer passed to the function pointed by pfGetData.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.

Return value
Zero on success, nonzero if the function fails.

Additional information

This function is used for drawing bmp files if not enough RAM is available to load the
whole file into memory. The GUI library then calls the function pointed by the param-
eter pfGetData to read the data. The GetData function needs to return the number
of requested bytes. The maximum number of bytes requested by the GUI is the num-
ber of bytes needed for drawing one line of the image.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER Displaying bitmap files

GUI_BMP_DrawScaled()

Description

Draws a bmp file, which has been loaded into memory, at a specified position in the
current window using scaling.

Prototype

int GUI_BMP_DrawScaled(const void * pFileData,
int x0, int y0, int Num, int Denom) ;

Parameter Description
pFileData | Pointer to the start of the memory area in which the bmp file resides.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.
Num Numerator to be used for scaling.
Denom Denominator used for scaling.

Return value
Zero on success, nonzero if the function fails.

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and Denom should be 3.

GUI_BMP_DrawScaledEx()

Description

Draws a bmp file, which does not have to be loaded into memory, at a specified posi-
tion in the current window using scaling.

Prototype
int GUI_BMP_DrawScaledEx (GUI_GET_DATA_FUNC * pfGetData, void * p,
int x0, int v0,
int Num, int Denom) ;
Parameter Description
fGetData Pointer to a function which is called for getting data. For details about the GetData
p function, refer to “Getting data with the ...Ex() functions” on page 174.
P Void pointer passed to the function pointed by pfGetData.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.
Num Numerator to be used for scaling.
Denom Denominator used for scaling.

Return value
Zero on success, nonzero if the function fails.

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and Denom should be 3.

For more details, refer to “GUI_BMP_DrawEx()” on page 149.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

151

GUI_BMP_GetXSize()
Description
Returns the X-size of a specified bitmap which has been loaded into memory.

Prototype
int GUI_BMP_GetXSize(const void * pFileData) ;

Parameter Description

pFileData Pointer to the start of the memory area in which the bmp file resides.

Return value
X-size of the bitmap.

GUI_BMP_GetXSizeEx()

Description

Returns the X-size of a specified bmp file which does not have to be loaded into mem-
ory.

Prototype

int GUI_BMP_GetXSizeEx(GUI_GET_DATA_FUNC * pfGetData, void * p);

Parameter Description

Pointer to a function which is called for getting data. For details about the GetData

f D
ptGetbata function, refer to “Getting data with the ...Ex() functions” on page 174.

o) Void pointer passed to the function pointed by pfGetData.

Return value
X-size of the bitmap.

GUI_BMP_GetYSize()
Description
Returns the Y-size of a specified bitmap which has been loaded into memory.

Prototype
int GUI_BMP_GetYSize (const void * pFileData);;

Parameter Description

pFileData Pointer to the start of the memory area in which the bmp file resides.

Return value
Y-size of the bitmap.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER Displaying bitmap files

GUI_BMP_GetYSizeEx()

Description
Returns the Y-size of a specified bmp file which does not have to be loaded into mem-
ory.
Prototype
int GUI_BMP_GetYSizeEx (GUI_GET_DATA_FUNC * pfGetData, void * p);
Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData

function, refer to “Getting data with the ...Ex() functions” on page 174.

D Void pointer passed to the function pointed by pfGetData.

Return value
Y-size of the bitmap.

GUI_BMP_Serialize()

Description

The function creates a BMP file containing the complete content of the LCD. The BMP
file is created using the color depth which is used in emWin at a maximum of 24 bpp.
In case of using a color depth of less than 8bpp the color depth of the BMP file will be
8bpp.

The currently selected device is used for reading the pixel data. If a Memory Device
is selected it's content is written to the file.

Prototype
void GUI_BMP_Serialize (GUI_CALLBACK_VOID_U8_P * pfSerialize, void * p);

Parameter Description
pfSerialize Pointer to serialization function
P Pointer to user defined data passed to serialization function
Example

The following example shows how to create a BMP file under windows.

static void _DrawSomething (void) ({
/* Draw something */
GUI_DrawLine (10, 10, 100, 100);
}

static void _WriteByte2File (U8 Data, void * p) {

U32 nWritten;

WriteFile(* ((HANDLE *)p), &Data, 1, &nWritten, NULL) ;
}

static void _ExportToFile(void) {
HANDLE hFile = CreateFile("C:\\GUI_BMP_Serialize.bmp",
GENERIC_WRITE, 0, O,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, O0);
GUI_BMP_Serialize(_WriteByte2File, &hFile);
CloseHandle (hFile) ;
}

void MainTask (void) {
GUI_Init();
_DrawSomething () ;
_ExportToFile();

}

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

153

GUI_BMP_SerializeEXx()

Description

The function creates a BMP file containing the given area. The BMP file is created
using the color depth which is used in emWin at a maximum of 24 bpp. In case of
using a color depth of less than 8bpp the color depth of the BMP file will be 8bpp.
The currently selected device is used for reading the pixel data. If a Memory Device
is selected it’s content is written to the file.

Prototype

void GUI_BMP_SerializeEx (GUI_CALLBACK_VOID U8_P * pfSerialize,
int x0, int yo0,
int xSize, int ySize,
void * p);

Parameter Description
pfSerialize Pointer to user defined serialization function. See prototype below.
x0 Start position in X to create the BMP file.
v0 Start position in Y to create the BMP file.
xSize Size in X.
ySize Size in Y.
je) Pointer to user defined data passed to serialization function.

Prototype of GUI_CALLBACK_VOID_U8_P

void GUI_CALLBACK_VOID_U8_P (U8 Data, wvoid * p);

Additional information
An example can be found in the description of GUI_BMP_Serialize().

GUI_BMP_SerializeExBpp()

Description

The function creates a BMP file containing the given area using the specified color
depth. In case of using a color depth of less than 8bpp the color depth of the BMP file
will be 8bpp. The color depth should be a multiple of 8. In case of a system color
depth of more than 8bpp the color depth needs to be 16bpp or more.

The currently selected device is used for reading the pixel data. If a Memory Device
is selected it’s content is written to the file.

Prototype
void GUI_BMP_SerializeExBpp (GUI_CALLBACK _VOID _U8_P * pfSerialize,
int x0, int yoO0,
int xSize, int ySize,
void * p, int BitsPerPixel);
Parameter Description
pfSerialize Pointer to user defined serialization function. See prototype below.
x0 Start position in X to create the BMP file.
vO0 Start position in Y to create the BMP file.
xSize Size in X.
ySize Size in Y.
P Pointer to user defined data passed to serialization function.
BitsPerPixel | Color depth.

Prototype of GUI_CALLBACK_VOID_US8_P
void GUI_CALLBACK_VOID_U8_P (U8 Data, void * p);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

154 CHAPTER Displaying bitmap files

Additional information
An example can be found in the description of GUI_BMP_Serialize () above.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

155

8.2 JPEG file support

JPEG (pronounced "jay-peg") is a standardized compression method for full-color and
gray-scale images. JPEG is intended for compressing "real-world" scenes; line draw-
ings, cartoons and other non-realistic images are not its strong suit. JPEG is lossy,
meaning that the output image is not exactly identical to the input image. Hence you
must not use JPEG if you have to have identical output bits. However, on typical pho-
tographic images, very good compression levels can be obtained with no visible
change, and remarkably high compression levels are possible if you can tolerate a
low-quality image.

8.2.1 Supported JPEG compression methods

This software implements JPEG baseline, extended-sequential and progressive com-
pression processes. Provision is made for supporting all variants of these processes,
although some uncommon parameter settings aren't implemented yet. For legal rea-
sons, code for the arithmetic-coding variants of JPEG is not distributed. It appears
that the arithmetic coding option of the JPEG spec is covered by patents owned by
IBM, AT&T, and Mitsubishi. Hence arithmetic coding cannot legally be used without
obtaining one or more licenses. For this reason, support for arithmetic coding has not
been included. (Since arithmetic coding provides only a marginal gain over the
unpatented Huffman mode, it is unlikely that very many implementations will support
it.)

The JPEG file support does not contain provision for the hierarchical or lossless pro-
cesses defined in the standard.

8.2.2 Converting a JPEG file to C source

Under some circumstances it can be useful to add a JPEG file as C file to the project.

In this case the JPEG file first needs to be converted to a C file. This can be done

using the tool Bin2C.exe shipped with emWin. It can be found in the Tools sub-

folder. It converts the given binary file (in this case the JPEG file) to a C file. The file-

name of the C file is the same as the binary file name with the file extension ".c’.

The following steps will show how to embed a JPEG file using Bin2C:

e Start Bin2C.exe and select the JPEG file to be converted to a C file, for example
‘Image.jpeg’ and convert it to a C file.

e Add the C file to the project.

Example

The following example shows how to display the converted JPEG file:

#include "GUI.h"
#include "Image.c" /* Include the converted C file */

void MainTask (void) {
GUI_Init();
GUI_JPEG_Draw(acImage, sizeof (acImage), 0, 0);

) R

8.2.3 Displaying JPEG files

The graphic library first decodes the graphic information. If the image has to be
drawn the decoding process takes considerable time. If a JPEG file is used in a fre-
quently called callback routine of the Window Manager, the decoding process can
take a considerable amount of time. The calculation time can be reduced by the use
of memory devices. The best way would be to draw the image first into a memory
device. In this case the decompression would be executed only one time. For more
information about memory devices, refer to chapter "Memory Devices” on page 287.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER Displaying bitmap files

8.2.4 Memory usage

The JPEG decompression uses app. 33Kb RAM for decompression independent of the
image size and a size dependent amount of bytes. The RAM requirement can be cal-
culated as follows:

App. RAM requirement = X-Size of image * 80 bytes + 33 Kbytes

The X-size dependent amount depends on the compression type of the JPEG file. The
following table shows some examples:

Compression Size of image in RAM usage RAM usage, size
i pixels [Kbyte] dependent [Kbyte]

H1V1 160x120 45 12

H2Vv2 160x120 46 13

GRAY 160x120 38 4

The memory required for the decompression is allocated dynamically by the emWin
memory management system. After drawing the JPEG image the complete RAM will
be released.

8.2.5 Progressive JPEG files

Contrary to baseline and extended-sequential JPEG files progressive JPEGs consist of
multiple scans. Each of these scans is based on the previous scan(s) and refines the
appearance of the JPEG image. This requires scanning the whole file even if only one
line needs to be decompressed.

If enough RAM is configured for the whole image data, the decompression needs only
be done one time. If less RAM is configured, the JPEG decoder uses ‘banding’ for
drawing the image. The more bands required the more times the image needs to be
decompressed and the slower the performance. With other words: The more RAM the
better the performance.

8.2.6 JPEG file API

The table below lists the available JPEG file related routines in alphabetical order.
Detailed descriptions follows:

Routine Explanation
GUI_JPEG_Draw () Draws a JPEG file which has been loaded into memory.
GUI_JPEG_DrawEx () Draws a JPEG file which needs not to be loaded into memory.
GUI_JPEG_DrawScaled() Draws a JPEG file with scaling which has been loaded into memory.
Draws a JPEG file with scaling which needs not to be loaded into

GUI_JPEG_DrawScaledEx () memory.

Fills a GUI_JPEG_INFO structure from a JPEG file which has been
loaded into memory.

Fills a GUI_JPEG_INFO structure from a JPEG file which needs not to
be loaded into memory.

GUI_JPEG_GetInfo()

GUI_JPEG_GetInfoEx()

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

157

GUI_JPEG_Draw()

Description

Draws a jpeg file, which has been loaded into memory, at a specified position in the
current window.

Prototype
int GUI_JPEG_Draw(const void * pFileData, int DataSize, int x0, int vyO0);

Parameter Description

pFileData | Pointer to the start of the memory area in which the jpeg file resides.
DataSize Number of bytes of the jpeg file.
x0 X-position of the upper left corner of the bitmap in the display.

v0 Y-position of the upper left corner of the bitmap in the display.

Return value

Zero on success, nonzero if the function fails. (The current implementation always
returns 0)

Additional information

The sample folder contains the example 2DGL_DrawJPG.c which shows how to use the
function.

GUI_JPEG_DrawEx()

Description

Draws a jpeg file, which does not have to be loaded into memory, at a specified posi-
tion in the current window.

Prototype
int GUI_JPEG_DrawExX (GUI_GET_DATA_FUNC * pfGetData, void * p,
int x0, int v0);
Parameter Description
Pointer to a function which is called for getting data. For details about the GetData
ptGetData function, refer to “Getting data with the ...Ex() functions” on page 174.
p Void pointer passed to the function pointed by pfGetData.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.

Return value

Zero on success, nonzero if the function fails. (The current implementation always
returns 0)

Additional information

This function is used for drawing jpegs if not enough RAM is available to load the
whole file into memory. The JPEG library then calls the function pointed by the
parameter pfGCetData to read the data.

The GetData function should return the number of available bytes. This could be less
or equal the number of requested bytes. The function needs at least to return 1 new
byte. The sample folder contains the example 2DGL_DrawJPGScaled.c which shows
how to use a Getbata function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER Displaying bitmap files

GUI_JPEG_DrawScaled()

Description

Draws a jpeg file, which has been loaded into memory, at a specified position in the
current window using scaling.

Prototype

int GUI_JPEG_DrawScaled(const void * pFileData, int DataSize,
int x0, int y0, int Num, int Denom) ;

Parameter Description

pFileData | Pointer to the start of the memory area in which the jpeg file resides.

DataSize Number of bytes of the jpeg file.

x0 X-position of the upper left corner of the bitmap in the display.
yO0 Y-position of the upper left corner of the bitmap in the display.
Num Numerator to be used for scaling.

Denom Denominator used for scaling.

Return value

Zero on success, nonzero if the function fails. (The current implementation always
returns 0)

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and Denom should be 3.

The sample folder contains the example 2DGL_DrawJPGScaled.c which shows how to
draw scaled JPEGs.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

159

GUI_JPEG_DrawScaledEx()

Description

Draws a jpeg file, which does not have to be loaded into memory, at a specified posi-
tion in the current window using scaling.

Prototype

int GUI_JPEG_DrawScaledEx (GUI_GET_DATA_FUNC * pfGetData, void * p,
int x0, int y0, int Num, int Denom) ;

Parameter Description
Pointer to a function which is called for getting data. For details about the GetData

ptGetData function, refer to “Getting data with the ...Ex() functions” on page 174.
D Void pointer passed to the function pointed by pfGetData.
x0 X-position of the upper left corner of the bitmap in the display.
vO0 Y-position of the upper left corner of the bitmap in the display.
Num Numerator to be used for scaling.
Denom Denominator used for scaling.

Return value

Zero on success, nonzero if the function fails. (The current implementation always
returns 0)

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and Denom should be 3.

For more details, refer to "GUI_JPEG_DrawEx()” on page 157.

The sample folder contains the example 2DGL_DrawJPGScaled.c which shows how to
use the function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER Displaying bitmap files

GUI_JPEG_GetInfo()

Description

Fills a GUI_JPEG_INFO structure with information about a jpeg file, which has been
loaded into memory.

Prototype

int GUI_JPEG_GetInfo(const void * pFileData,
int DataSize,
GUI_JPEG_INFO * pInfo);

Parameter Description

pFileData | Pointer to the start of the memory area in which the jpeg file resides.
DataSize Number of bytes of the jpeg file.
pInfo Pointer to a GUI_JPEG_INFO structure to be filled by the function.

Return value
Zero on success, nonzero if the function fails.

Elements of GUI_JPEG_INFO

Data type| Element Description
int XSize Pixel size in X of the image.
int YSize Pixel size in Y of the image.

Additional information

The sample folder contains the example 2DGL_DrawJPG.c which shows how to use the
function.

GUI_JPEG_GetInfoEx()

Description

Fills a GUI_JPEG_INFO structure with information about a jpeg file, which does not
have to be loaded into memory.

Prototype
int GUI_JPEG_GetInfoEx (GUI_GET_DATA_FUNC * pfGetData, void * p,
GUI_JPEG_INFO * pInfo);
Parameter Description
fGetData Pointer to a function which is called for getting data. For details about the GetData
p function, refer to “Getting data with the ...Ex() functions” on page 174.
o) Void pointer passed to the function pointed by pfGetData.
pInfo Pointer to a GUI_JPEG_INFO structure to be filled by the function.

Return value
Zero on success, nonzero if the function fails.

Additional information

For more details about the function and the parameters pfGetbata and p, refer to
“GUI_JPEG_GetInfo()” on page 160 and “"GUI_JPEG_DrawEx()” on page 157.

The sample folder contains the example 2DGL_DrawJPGScaled.c which shows how to
use the function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

161

8.3 GIF file support

The GIF file format (Graphic Interchange Format) has been developed by the Com-
puServe Information Service in the 1980s. It has been designed to transmit images
across data networks.

The GIF standard supports interlacing, transparency, application defined data, ani-
mations and rendering of raw text. Unsupported data like raw text or application spe-
cific data will be ignored by emWin.

GIF files uses the LZW (Lempel-Zif-Welch) file compression method for compressing
the image data. This compression method works without loosing data. The output
image is exactly identical to the input image.

8.3.1 Converting a GIF file to C source

Under some circumstances it can be useful to add a GIF file as C file to the project.
This can be done by exactly the same way as described before under "JPEG file sup-
port’.

8.3.2 Displaying GIF files

The graphic library first decodes the graphic information. If the image has to be
drawn the decoding process takes considerable time. If a GIF file is used in a fre-
quently called callback routine of the Window Manager, the decoding process can
take a considerable amount of time. The calculation time can be reduced by the use
of memory devices. The best way would be to draw the image first into a memory
device. In this case the decompression would be executed only one time. For more
information about memory devices, refer to the chapter “"Memory Devices” on
page 287.

8.3.3 Memory usage

The GIF decompression routine of emWin needs about 16Kbytes of dynamically allo-
cated RAM for decompression. After drawing an image the RAM used for decompress-
ing will be released.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

162

8.3.4 GIF file API

The table below lists the available GIF file related routines in alphabetical order.

GUI

UMO03001 User & Reference Guide for emWin V5.20

Detailed descriptions follows:

CHAPTER Displaying bitmap files

Routine

Explanation

GUI_GIF_Draw()

Draws the first image of a GIF file which has been loaded into
memory.

GUI_GIF_DrawEx()

Draws the first image of a GIF file which needs not to be loaded
into memory.

GUI_GIF_DrawSub /()

Draws the given sub image of a GIF file which has been loaded
into memory.

GUI_GIF_DrawSubEx ()

Draws the given sub image of a GIF file which needs not to be
loaded into memory.

GUI_GIF_DrawSubScaled()

Draws the given sub image of a GIF file with scaling which has
been loaded into memory.

GUI_GIF_DrawSubScaledEx ()

Draws the given sub image of a GIF file with scaling which needs
not to be loaded into memory.

GUI_GIF_GetComment ()

Returns the given comment of a GIF file which has been loaded
into memory.

GUI_GIF_GetCommentEx ()

Returns the given comment of a GIF file which needs not to be
loaded into memory.

GUI_GIF_GetImageInfol()

Returns information about the given sub image of a GIF file
which has been loaded into memory.

GUI_GIF_GetImagelInfoEx()

Returns information about the given sub image of a GIF file
which needs not to be loaded into memory.

GUI_GIF_GetInfo()

Returns information about a GIF file which has been loaded into
memory.

GUI_GIF_GetInfoEx()

Returns information about a GIF file which needs not to be
loaded into memory.

GUI_GIF_GetXSize()

Returns the X-size of a bitmap loaded into memory.

GUI_GIF_GetXSizeEx ()

Returns the X-size of a bitmap which needs not to be loaded into
memory.

GUI_GIF_GetYSize()

Returns the Y-size of a bitmap loaded into memory.

GUI_GIF_GetYSizeEx ()

Returns the Y-size of a bitmap which needs not to be loaded into
memory.

_GIF_Draw()

Description

Draws the first image of a gif file, which has been loaded into memory, at a specified

position in the current window.

Prototype

int GUI_GIF_Draw(const void * pGIF, U32 NumBytes,

int x0, int y0);

Parameter Description
pPGIF Pointer to the start of the memory area in which the gif file resides.
NumBytes Number of bytes of the gif file.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.

Return value
0 on success, '= 0 on error.

Additional information

If the file contains more than one image, the function shows only the first image of
the file. Transparency and interlaced images are supported.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

163

GUI_GIF_DrawEx()

Description

Draws a gif file, which does not have to be loaded into memory, at a specified posi-
tion in the current window.

Prototype

int GUI_GIF_DrawEx (GUI_GET_DATA_FUNC * pfGetData, void * p, int x0, int yO0);
Parameter Description

pfGetData Pointer to a function which is called for getting data. For details about the GetData

function, refer to “"Getting data with the ...Ex() functions” on page 174.

o) Void pointer passed to the function pointed by pfGetData.

x0 X-position of the upper left corner of the bitmap in the display.

v0 Y-position of the upper left corner of the bitmap in the display.

Return value
Zero on success, nonzero if the function fails.

Additional information

This function is used for drawing gif files if not enough RAM is available to load the
whole file into memory. The library calls the function pointed by the parameter
pfGetData to read the data.

The cetbata function should return the number of available bytes. This could be less
or equal the number of requested bytes. The function needs at least to return 1 new
byte.

GUI_GIF_DrawSub()

Description

Draws the given sub image of a gif file, which has been loaded into memory, at a
specified position in the current window.

Prototype

int GUI_GIF_DrawSub(const void * pGIF, U32 NumBytes,
int x0, int y0, int Index);

Parameter Description
pGIF Pointer to the start of the memory area in which the gif file resides.
NumBytes Number of bytes of the gif file.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.
Index Zero-based index of sub image to be shown.

Return value
0 on success, != 0 on error.

Additional information

The function manages the background pixels between the current and the previous
image. If for example sub image #3 should be drawn at offset x20/y20 with a size of
w1l0/h10 and the previous sub image was shown at x15/y15 with a size of w20/h20
and the background needs to be redrawn, the function fills the pixels between the
images with the background color.

The file 2DGL_DrawGIF.c of the sample folder shows how to use the function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER Displaying bitmap files

GUI_GIF_DrawSubEXx()

Description

Draws the given sub image of a gif file, which does not have to be loaded into mem-
ory, at a specified position in the current window.

Prototype
int GUI_GIF_DrawSubEx (GUI_GET_DATA_FUNC * pfGetData,
void * p, int x0, int vy0, int Index);
Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “Getting data with the ...Ex() functions” on page 174.

P Void pointer passed to the function pointed by pfGetData.

x0 X-position of the upper left corner of the bitmap in the display.

v0 Y-position of the upper left corner of the bitmap in the display.

Index Zero-based index of sub image to be shown.

Return value
Zero on success, nonzero if the function fails.

Additional information

This function is used for drawing gif images if not enough RAM is available to load
the whole file into memory. The GUI library then calls the function pointed by the
parameter pfGetData to read the data.

For more details, refer to the "GUI_GIF_DrawEx()” on page 163.

GUI_GIF_DrawSubScaled()

Description

Draws the given sub image of a gif file, which has been loaded into memory, at a
specified position in the current window using scaling.

Prototype

int GUI_GIF_DrawSubScaled(const void * pGIF, U32 NumBytes, int x0, int yO0,

int Index, int Num, int Denom) ;
Parameter Description
pGif Pointer to the start of the memory area in which the gif file resides.
NumBytes Number of bytes of the gif file.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.
Index Zero-based index of sub image to be shown.
Num Numerator to be used for scaling.
Denom Denominator used for scaling.

Return value
Zero on success, nonzero if the function fails.

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and bDenom should be 3.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

165

GUI_GIF_DrawSubScaledEXx()

Description

Draws the given sub image of a gif file, which does not have to be loaded into mem-
ory, at a specified position in the current window using scaling.

Prototype
int GUI_GIF_DrawSubScaledEx (GUI_GET_DATA_FUNC * pfGetData,
void * p, int x0, int vyoO,
int Index, int Num, int Denom) ;
Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “"Getting data with the ...Ex() functions” on page 174.
o) Void pointer passed to the function pointed by pfGetData.
x0 X-position of the upper left corner of the bitmap in the display.
v0 Y-position of the upper left corner of the bitmap in the display.
Index Zero-based index of sub image to be shown.
Num Numerator to be used for scaling.
Denom Denominator used for scaling.

Return value
Zero on success, nonzero if the function fails.

Additional information

The function scales the image by building a fraction with the given numerator and
denominator. If for example an image should be shrunk to 2/3 of size the parameter
Num should be 2 and Denom should be 3.

GUI_GIF_GetComment()

Description
Returns the given comment from a GIF image, which has been loaded into memory.

Prototype

int GUI_GIF_GetComment (const void * pGIF, U32 NumBytes,
U8 * pBuffer, int MaxSize, int Index) ;

Parameter Description
pPGIF Pointer to the start of the memory area in which the gif file resides.
NumBytes Number of bytes of the gif file.
pBuffer Pointer to a buffer to be filled with the comment.
MaxSize Size of the buffer.
Index Zero based index of comment to be returned.

Return value
0 on success, != 0 on error.

Additional information

A GIF file can contain 1 or more comments. The function copies the comment into the
given buffer. If the comment is larger than the given buffer only the bytes which fit
into the buffer will be copied.

The file 2DGL_DrawGIF.c of the sample folder shows how to use the function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER Displaying bitmap files

GUI_GIF_GetCommentEx()

Description

Returns the given comment from a GIF image, which does not have to be loaded into
memory.

Prototype

int GUI_GIF_GetCommentEx (GUI_GET_DATA_FUNC * pfGetData, void * p,
U8 * pBuffer, int MaxSize, int Index);

Parameter Description
Pointer to a function which is called for getting data. For details about the GetData
ptGetData function, refer to “Getting data with the ...Ex() functions” on page 174.
D Void pointer passed to the function pointed by pfGetData.
pBuffer Pointer to a buffer to be filled with the comment.
MaxSize Size of the buffer.
Index Zero based index of comment to be returned.

Return value
0 on success, '= 0 on error.

Additional information
For details, refer to "GUI_GIF_GetComment()” on page 165.

GUI_GIF_Getimagelnfo()

Description

Returns information about the given sub image of a GIF file, which has been loaded
into memory.

Prototype

int GUI_GIF_GetImageInfo(const void * pGIF, U32 NumBytes,
GUI_GIF_IMAGE_INFO * pInfo, int Index);

Parameter Description
pPGIF Pointer to the start of the memory area in which the gi £ file resides.
NumBytes Number of bytes of the gif file.
pInfo Pointer to a GUI_GIF_IMAGE_INFO structure which will be filled by the function.
Index Zero based index of sub image.

Return value
0 on success, != 0 on error.

Elements of GUI_GIF_IMAGE_INFO

Data type Element Description
int xPos X position of the last drawn image.
int yPos Y position of the last drawn image.
int xSize X size of the last drawn image.
int ySize Y size of the last drawn image.
int Delay Time in 1/100 seconds the image should be shown in a movie.

Additional information

If an image needs be shown as a movie this function should be used to get the time
the sub image should be visible and the next sub image should be shown.
If the delay member is 0 the image should be visible for 1/10 second.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

167

GUI_GIF_GetimagelnfoEXx()

Description

Returns information about the given sub image of a GIF file, which needs not to be
loaded into memory.

Prototype

int GUI_GIF_GetImageInfoEx (GUI_GET_DATA_FUNC * pfGetData, void * p,
GUI_GIF_IMAGE_INFO * pInfo, int Index);

Parameter Description

Pointer to a function which is called for getting data. For details about the GetData
function, refer to “"Getting data with the ...Ex() functions” on page 174.

D Void pointer passed to the function pointed by pfGetData.
Pointer to a GUI_GIF_IMAGE_INFO structure which will be filled by the function.

pfGetData

pInfo

Index Zero based index of sub image.

Return value
0 on success, !'= 0 on error.

Additional information
For more details, refer to "GUI_GIF_GetImagelnfo()” on page 166.

GUIL_GIF_Getinfo()

Description

Returns an information structure with information about the size and the number of
sub images within the given GIF file, which has been loaded into memory.

Prototype

int GUI_GIF_GetInfo(const void * pGIF, U32 NumBytes, GUI_GIF_INFO * pInfo);
Parameter Description

PGIF Pointer to the start of the memory area in which the gif file resides.

NumBytes Number of bytes of the gif file.

pInfo Pointer to a GUI_GIF_INFO structure which will be filled by this function.

Return value
0 on success, !'= 0 on error.

Elements of GUI_GIF_INFO

Data type Element Description
int XSize Pixel size in X of the image.
int YSize Pixel size in Y of the image.
int NumImages Number of sub images in the file.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

168

CHAPTER Displaying bitmap files

GUI_GIF_GetInfoEXx()

GUI

UMO03001 User & Reference Guide for emWin V5.20

Description

Returns an information structure with information about the size and the number of
sub images within the given GIF file, which needs not to be loaded into memory.

Prototype

int GUI_GIF_GetInfoEx(GUI_GET_DATA_FUNC * pfGetData,

void * o,
GUI_GIF_INFO * pInfo);;

Parameter Description
Pointer to a function which is called for getting data. For details about the GetData
pfGetData function, refer to “"Getting data with the ...Ex() functions” on page 174.
D Void pointer passed to the function pointed by pfGetData.
pInfo Pointer to a GUI_GIF_INFO structure which will be filled by this function.

Return value
0 on success,

I= 0 on error.

Elements of GUI_GIF_INFO

Data type Element Description
int XSize Pixel size in X of the image.
int YSize Pixel size in Y of the image.
int NumImages | Number of sub images in the file.

_GIF_GetXSize()

Description
Returns the X-size of a specified GIF image, which has been loaded into memory.
Prototype
int GUI_GIF_GetXSize(const void * pGIF);
Parameter Description
pGIF Pointer to the start of the memory area in which the gif file resides.

Return value

X-size of the GIF image.

GUI_GIF_GetXSizeEx()

Description
Returns the X
ory.

Prototype

int GUI_GIF_GetXSizeEx(GUI_GET_DATA_FUNC * pfGetData,

-size of a specified GIF image, which needs not to be loaded into mem-

void * p);

Parameter Description

fGetData Pointer to a function which is called for getting data. For details about the GetData
p function, refer to “Getting data with the ...Ex() functions” on page 174.
o) Void pointer passed to the function pointed by pfGetData.

Return value

X-size of the GIF image.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

169

GUI_GIF_GetYSize()

Description
Returns the Y-size of a specified GIF image, which has been loaded into memory.

Prototype
int GUI_GIF_GetYSize(const void * pGIF);;
Parameter Description
PGIF Pointer to the start of the memory area in which the bmp file resides.

Return value
Y-size of the GIF image.

GUI_GIF_GetYSizeEx()

Description
Returns the Y-size of a specified GIF image, which needs not to be loaded into mem-
ory.
Prototype
int GUI_GIF_GetYSizeEx (GUI_GET_DATA_FUNC * pfGetData, void * p);
Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData

function, please refer to “Getting data with the ...Ex() functions” on page 174.

o) Void pointer passed to the function pointed by pfGetData.

Return value
Y-size of the GIF image.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER Displaying bitmap files

8.4 PNG file support

The PNG (Portable Network Graphics) format is an image format which offers lossless
data compression and alpha blending by using a non-patented data compression
method. Version 1.0 of the PNG specification has been released in 1996. Since the
end of 2003 PNG is an international standard (ISO/IEC 15948).

The emWin implementation of PNG support is based on the ‘libpng’ library from Glenn
Randers-Pehrson, Guy Eric Schalnat and Andreas Dilger which is freely available
under www.libpng.org. It is used in emWin under the copyright notice in
GUI\PNG\png.h which allows using the library without any limitation.

The pNG library of emWin is available under www.segger.com/link/emwin_png.zip.

8.4.1 Converting a PNG file to C source

Under some circumstances it can be useful to add a PNG file as C file to the project.
This can be done by exactly the same way as described before under "JPEG file sup-
port’. Further the Bitmap Converter is able to load PNG files and can convert them
into C bitmap files.

8.4.2 Displaying PNG files

The graphic library first decodes the graphic information. If the image has to be
drawn the decoding process takes considerable time. If a PNG file is used in a fre-
quently called callback routine of the Window Manager, the decoding process can
take a considerable amount of time. The calculation time can be reduced by the use
of memory devices. The best way would be to draw the image first into a memory
device. In this case the decompression would be executed only one time. For more
information about memory devices, refer to the chapter “"Memory Devices” on
page 287.

8.4.3 Memory usage

The PNG decompression uses app. 21Kbytes of RAM for decompression independent
of the image size and a size dependent amount of bytes. The RAM requirement can
be calculated as follows:

App. RAM requirement = (xSize + 1) * ySize * 4 + 54Kbytes

8.4.4 PNG file API

The table below lists the available PNG file related routines in alphabetical order.
Detailed descriptions follows:

Routine Explanation
GUI_PNG_Draw () Draws the PNG file which has been loaded into memory.
GUI_PNG_DrawEx () Draws the PNG file which needs not to be loaded into memory.
GUI_PNG_GetXSize () Returns the X-size of a bitmap loaded into memory.
GUI_PNG_GetXSizeEx () Returns the X-size of a bitmap which needs not to be loaded into

memory.

GUI_PNG_GetYSize () Returns the Y-size of a bitmap loaded into memory.
GUI_PNG_GetYSizeEx () quet:q?ri/the Y-size of a bitmap which needs not to be loaded into

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

171

GUI_PNG_Draw()

Description

Draws a png file, which has been loaded into memory, at a specified position in the
current window.

Prototype

int GUI_PNG_Draw(const void * pFileData, int FileSize, int x0, int vyO0);

Parameter Description

pFileData Pointer to the start of the memory area in which the png file resides.

FileSize Number of bytes of the png file.
x0 X-position of the upper left corner of the bitmap in the display.

v0 Y-position of the upper left corner of the bitmap in the display.

Return value

Zero on success, nonzero if the function fails. (The current implementation always
returns 0)

Additional information

The sample folder contains the example 2DGL_DrawPNG. c which shows how to use the
function.

GUI_PNG_DrawEx()

Description

Draws a png file, which does not have to be loaded into memory, at a specified posi-
tion in the current window.

Prototype

int GUI_PNG_DrawEx (GUI_GET_DATA_FUNC * pfGetData, void * p, int x0, int y0);
Parameter Description

pfGetData Pointer to a function which is called for getting data. For details about the GetData

function, refer to “Getting data with the ...Ex() functions” on page 174.

je) Void pointer passed to the function pointed by pfGetData.

x0 X-position of the upper left corner of the bitmap in the display.

v 0 Y-position of the upper left corner of the bitmap in the display.

Return value
Zero on success, nonzero if the function fails.

Additional information

This function is used for drawing png if not enough RAM is available to load the whole
file into memory. The PNG library then calls the function pointed by the parameter
pfGetData to read the data.

The cetbata function should return the number of available bytes. This could be less
or equal the number of requested bytes. The function needs at least to return 1 new
byte. Note that the PNG library internally allocates a buffer for the complete image.
This can not be avoided by using this function.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER Displaying bitmap files

GUI_PNG_GetXSize()
Description
Returns the X-size of a specified PNG image, which has been loaded into memory.

Prototype
int GUI_PNG_GetXSize(const void * pFileData, int FileSize);

Parameter Description

pFileData Pointer to the start of the memory area in which the png file resides.
FileSize Size of the file in bytes.

Return value
X-size of the PNG image.

GUI_PNG_GetXSizeEx()

Description

Returns the X-size of a specified PNG image, which needs not to be loaded into mem-
ory.

Prototype

int GUI_PNG_GetXSizeEx (GUI_GET_DATA_FUNC * pfGetData, void * p);

Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData
function, refer to “Getting data with the ...Ex() functions” on page 174.
D Void pointer passed to the function pointed by pfGetData.

Return value
X-size of the PNG image.

GUI_PNG_GetYSize()

Description
Returns the Y-size of a specified PNG image, which has been loaded into memory.

Prototype
int GUI_PNG_GetYSize(const void * pFileData, int FileSize);

Parameter Description

pFileData Pointer to the start of the memory area in which the png file resides.
FileSize Size of the file in bytes.

Return value
Y-size of the PNG image.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

173

GUI_PNG_GetYSizeEx()

Description
Returns the X-size of a specified PNG image, which needs not to be loaded into mem-
ory.
Prototype
int GUI_PNG_GetYSizeEx (GUI_GET_DATA_FUNC * pfGetData, void * p);
Parameter Description
pfGetData Pointer to a function which is called for getting data. For details about the GetData

function, refer to “"Getting data with the ...Ex() functions” on page 174.
D Void pointer passed to the function pointed by pfGetData.

Return value
Y-size of the PNG image.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER Displaying bitmap files

8.5 Getting data with the ...Ex() functions

As well as streamed bitmaps, using BMP, GIF, JPEG and PNG files also works without
loading the whole image into RAM. For this case the ...Ex() functions can be used.
Common for all of these functions is the use of a ‘GetData’ function. Please note that
the ‘GetData’ function has to work slightly different depending on the actual task it is
used for. See table of parameters and examples below.

Prototype of the ’GetData’ function

int GUI_GET_DATA_FUNC (void * p, const U8 ** ppData, unsigned NumBytes,
U32 Off);

Parameter Description

P Application defined void pointer.

BMP, GIF & JPEG: The ‘GetData’ function has to set the pointer to the location the
requested data resides in.

ppData
Streamed bitmaps & PNG: The location the pointer points to has to be filled by the
‘GetData’ function.

NumBytes Number of requested bytes.

Off Defines the offset to use for reading the source data.

Additional information

"...Ex()"-functions require the ‘GetData’-function to fetch at least one pixel line of
data. It is recommended to make sure that the ‘GetData’-function is able to fetch at
least one pixel line of the biggest image used by the application.

Internal use of the function

In general the ‘GetData’-function is called one time at the beginning to retrieve over-
head information and, after this, several times to retrieve the actual image data.

Return value

The number of bytes which were actually read. If the number of read bytes does not
match, the drawing function will return immediately.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Example (BMP, GIF and JPEG)

175

The following code excerpt shows how to implement a ‘Getbata’ function for usage

with BMP, GIF and JPEG data:

int APP_GetData(void * p, const U8 ** ppData, unsigned NumBytes, U32 Off) {

static char _acBuffer[0x200];

&NumBytesRead, NULL) ;

HANDLE * phFile;
DWORD NumBytesRead;
phFile = (HANDLE *)p;
jj Check buffer size
ié (NumBytes > sizeof (acBuffer)) {
NumBytes = sizeof (acBuffer);
/)
// Set file pointer to the required position
éétFilePointer(*phFile, Ooff, 0, FILE_ BEGIN) ;
jj Read data into buffer
ééadFile(*phFile, acBuffer, NumBytes,
jj Set data pointer to the beginning of the buffer
fépData = acBuffer;

// Return number of available bytes

//
return NumBytesRead;

Example (PNG and streamed bitmap)

The following code excerpt shows how to implement a ‘Getbata’ function for usage

with PNG and streamed bitmap data:

int APP_GetData(void * p, const U8 ** ppData, unsigned NumBytes, U32 Off) {

HANDLE * phFile;

&NumBytesRead, NULL) ;

DWORD NumBytesRead;

us * pData;

pData = (U8 *)*ppData;

phFile = (HANDLE *)p;

//

// Set file pointer to the required position
//

SetFilePointer (*phFile, Off, 0, FILE_BEGIN) ;
//

// Read data into buffer

//

ReadFile(*phFile, pDhata, NumBytes,

//

// Return number of available bytes

//
return NumBytesRead;

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER Displaying bitmap files

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

177

Chapter 9

Bitmap Converter

The Bitmap Converter is a Windows program which is easy to use. Simply load a bit-
map (in the form of a bmp or a gif file) into the application. Convert the color format
if you want or have to, and convert it into a C file by saving it in the appropriate for-

mat. The C file may then be compiled, allowing the image to be shown on your dis-
play with emWin.

Screenshot of the Bitmap Converter

gec Bitmap converter for emWin - C:\ Temp',Symbol.bmp

File Edit ‘iew Image Help
Resolution: 300 * 300

Colors: 2

Zoom: 1.0*

Transparent Yes, Color:FFFFFF

Ready

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER Bitmap Converter

9.1 What it does

The Bitmap Converter is primarily intended as a tool to convert bitmaps from a PC
format to a C file. Bitmaps which can be used with emWin are normally defined as
GUI_BITMAP structures in C. The structures -- or rather the picture data which is ref-
erenced by these structures -- can be quite large. It is time-consuming and ineffi-
cient to generate these bitmaps manually. We therefore recommend using the Bitmap
Converter, which automatically generates C files from bitmaps.

An other useful feature is the ability to save images as C stream files. The advantage
against a normal C file is, that these data streams can be located anywhere on any
media whereas C files need to be located in the addressable CPU area.

It also features color conversion, so that the resulting C code is not unnecessarily
large. You would typically reduce the number of bits per pixel in order to reduce
memory consumption. The Bitmap Converter displays the converted image.

A number of simple functions can be performed with the Bitmap Converter, including
scaling the size, flipping the bitmap horizontally or vertically, rotating it, and invert-
ing the bitmap indices or colors (these features can be found under the Tmage menu).
Any further modifications to an image must be made in a bitmap manipulation pro-
gram such as Adobe Photoshop or Corel Photopaint. It usually makes the most sense
to perform any image modifications in such a program, using the Bitmap Converter
for converting purposes only.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

179

9.2 Loading a bitmap
9.2.1 Supported input file formats

The Bitmap Converter basically supports Windows bitmap files (*.bmp), "Graphic
Interchange Format" (*.gif) and "Portable Network Graphics" (*.png):
Windows Bitmap Files (BMP)

The Bitmap Converter supports the most common bitmap file formats. Bitmap files of
the following formats can be opened by the Bitmap Converter:

1, 4 or 8 bits per pixel (bpp) with palette;
16, 24 or 32 bpp without palette (full-color mode, in which each color is assigned
an RGB value);

e RLE4 and RLES.

Trying to read bitmap files of other formats will cause an error message of the Bit-
map Converter.
Graphic Interchange Format (GIF)

The Bitmap Converter supports reading GIF files. For general editing only the first
image of the GIF file is used. GIF image consisting of several images may be con-
verted to animated sprites and animated cursors.

Transparency and interlaced GIF images are supported by the converter.

Portable Network Graphic (PNG)

The PNG format is the most recommended format to create images with alpha blend-
ing. The Bitmap Converter supports reading PNG images with alpha channel.

9.2.2 Loading from a file

An image file of one of the supported formats may be opened directly in the Bitmap
Converter by selecting File/Open.

9.2.3 Using the clipboard

Any other type of bitmap (that is, .jpg, .jpeg, .png, .tif) may be opened with
another program, copied to the clipboard, and pasted into the Bitmap Converter. This
process will achieve the same effect as loading directly from a file.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER Bitmap Converter

9.3 Color conversion

The primary reason for converting the color format of a bitmap is to reduce memory
consumption. The most common way of doing this is by using the option Best pal-
ette as in the above example, which customizes the palette of a particular bitmap to
include only the colors which are used in the image. It is especially useful with full-
color bitmaps in order to make the palette as small as possible while still fully sup-
porting the image. Once a bitmap file has been opened in the Bitmap Converter, sim-
ply select Image/Convert Into/Best palette from the menu. If it is necessary to
keep transparency select Image/Convert Into/Best palette + transparency.

For certain applications, it may be more efficient to use a fixed color palette, chosen
from the menu under Image/Convert Into. For example, suppose a bitmap in full-
color mode is to be shown on a display which supports only four grayscales. It would
be a waste of memory to keep the image in the original format, since it would only
appear as four grayscales on the display. The full-color bitmap can be converted into
a four-grayscale, 2bpp bitmap for maximum efficiency.

The procedure for conversion would be as follows:

ge; Mo Bitmap. - Bitmap converter ... !E[E
File Edit Yiew Image Help

Resolution: 200 * 94

Colors: RGB
Zoom: 1.0*
The Bitmap Converter is opened and the same file Transparent —

is loaded as in steps 1 and 2 of the previous

example. \
)

The Bitmap Converter displays the loaded bitmap. / SEGGER

Ready v

ge; Mo Bitmap. - Bitmap converter ... !E[E
File Edit Yiew Image Help

Choose Image/Convert Into/Gray4.

gec Mo Bitmap. - Bitmap converter for emWin GSC ¥2.20a Resolution: 200 * 94
File Edit Yiew | Image Help Colors: 4

[[Zoom: 1.0*
Resolution: ransparency. . Transparent —

Bt {1 BPF)

Colors: Convert Inka

»
Zoom: Flip 4 (2 BPF)
Transparent Rokate F Grayld (4 BPF)
» D)

Invert Grayed (3 BFP)
Info Gray256 (8 BPF)
\ N o i / SEGGER
’ &bit Calor 222 (B ERP)
/ SEGGER sbtcoorzs (seen)

3 bit Caolor 323 (3 EPF)

3 bit Color 332 (3 EPF)
8 bit Color 8666 (8 BPP)

Conversion done
v RGE {24 BPP) 4

Best palette

In this example, the image uses less memory

' since a palette of only 4 grayscales is used instead
The Bitmap Converter displays the converted bit- of the full-color mode. If the target display sup-
map. ports only 4 grayscales, there is no use in having
a higher pixel depth as it would only waste mem-
ory.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

181

9.4 Using a custom palette

Converting bitmaps to a custom palette and saving them without palette information
can save memory and can increase the performance of bitmap drawing operations.

More efficient memory utilization

Per default each bitmap contains its own palette. Even the smallest bitmaps can con-
tain a large palette with up to 256 colors. In many cases only a small fraction of the
palette is used by the bitmap. If using many of these bitmaps the amount of memory
used by the palettes can grow rapidly.

So it can save much ROM if converting the bitmaps used by emWin to the available
hardware palette and saving them as (D)evice (D)ependent (B)itmaps without pal-
ette information.

Better bitmap drawing performance

Before emWin draws a bitmap, it needs to convert each device independent bitmap
palette to the available hardware palette. This is required because the pixel indices of
the bitmap file are indices into the device independent bitmap palette and not to the
available hardware palette.

Converting the bitmap to a DDB means that color conversion at run time is not
required and speeds up the drawing.

9.4.1 Saving a palette file

The Bitmap Converter can save the palette of the currently loaded bitmap into a pal-
ette file which can be used for converting other bitmaps with the command Image/
Convert Into/Custom palette. This requires that the current file is a palette based
file and not a RGB file. To save the palette the command File/Save palette... can
be used.

9.4.2 Palette file format

Custom palette files are simple files defining the available colors for conversion. They
contain the following:

Header (8 bytes).

NumcColors (U32, 4 bytes).

0 (4 bytes).

U32 Colors[NumColors] (NumcColors*4 bytes, type GUI_COLOR).

Total file size is therefore: 16 + (NumcColors * 4) bytes. A custom palette file with 8
colors would be 16 + (8 * 4) = 48 bytes. At this point, a binary editor must be used
in order to create such a file.

The maximum number of colors supported is 256; the minimum is 2.

Example
This example file would define a palette containing 2 colors -- red and white:

0000: 65 64 57 69 6e 50 61 6¢c 02 00 00 00 00 00 00 00
0010: ££ 00 00 00 ££f ££f ££ 00

The 8 headers make up the first eight bytes of the first line. The U32 is stored Isb
first (big endian) and represents the next four bytes, followed by the four 0 bytes.
Colors are stored 1 byte per color, where the 4th byte is 0 as follows: RRGGBBO0O.
The second line of code defines the two colors used in this example.

9.4.3 Palette files for fixed palette modes

Using the custom palette feature can even make sense with the most common used
fixed palette modes, not only with custom hardware palettes. For the most palette
based fixed palette modes a palette file can be found in the folder Ssample\Palette.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER Bitmap Converter

9.4.4 Converting a bitmap

The command Image/Convert Into/Custom palette should be used for converting
the currently loaded bitmap to a custom palette. The Bitmap Converter tries to find
the nearest color of the palette file for each pixel of the currently loaded bitmap.

9.5 Generating C files from bitmaps

The main function of the Bitmap Converter is to convert PC-formatted bitmaps into C
files which can be used by emWin. Before doing so, however, it is often desirable to
modify the color palette of an image so that the generated C file is not excessively
large.

The bitmap may be saved as a bmp or a gif file (which can be reloaded and used or
loaded into other bitmap manipulation programs) or as a C file. A C file will serve as
an input file for your C compiler. It may contain a palette (device-independent bit-
map, or DIB) or be saved without (device-dependent bitmap, or DDB). DIBs are rec-
ommended, as they will display correctly on any display; a DDB will only display
correctly on a display which uses the same palette as the bitmap.

C files may be generated as "C with palette"”, "C without palette", "C with palette,
compressed" or "C without palette, compressed". For more information on com-
pressed files, see the section "Compressed bitmaps" as well as the example at the
end of the chapter.

9.5.1 Supported bitmap formats

The following table shows the currently available output formats for C files:

Format coles Comp- | Trans- | o, tte
depth ression | parency
1 bit per pixel 1bpp no yes yes
2 bits per pixel 2bpp no yes yes
4 bits per pixel 4bpp no yes yes
8 bits per pixel 8bpp no yes yes
Compressed, RLE4 4bpp yes yes yes
Compressed, RLE8 8bpp yes yes yes
High color 555 15bpp no no no
High color 555, red and blue swapped 15bpp no no no
High color 565 16bpp no no no
High color 565, red and blue swapped 16bpp no no no
High color 565, compressed 16bpp yes no no
High color 565, red and blue swapped, compressed |[16bpp yes no no
True color 888 24bpp no no no
True color 8888 with alpha channel 32bpp no yes no
True color 8888 with alpha channel, compressed 32bpp yes yes no
Alpha channel, compressed 8bpp yes yes no

9.5.2 Palette information

A bitmap palette is an array of 24 bit RGB color entries. Bitmaps with a color depth
from 1 - 8 bpp can be saved with (device independent bitmap, DIB) or without pal-
ette information (device dependent bitmap DDB).

Device independent bitmaps (DIB)

The color information is stored in the form of an index into the color array. Before
emWin draws a DIB, it converts the 24 bit RGB colors of the bitmap palette into color
indices of the hardware palette. The advantage of using DIBs is that they are hard-
ware independent and can be drawn correctly on systems with different color config-
urations. The disadvantages are the additional ROM requirement for the palette and
the slower performance because of the color conversion.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

183

Device dependent bitmaps (DDB)

The pixel information of a DDB is the index of the displays hardware palette. No con-
version needs to be done before drawing a DDB. The advantages are less ROM
requirement and a better performance. The disadvantage is that these bitmaps can
not be displayed correctly on systems with other color configurations.

9.5.3 Transparency

A palette based bitmap can be converted to a transparent bitmap. Transparency
means each pixel with index 0 will not produce any output. The command Image/
Transparency can be used to select the color which should be used for transparency.
After selecting the transparent color, the pixel indices of the image will be recalcu-
lated, so that the selected color is on position 0 of the bitmap palette. When saving
the bitmap file as C file, it will be saved with the transparency attribute.

9.5.4 Alpha blending

Alpha blending is a method of combining an image with the background to create the
effect of semi transparency. The alpha value of a pixel determines its transparency.
The color of a pixel after drawing the bitmap is a blend of the former color and the
color value in the bitmap. In emWin, logical colors are handled as 32 bit values. The
lower 24 bits are used for the color information and the upper 8 bits are used to
manage the alpha value. An alpha value of 0 means the image is opaque and a value
of OxFF means completely transparent. Whereas BMP and GIF files do not support
alpha blending PNG files support alpha blending. So the easiest way to create bitmap
files with alpha blending is to load a PNG file. When working with BMP and/or GIF
files the Bitmap Converter initially has no information about the alpha values.

Loading a PNG file
This is the most recommended way for creating bitmaps with an alpha mask:

After loading

The PNG file contains all required information.

Loading the alpha values from an alpha mask bitmap

This method loads the alpha values from a separate file. Black pixels of the alpha
mask file means opaque and white means transparent. The following table shows an
example:

Starting point Alpha mask Result

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

184

CHAPTER Bitmap Converter

The command File/Load Alpha Mask can be used for loading an alpha mask.

Creating the alpha values from two bitmaps

This method uses the difference between the pixels of two pictures to calculate the
alpha values. The first image should show the item on a black background. The sec-
ond image should show the same on a white background. The following table shows
an example of how to create the alpha values using the command File/Create
Alpha:

Starting point Black background | White background Result

P

The command File/Create Alpha can be used tor creating the alpha values.

9.5.5 Selecting the best format

emWin supports various formats for the generated C file. It depends on several con-
ditions which will be the 'best’ format and there is no general rule to be used. Color
depth, compression, palette and transparency affect the drawing performance and/or
ROM requirement of the bitmap.

Color depth

In general the lower the color depth the smaller the ROM requirement of the bitmap.
Each display driver has been optimized for drawing 1bpp bitmaps (text) and bitmaps
with the same color depth as the display.

Compression

The supported RLE compression method has the best effect on bitmaps with many
horizontal sequences of equal-colored pixels. Details later in this chapter. The perfor-
mance is typically slightly slower than drawing uncompressed bitmaps.

Palette

The ROM requirement of a palette is 4 bytes for each color. So a palette of 256 colors
uses 1 Kbyte. Furthermore emWin needs to convert the colors of the palette before
drawing the bitmap. Advantage: Bitmaps are device independent meaning they can
be displayed on any display, independent of its color depth and format.

Transparency

The ROM requirement of transparent bitmaps is the same as without transparency.
The performance is with transparency slightly slower than without.

High color and true color bitmaps

Special consideration is required for bitmaps in these formats. Generally the use of
these formats only make sense on displays with a color depth of 15 bits and above.
Further it is strongly recommended to save the C files in the exact same format used
by the hardware. Note that using the right format will have a positive effect on the
drawing performance. If a high color bitmap for example should be shown on a sys-
tem with a color depth of 16bpp which has the red and blue components swapped,
the best format is 'High color 565, red and blue swapped’. Already a slightly other
format has the effect, that each pixel needs color conversion, whereas a bitmap in
the right format can be rendered very fast without color conversion. The difference of
drawing performance in this case can be factor 10 and more.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

185

9.5.6 Saving the file

The basic procedure for using the Bitmap Converter is illustrated below:

ge; Mo Bitmap. - Bitmap converter ... !E[E
File Edit Yiew Image Help

Step 1: Start the application.

The Bitmap Converter is opened showing an
empty window.

Ready v

ge; Mo Bitmap. - Bitmap converter ... !E[E
File Edit Yiew Image Help

Step 2: Load a bitmap into the Bitmap Converter. Resolution: 200 * 94

Colors: RGB
Choose File/Open. Zoom: 1.0%
Transparent —

Locate the document you want to open and click
Open (must be a bmp file). \

In this example, the file Logo200 .bmp is cho- ’

sen. SEGGER

File name: ISeggerLogo2DD.bmp j DOpen I
Files of type: \#/indows Bitmap file [* bmp) Cancel |
7

The Bitmap Converter displays the loaded bitmap. Ready 4

In this example, the loaded bitmap is in full-color
mode. It must be converted to a palette format
before a C file can be generated.

Step 3: Convert the image if necessary.

Choose Image/Convert Into.
Select the desired palette.
In this example, the option Best palette is

ge; Mo Bitmap. - Bitmap converter ... !E[E
File Edit Yiew Image Help

Resolution: 200 * 94

chosen. Colors: 15 Il N
Zoom: 1.0*
File Edit View | Image Help Transparent —

Transparency. .. |

Resolution:
Colors: Convert Inka 3 B'W (1 BFP) \
Zoom: Flip 3 Grayd (2 BFP) ’
Rotate 3 Graylé (4 BFP) ’
Transparent Invert » Graybd (8 BPF) S EG G E R
Info Gray2se (8 BPF)
\ —— 3bitcColor 111 {4BPF)
’ &bt Calor 222 (B EPFY
/ S EG G E R Ghit Calor 233 (B EPFY
Ghit Calor 323 (B EPFY
Ghit Calor 332 (B EPFY

& bit Color 8666 (8 BPP) Conversian dane £
v RGE {24 BPP) The image is unchanged in terms of appearance,
Biest palette but uses less memory since a palette of only 15
Custom palette. .. colors is used instead of the full-color mode.
These 15 colors are the only ones actually
The Bitmap Converter displays the converted bit- required to display this particular image.

map.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER Bitmap Converter

Save bitmap file EHE
Save j: I@ TestFiles j = & EB-
Step 4: Save the bitmap as a C file.
Choose File/Save As.
Select a destination and a name for the C file.
Select the file type. In this example, the file is
saved as C bitmap file."
Click Save. ;
File name: ISeggerLogo2DD.c Save I
Cancel |
A

UC stream [*.dta

Step 5: Specify bitmap format.

If the bitmap should be saved as C file the format Select format:

should now be specified. Use one of the available :

formats shown in the dialog. If the bitmap should Compreseed, RLE4

be saved without palette, activate the check box Compressed, RLES

A n High color (565]

Without pa lette High color [565], red and blue swapped

The Bitmap Converter will create a separate file in
the specified destination, containing the C source

[~ ‘without palette
code for the bitmap. ok | Cancel

9.6 Generating C stream files

A C stream file consists of the same information as a C file. Contrary to a C file a data
stream can be located anywhere and does not need to be compiled or linked with the
project. All supported output formats described for C files are also available for C
stream files. emWin supports creating bitmaps from data streams and drawing data
streams directly. For details about C stream file support please refer to "Drawing bit-
maps” on page 119.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

187

9.7 Compressed bitmaps

The Bitmap Converter and emWin support run-length encoding (RLE) compression of
bitmaps in the resulting source code files. The RLE compression method works most
efficiently if your bitmap contains many horizontal sequences of equal-colored pixels.
An efficiently compressed bitmap will save a significant amount of space. However,
compression is not recommended for photographic images since they do not normally
have sequences of identical pixels. It should also be noted that a compressed image
may take slightly longer to display.

If you want to save a bitmap using RLE compression, you can do so by selecting one
of the compressed output formats when saving as a C file: "C with palette, com-
pressed" or "C without palette, compressed". There are no special functions needed
for displaying compressed bitmaps; it works in the same way as displaying uncom-
pressed bitmaps.

Compression ratios

The ratio of compression achieved will vary depending on the bitmap used. The more
horizontal uniformity in the image, the better the ratio will be. A higher number of
bits per pixel will also result in a higher degree of compression.

In the bitmap used in the previous examples, the total number of pixels in the image
is (200*94) = 18,800.

Since 2 pixels are stored in 1 byte, the total uncompressed size of the image is
18,800/2 = 9,400 bytes.

The total compressed size for this particular bitmap is 3,803 bytes for 18,800 pixels
(see the example at the end of the chapter).

The ratio of compression can therefore be calculated as 9,400/3,803 = 2.47.

9.8 Creating animated sprites / cursors

The Bitmap Converter can be used to convert animated GIF files to animated sprites
/ cursors in C file format. This functionality is offered by the entries in the file menu
which are shown below:

Afte.r clicking one of the according file menu Open... CHrl40
entries, a file dialog appears and an ani-

mated GIF file can be chosen. Once this is JEHE A5

done the name of the res_ulting C file needs 1 C:\Animation. gif

to be specified. Converting animated GIF

files to animated sprites / cursors does not Create Alpha...

require any further parameters. The process Load &lpha mask. ..

is performed automatically. Since the effort

depends on the input GIF file, completing Create animated sprite from GIF...
this task may take a moment. The Bitmap Create animated cursor from GIF. ..
Converter can be used again as soon as the

mouse cursor is changed to the simple SaVE palette. .

arrow again. Exit

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

UMO03001 User & Reference Guide for emWin V5.20

CHAPTER

Animated Sprite example

Bitmap Converter

The following shows the structure of an animated sprite C file as it is generated by
the Bitmap Converter. Although animations consist of several images, the palette and
pixel data structures are shown only once here. Variable data is described using place

holders.

File header

/***

* SEGGER Microcontroller GmbH & Co. KG *
* Solutions for real time microcontroller applications *
* WWW . Segger . com *

LR I I I I I I R I S R R R I I I R S I I I R R I I R R S
* *

C-file generated by

Bitmap converter for emWin %_VERSION_%.
Compiled %_COMPILE_DATE_%
(C) 1998 - 2013 Segger Microcontroller GmbH & Co. KG

R R I R i b S R R I kR Ik kS R R R R b i b R R R S e b R R R R

*
*
*
*
*
*
*
*
*
Dimensions: %_X_SIZE_% * $_Y_SIZE_% *
NumImages : %_NUMBER_OF_IMAGES_% *
Duration: %_OVERALL_DURATION_% *
*
*

*
*
*
*
*
*
*
*
* Source file: %_FILENAME_%.gif (Animated Sprite)
*
*
*
*
KA AR A A AR A A A AR A A A A A A AR A A A AT A A AR A A AR A A A AT A A AR A A A A A A A A A ARk h ko khk* %k
*

* %_USAGE_EXAMPLE_%
*/

#include <stdlib.h>
#include "GUI.h"

#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif

Palette and pixel data

static GUI_CONST_STORAGE GUI_COLOR%_FILENAME_%%_INDEX_%$[] = {
%_COLOR_DATA_%
Y

static GUI_CONST_STORAGE GUI_LOGPALETTE _Pal%_FILENAME_%%_ INDEX_$% {
% NUMBER_OF_COLORS_%, // Number of entries
%_TRANSPARENCY_FLAG_%, // No transparency
&_Colors%_FILENAME_%%_INDEX_%[0]

Y

static GUI_CONST_STORAGE unsigned char _ac%_FILENAME_%%_INDEX_%[] = {
%_PIXEL_DATA_%

Y

General data

static GUI_CONST_STORAGE GUI_BITMAP _abm%_FILENAME _%[] = {
{ $_X_SIZE_%, %$_Y_SIZE_%,
% _BYTES_PER_LINE_%, $_BITS_PER_PIXEL_%,
_ac%_FILENAME_%%_INDEX_ %, & _Pal%_FILENAME_%%_INDEX_%
[...]
Y

const GUI_BITMAP * apbm%_FILENAME_$%$[] = {
&_abm%_FILENAME_%[0],
[...]

Y

const unsigned aDelay$%_ FILENAME_%[] = {
%_DELAY_DATA_%
Y

/*************************** End of flle ****************************/

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

189

Animated Cursor example

The file structure for animated cursors almost equals the structure for animated
sprites. Therefor only the differences are mentioned here:

The array of bitmap pointers is defined as static:
static const GUI_BITMAP * _apbm%_FILENAME_%[] = {
[...]
}i

The array of delays is defined as static:
static const unsigned _aDelay%_FILENAME_%[] = {

[...]
Y

A non-static definition of a GUI_CURSOR_ANIM structure is added at the end.

const GUI_CURSOR_ANIM Cursor$%_FILENAME_% = {
_apbm%_FILENAME_ %, // Pointer to an array of bitmaps

, // x coordinate of the hot spot

, // y coordinate of the hot spot

, // Period, should be 0 here
_abelay%_FILENAME_%, // Pointer to an array of periods
%_NUMBER_OF_IMAGES_$% // Number of images

Y

[eNoNe]

Additional information

The hot spot coordinate define the position which is recognized by emWin when PID
events occur. If the hot spot should not be represented by the topmost leftmost pixel,
the according values in the GUI_CURSOR_ANIM structure may be modified.

The array of delays is always created. In case every image uses the same delay, the
forth value in the GUI_CURSOR_ANIM structure may be set accordingly. In this case
the array of delays may be deleted after the fifth value of the GUI_CURSOR_ANIM
structure was set to NULL.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

190

9.9 Command line usage

CHAPTER

Bitmap Converter

It is also possible to work with the Bitmap Converter using the command prompt. All
conversion functions available in the Bitmap Converter menu are available as com-
mands, and any number of functions may be performed on a bitmap in one command

line.

9.9.1 Format for commands

Commands are entered using the following format:

BmpCvt <filename>.bmp <-command>

(If more than one command is used, one space is typed between each.)
For example, a bitmap with the name logo.bmp is converted into Best palette for-
mat and saved as a C file named logo.bmp all at once by entering the following at the

command prompt:

BmpCvt logo.bmp -convertintobestpalette -saveaslogo,l

-exit

Note that while the file to be loaded into the Bitmap Converter always includes its
bmp extension, no file extension is written in the -saveas command. An integer is
used instead to specify the desired file type. The number 1 in the -saveas command
above desighates "C with palette". The -exit command automatically closes the pro-
gram upon completion. See the table below for more information.

9.9.2 Valid command line options

The following table lists all permitted Bitmap Converter commands. It can also be
viewed at any time by entering Bmpcvt -? at the command prompt.

Command Explanation
-convertintobw Convert to BW.
-convertintogray4 Convert to Gray4.

-convertintograylé

Convert to Gray16.

-convertintogray64

Convert to Gray64.

-convertintogray256

Convert to Gray256.

-convertintolll Convert to 111.
-convertinto222 Convert to 222.
-convertinto233 Convert to 233.
-convertinto323 Convert to 323.
-convertinto332 Convert to 332.
-convertinto8666 Convert to 8666.
-convertintorgb Convert to RGB.

-convertintobestpalette

Convert to best palette.

-convertintotranspalette

Convert to best palette with
transparency.

-convertintocustompalette<filename>

Convert to a custom palette.

<filename>| User-specified filename of desired custom
palette.
-exit Terminate PC program automatically.
-fliph Flip image horizontally.
-flipv Flip image vertically.
-help Display this box.
-invertindices Invert indices.
-invertpalette Invert palette entries.
-rotate90cw Rotate image by 90 degrees clockwise.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

191

Command

Explanation

-rotate90ccw

Rotate image by 90 degrees counter-
clockwise.

-rotatel80

Rotate image by 180 degrees.

-saveas<filename>, <type>[,<fmt>[,<noplt>]]

Save file as filename.

<filename>

User-specified file name including the file
extension.

<type>

Must be an integer from 1 to 4 as follows:
1: C with palette (.c file)

2: Windows Bitmap file (bmp file)

3: C stream (.dta file)

4: GIF format (gif file)

<fmt>

Specifies the bitmap format (only if type
==1):

: 1 bit per pixel*

: 2 bits per pixel*

: 4 bits per pixel*

: 8 bits per pixel*

: RLE4 compression*

: RLE8 compression*

: High color 565

: High color 565, red and blue swapped
10: High color 555

11: High color 555, red and blue swapped
12: RLE16 compression

13: RLE16 compression, red and blue
swapped

15: True color 32bpp, compressed

16: True color 32bpp

17: True color 24bpp

18: Alpha channel 8bpp, compressed

OCONOOTUANKR

If this parameter is not given, the Bitmap
Converter uses the following default for-
mats in dependence of the number of col-
ors of the bitmap:

Number of colors <= 2: 1 bit per pixel
Number of colors <= 4: 2 bits per pixel
Number of colors <= 16: 4 bits per pixel
Number of colors <= 256: 8 bits per pixel
RGB: High color 565

<noplt>

Saves the bitmap with or without palette
(only if type == 1)

0: Save bitmap with palette (default)

1: Save bitmap without palette

-transparency<RGB-Color>

Sets the transparent color.

<RGB-Color>

RGB color which should be used as trans-
parent color.

-2

Displays the command line table.

* Images need to be converted to an according format before they can be stored in a
format of 8 or less bpp.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER Bitmap Converter

9.10 Example of a converted bitmap

A typical example for the use of the Bitmap Converter would be the conversion of
your company logo into a C bitmap. Take another look at the example bitmap pic-

tured below:
D
/ SEGGER

The bitmap is loaded into the Bitmap Converter, converted to Best palette, and
saved as "C with palette". The resulting C source code is displayed below (some data
is not shown to conserve space).

Resulting C code (generated by the Bitmap Converter)

/***

* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* WWW . Segger . com *

R I I b Sk kI S R S I S S S S R R R S I S I R I A Rk Ik kS S I Sk I
*

* C-file generated by

*

* Bitmap Converter for emWin V5.05.

* Compiled Feb 26 2010, 14:49:28

* (C) 1998 - 2013 Segger Microcontroller Systeme GmbH
*

R R I I S R I R S R R I S R I R R I I R R S I I R R S I R I I R I R R
*

* Source file: SeggerLogo200

* Dimensions: 200 * 100

* NumColors: 33

*

R Ik I b Sk kI I S R S I S i S R R R S I S R I R I Sk Ik Ik 2 R I S S Sk I

*/
#include <stdlib.h>
#include "GUI.h"

#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif

static GUI_CONST_STORAGE GUI_COLOR ColorsSeggerLogo200][]
OXFFFFFF, 0x353537,0x9C4B37, 0xCDCDCD,
[...]

}i

I
~

I
~

static GUI_CONST_STORAGE GUI_LOGPALETTE PalSeggerLogo200
33,/* number of entries */
0, /* No transparency */
&ColorsSeggerLogo200[0]

}i

static GUI_CONST_STORAGE unsigned char acSeggerLogo200[] = {
0x00, 0x00, /* Not all data is shown in this example */
0x00, 0x92,
[...]
0xC6, 0x22,
0x0A, 0x22

Y
extern GUI_CONST_STORAGE GUI_BITMAP bmSeggerLogo200;

GUI_CONST_STORAGE GUI_BITMAP bmSeggerLogo200 = {
200, /* XSize */
100, /* YSize */
200, /* BytesPerLine */
8, /* BitsPerPixel */
acSeggerLogo200, /* Pointer to picture data (indices) */
&PalSeggerLogo200 /* Pointer to palette */
Y

/*************************** End of file ****************************/

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

193

Compressing the file

We can use the same bitmap image to create a compressed C file, which is done sim-
ply by loading and converting the bitmap as before, and saving it as "C with palette,
compressed". The source code is displayed below (some data is not shown to con-
serve space).

The compressed image size can be seen towards the end of the file as 3,730 bytes for
18,800 pixels.

Resulting compressed C code (generated by the Bitmap Converter)

/***

* SEGGER MICROCONTROLLER SYSTEME GmbH *
* Solutions for real time microcontroller applications *
* WWW . Segger . com *

LRI I S I I I I I S R R I I I R R R I I I R R S R I I I I
*

C-file generated by

Bitmap Converter for emWin V5.05.
Compiled Feb 26 2010, 14:49:28
(C) 1998 - 2013 Segger Microcontroller Systeme GmbH

R b S b b R R R R I ek b i R I R R R R R Rk bk S I R Rk ek S b I SRRk e R I

*
*
*
*
*
*
*
*
* Source file: SeggerLogo200_comp

* Dimensions: 200 * 100

* NumColors: 33

*

BRI R R R I S R I R R I I S R I R S I I I I I I R I I R R R I R I R I I I R I 2 E I 2 b E I 2 b I S 2 b S b S

*/
#include <stdlib.h>
#include "GUI.h"
#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif
static GUI_CONST_STORAGE GUI_COLOR ColorsSeggerLogo200_comp[] = {

OxFFFFFF, 0x353537, 0x9C4B37, 0xCDCDCD,
[...]

}i

static GUI_CONST_STORAGE GUI_LOGPALETTE PalSeggerLogo200_comp
33,/* number of entries */
0, /* No transparency */
&ColorsSeggerLogo200_comp[0]

1]
~

}i

static GUI_CONST_STORAGE unsigned char acSeggerLogo200_compl]
/* RLE: 006 Pixels @ 000,000*/ 6, 0x00,
/* RLE: 188 Pixels @ 006,000*/ 188, 0x01,
[...]
/* RLE: 188 Pixels @ 006,099*/ 188, 0x01,
/* RLE: 006 Pixels @ 194,099*/ 6, 0x00,
0
Y; /* 3730 for 20000 pixels */

1]
~

extern GUI_CONST_STORAGE GUI_BITMAP bmSeggerLogo200_comp;

GUI_CONST_STORAGE GUI_BITMAP bmSeggerLogo200_comp = {
200, /* XSize */
100, /* YSize */
200, /* BytesPerLine */
GUI_COMPRESS_RLES8, /* BitsPerPixel */
acSeggerLogo200_comp, /* Pointer to picture data (indices) */
&PalSeggerLogo200_comp /* Pointer to palette */
,GUI_DRAW_RLES8
}i

/*************************** End Of file ****************************/

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER Bitmap Converter

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

195

Chapter 10

Fonts

This chapter describes the various methods of font support in emWin. The most com-
mon fonts are shipped with emWin as C font files. All of them contain the ASCII char-
acter set and most of them also the characters of ISO 8859-1. In fact, you will
probably find that these fonts are fully sufficient for your application. For detailed
information about the individual fonts, refer to “"Standard fonts” on page 220.
emWin is compiled for 8-bit characters, allowing for a maximum of 256 different
character codes out of which the first 32 are reserved as control characters. The
characters that are available depend on the selected font.

For accessing the full Unicode area of 65536 possible characters emWin supports
UTF8 decoding which is described in the chapter “Language Support” on page 903.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

196

CHAPTER Fonts

10.1 Introduction

The first way of font support was the possibility to use C files with font definitions
containing bitmaps with 1bpp pixel information for each character. This kind of font
support was limited to use only the fonts which are compiled with the application.
Over time, the font support has been improved regarding font quality, ROM require-
ment, performance, scalability and the ability to add further fonts at run time.

In the meantime emWin fonts cover antialiasing, drawing of compound characters
like required in Thai language, fonts located on external non addressable media and
TrueType support. Except the TrueType font format, which is a vector font, all other
kinds of fonts are bitmap fonts.

10.2 Font types

emWin supports different internal types of fonts defined by emWin and the commonly
used TrueType fonts.

Monospaced bitmap fonts

Each character of a monospaced bitmap font has the same size. In a proportional
font each character has its own width, whereas in a monospaced font the width is
defined only one time. The pixel information is saved with 1bpp and covers the whole
character area.

Proportional bitmap fonts

Each character of a proportional bitmap font has the same height and its own width.
The pixel information is saved with 1bpp and covers the whole character area.

Antialiased fonts with 2 bpp antialiasing information

Each character has the same height and its own width. The pixel information is saved
with 2bpp antialiasing information and covers the whole character area.

Antialiased fonts with 4 bpp antialiasing information

Each character has the same height and its own width. The pixel information is saved
with 4bpp antialiasing information and covers the whole character area.

Extended proportional bitmap fonts

Each character of an extended proportional bitmap font has its own height and its
own width. The pixel information is saved with 1bpp and covers only the areas of the
glyph bitmaps.

Extended proportional bitmap fonts with 2 bpp antialiasing information

Each character has the same height and its own width. The pixel information is saved
with 2bpp antialiasing information and covers only the areas of the glyph bitmaps.

Extended proportional bitmap fonts with 4 bpp antialiasing information

Each character has the same height and its own width. The pixel information is saved
with 4bpp antialiasing information and covers only the areas of the glyph bitmaps.

Extended proportional bitmap fonts, framed

In some cases, for example in situations, where the background color is unknown at
compile time, it can make sense to use a framed font. A framed font is always drawn
in transparent mode regardless of the current settings. The character pixels are
drawn in the currently selected foreground color and the frame is drawn in back-
ground color. A good contrast between foreground and background color makes sure,
that the text can be read regardless of the background.

Note that this type of font is not suitable for compound characters like in Thai lan-
guage. It is also not suitable for Arabic fonts. The picture below shows some framed
text in front of a photo:

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

197

Table of font types

The following table shows the difference between the font types. The pictures only
show the pixel information saved in the font file:

Prop. bitmap | Prop. bitmap | Prop. bitmap Ext. prop. bﬁ);:;prfc:;.t
font font, AA2 font, AA2 bitmap font fralf'ned ’

Ext. prop. Ext. prop.
bitmap font, bitmap font,
AA2 AA4

TrueType vector fonts

The TrueType font support of emWin means support for the TrueType font file format
described later in this chapter.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER Fonts

10.3 Font formats

The following explains the differences between the supported font formats, when to
use them and what is required to be able to use them.

10.3.1 C file format

This is the most common way of using fonts. When using fonts in form of C files, we
recommend compiling all available fonts and linking them as library modules or put-
ting all of the font object files in a library which you can link with your application.
This way you can be sure that only the fonts which are needed by your application
are actually linked. The Font Converter may be used to create additional fonts.

When to use

This format should be used if the fonts are known at compile time and if there is
enough addressable memory available for the font data.

Requirements

In order to be able to use a font C file in your application, the following requirements
must be met:

e The font file is in a form compatible with emWin as C file, object file or library.
e The font file is linked with your application.
e The font declaration is contained in the application.

Format description

A font C file contains at first the pixel information of all characters included by the
font. It is followed by a character information table with size information about each
character. This table is followed by range information structures for each contiguous
area of characters contained in the font file, whereas each structure points to the
next one. Note that this method can enlarge a font file a lot if using many separate
characters. After the range information structures a cuI_ronNT structure follows with
the main information like type, pixel size and so on of the font.

10.3.2 System Independent Font (SIF) format

System independent fonts are binary data blocks containing the font information. The
Font Converter can be used to create system independent fonts. This tool is not part
of the basic package. A short description follows later in this chapter.

When to use

This format should be used if the fonts are not known at compile time and if there is
enough addressable memory available for the font data.

Requirements

In order to be able to use a SIF font file in your application, it is required that the
whole file reside in addressable memory (ROM or RAM).

Format description

The structure of a SIF file is nearly the same as of a C file. It contains the same infor-
mation in binary format. The sequence of the file components is vice versa: General
font information followed by range information structures, character information
table and at least pixel information of all characters.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

199

10.3.3 External Bitmap Font (XBF) format

As well as SIF fonts XBF fonts are binary data blocks containing the font information
and the Font Converter can be used to create XBF files. The Font Converter is not
part of the emWin basic package. For details about how to create external binary
fonts, please refer to the chapter “Font Converter” on page 243.

Advantages

Contrary to other fonts, XBF fonts do not have to reside in memory when they are
used, whereas all other kinds of emWin fonts need to reside completely in memory.
The XBF font file can remain on any external media while it is used. Data access is
done by a ‘GetData’ callback function. The advantage of XBF fonts is that it is possi-
ble to use very large fonts on systems with little memory.

XBF fonts offer a performance advantage when using fonts including lots of charac-
ters which do not follow each other directly in sequence. This kind of character set
would cause the Font Converter to create a C file font containing many
GUI_FONT_PROP structures having a pointer to the according next one. The more
GUI_FONT_PROP structures exist in a font the longer it might take to display a charac-
ter. XBF fonts just use a memory offset so each character can be found in the same
amount of time.

When to use

This format should be used if there is not enough addressable memory available for
the font data and if there is any kind of external media available for storing the fonts.

Requirements

In order to be able to use a XBF font in your application, a ‘GetData’ callback function
is required which is responsible for getting font data.

Format description

This format differs in general from SIF and C file format. At first it contains a small
block of general font information including the lowest character code and the highest
character code. It is followed by an access table containing offset and data size infor-
mation for each character between lowest and highest character code. If a character
does not exist, this information is zero for the according character. The access table
is followed by the character information of all characters containing pixel data and
character size information.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER Fonts

10.3.4 iType font engine support

Since version V5.20 emWin also supports using the iType® font engine. The iType®
font engine is a font rendering subsystem developed by Monotype Imaging. It offers
a host of advanced capabilities including font linking, font management and discov-
ery, support for various industry standards and font formats in a small memory foot-
print. iType can be implemented into various platforms. Based on OpenType®,
TrueType® and PostScript® font formats and packaged as ANSI C code for broad,
flexible integration, iType meets stringent size requirements for any applications,
including those that support East Asian languages requiring thousands of characters.
The glue code to be able to use the iType® font engine is freely available under
www.segger.com/link/emwin_itype.zip

Screenshot

Italic text

Regular bold italic text
Regular bold text

Filled outline

Untilled outline

Ernoossac tect
Cngraved texd

Shadow text
Glow text

Licensing

The emWin library of Segger does not provide the iType® font engine itself. It pro-
vides only the glue code required to be able to use the iType library. Please contact
Monotype Imaging under monotypeimaging.com for a licence request if required.
When to use

This format could be used if high quality fonts need to be scaleable at run-time and/
or advanced font effects are required.

Requirements

In general the requirements are similar to the requirements of the true type font
support described on the next page. For detailed information about requirements and
performance please also contact Monotype Imaging under monotypeimaging.com.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

201

10.3.5 TrueType Font (TTF) format

TrueType is an outline font standard developed by Apple Computer. It offers font
developers a high degree of control over how their fonts are displayed at various font
heights. Contrary to bitmap fonts which are based on bitmaps for each character,
TrueType fonts are based on vector graphics. The advantage of the vector represen-
tation is the loss-free scalability.

This implies that each character first needs to be rasterized into a bitmap before it is
drawn. To avoid rasterization each time a character is drawn the bitmap data nor-
mally is cached by the font engine. This requires a fast CPU and enough RAM.

The emWin TTF package is not part of the shipment. It is freely available under
www.segger.com/link/emwin_freetype.zip.

Licensing

The emWin implementation of the TTF support is based on the FreeType font library
from David Turner, Robert Wilhelm and Werner Lemberg which is freely available
under www.freetype.org. It is used in emWin under the FreeType license which can
be found under GUI\TrueType\FTL.txt. It has been slightly adapted and a ‘glue’ layer
with GUI-functions has been added.

When to use
This format should be used if fonts need to be scaleable at run-time.

Requirements
e CPU: TTF support works only on 32 bit CPUs. Our definition of a 32bit CPU:

sizeof (int) = 4.

e ROM: The ROM requirement of the TTF engine is app. 250K. The exact size
depends on the CPU, the compiler and the optimization level of the compiler.

e RAM: The RAM requirement of the library depends a lot on the used fonts. The
basic RAM requirement of the TTF engine is app. 50K. When creating a GUI font
with GUI_TTF_CreateFont () the font engine loads all font tables defined in the
TTF file required to generate the characters. The table sizes varies a lot between
the fonts. The additional required amount of RAM for creating a font can be
between a few KB up to more than 1MB. For typical fonts 80-300 Kbytes are
required. It depends on the used font file how much RAM is required. At least the
TTF engine requires a bitmap cache. Per default the engine uses 200K for the
cache. This should be enough for most applications.

The TTF engine allocates its memory via the non emWin functions malloc () and
free(). It must be made sure that these functions work before using the TTF
engine.

Format description

For details about the TTF format, refer to the information available under
www.apple.com.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER Fonts

10.4 Converting a TTF file to C source

Under some circumstances it can be useful to add a TTF file as 'C' file to the project,
for example if no file system is available. This can be done by using the tool
Bin2C.exe shipped with emWin. It can be found in the Tools subfolder. It converts
the given binary file (in this case the TTF file) to a 'C' file.

10.5 Declaring custom fonts

The most recommended way of declaring the prototypes of custom fonts is to put
them into an application defined header file. This should be included from each appli-
cation source file which uses these fonts. It could look like the following example:

#include "GUI.h"

extern GUI_CONST_STORAGE GUI_FONT GUI_FontAppl;
extern GUI_CONST_STORAGE GUI_FONT GUI_FontApp?2;

Note that this kind of declaring prototypes does not work if the fonts should be used
with emWin configuration macros like BUTTON_FONT_DEFAULT or similar. In this case
the fonts need to be declared in the configuration file cuIconf.h. The declaration in
this case can look like the following example:

typedef struct GUI_FONT GUI_FONT;
extern const GUI_FONT GUI_FontAppl;

#define BUTTON_FONT_DEFAULT &GUI_FontAppl
#define EDIT_FONT_DEFAULT &GUI_FontAppl

The typedef is required because the structure cuIi_roNT has not been defined at the
early point where cuIconf.h is included by emWin.

10.6 Selecting a font

emWin offers different fonts, one of which is always selected. This selection can be
changed by calling the function GUI_setFont () or one of the GUI_XXX_CreateFont ()
functions, which select the font to use for all text output to follow for the current
task.

If no font has been selected by your application, the default font is used. This default
is configured in cuIconf.h and can be changed. You should make sure that the
default font is one that you are actually using in your application because the default
font will be linked with your application and will therefore use up ROM memory.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

10.7 Font API

203

The table below lists the available font-related routines in alphabetical order within
their respective categories. Detailed descriptions can be found in the sections that

follow.

Routine

Explanation

C file related font functions

GUI_SetDefaultFont ()

Sets the default font

GUI_SetFont ()

Sets the current font

'SIF’ file related font functions

GUI_SIF_CreateFont ()

Creates and selects a font by passing a pointer to system inde-
pendent font data.

GUI_SIF_DeleteFont ()

Deletes a font created by GUI_SIF_CreateFont ()

'TTF’ file related font functions

GUI_TTF_CreateFont ()

Creates a GUI font from a TTF font file.

GUI_TTF_DestroyCache ()

Destroys the cache of the TTF engine.

GUI_TTF_Done ()

Frees all dynamically allocated memory of the TTF engine.

GUI_TTF_GetFamilyName ()

Returns the family name of the font.

GUI_TTF_GetStyleName ()

Returns the style name of the font.

GUI_TTF_SetCacheSize()

Can be used to set the default size of the TTF cache.

"XBF file related font functions

GUI_XBF_CreateFont ()

Creates and selects a font by passing a pointer to a callback
function, which is responsible for getting data from the XBF font
file.

GUI_XBF_DeleteFont ()

Deletes a font created by GUI_XBF_CreateFont ()

Common font-related functions

GUI_GetCharDistX ()

Returns the width in pixels (X-size) of a specified character in the
current font.

GUI_GetFont ()

Returns a pointer to the currently selected font.

GUI_GetFontDistY ()

Returns the Y-spacing of the current font.

GUI_GetFontInfo()

Returns a structure containing font information.

GUI_GetFontSizeY ()

Returns the height in pixels (Y-size) of the current font.

GUI_GetLeadingBlankCols ()

Returns the number of leading blank pixel columns of the given
character.

GUI_GetStringDistX ()

Returns the X-size of a text using the current font.

GUI_GetTextExtend()

Evaluates the size of a text using the current font

GUI_GetTrailingBlankCols ()

Returns the number of trailing blank pixel columns of the given
character.

GUI_GetYDistOfFont ()

Returns the Y-spacing of a particular font.

GUI_GetYSizeOfFont ()

Returns the Y-size of a particular font.

GUI_TIsInFont ()

Evaluates whether a specified character is in a particular font.

GUI_SetDefaultFont ()

Sets the default font to be used after GUI_Init().

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

204

CHAPTER

10.8 C file related font functions

GUI_SetDefaultFont()

Fonts

Description

Sets the font to be used by default for text output.

Prototype

void GUI_SetDefaultFont (const GUI_FONT GUI_UNI_PTR * pFont);
Parameter Description

pFont Pointer to the font to be selected as default

Additional information

This function is intended to be used in GUI_X_Config(). Defining GUI_DEFAULT_FONT
is not mandatory anymore. If there is neither defined GUI_DEFAULT_FONT nor
GUI_SetDefaultFont is called, GUI_Font6x8 will be set as the default Font. If none of
the emWin fonts shall be used, GUI_DEFAULT_FONT has to be defined by NULL and a

custom font needs to be set as default with this function.

GUI_SetFont()

UMO03001 User & Reference Guide for emWin V5.20

Description

Sets the font to be used for text output.

Prototype

const GUI_FONT * GUI_SetFont (const GUI_FONT * pNewFont) ;
Parameter Description

pFont Pointer to the font to be selected and used.

Return value
Returns a pointer to the previously selected font so that it may be buffered.

Examples

Displays example text in 3 different sizes, restoring the former font afterwards:

const GUI_FONT GUI_FLASH * OldFont;

OldFont = GUI_SetFont (&GUI_Font8x16) ; // Buffer old font
GUI_DispStringAt ("This text is 8 by 16 pixels",0,0);

GUI_SetFont (&GUI_Font6x8) ;

GUI_DispStringAt ("This text is 6 by 8 pixels",0,20);

GUI_SetFont (&GUI_Font8) ;

GUI_DispStringAt ("This text is proportional",0,40);

GUI_SetFont (OldFont) ; // Restore old font

Screen shot of above example:
This text i= 8 by 16 pixels

Thiz text iz & by 2 pixels

Thiz text iz proportional

Displays text and value in different fonts:
GUI_SetFont (&GUI_Font6x8) ;

GUI_DispString("The result is: "); // Disp text
GUI_SetFont (&GUI_Font8x8) ;
GUI_DispDec (42,2); // Disp value

Screen shot of above example:
The result isi 42

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

205

10.9 ’SIF’ file related font functions

GUI_SIF_CreateFont()

Description
Sets the font to be used by passing a pointer to system independent font data.

Prototype
void GUI_SIF CreateFont (void * pFontData,
GUI_FONT * pFont,
const GUI_SIF_TYPE * pFontType);
Parameter Description
pFontData Pointer to the system independent font data.
pFont Pointer to a GUI_FONT structure in RAM filled by the function.
pFontType See table below.

Permitted values for element pFontType

Should be used if the parameter pFont

GUI_SIF_TYPE_PROP . .
points to a proportional font.

Should be used if the parameter pFont

I IF_TYPE_PROP_EXT
GUL_SIF_ —PROP_ points to an extended proportional font.

Should be used if the parameter pFont
GUI_SIF_TYPE_PROP_FRM points to an extended proportional framed
font.

Should be used if the parameter pFont
GUI_SIF_TYPE_PROP_AA2 points to a proportional font, which uses
2bpp antialiasing.

Should be used if the parameter pFont
GUI_SIF_TYPE_PROP_AA4 points to a proportional font, which uses
4bpp antialiasing.

Should be used if the parameter pFont
GUI_SIF_TYPE_PROP_AA2_EXT | points to an extended proportional font,
which uses 2bpp antialiasing.

Should be used if the parameter pFont
GUI_SIF_TYPE_PROP_AA4_EXT | points to an extended proportional font,
which uses 4bpp antialiasing.

Additional information

Contrary to the emWin standard fonts which must be compiled and linked with the
application program, system independent fonts (SIF) are binary data blocks contain-
ing the font information. The Font Converter can be used to create system indepen-
dent fonts. This tool is not part of the basic package. A short description follows later
in this chapter. For details about how to create system independent fonts, refer to
the chapter “Font Converter” on page 243.

When using this function emWin needs to fill a GUI_FONT structure with the font
information. The user needs to pass a pointer to this structure in the parameter
pFont. The contents of this structure must remain valid during the use of the font.
The function does not know what kind of font should be created. To tell the function
the type of the font to be created it must be passed in the parameter pFontType.
This has been done to avoid linkage of code which is not required.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER Fonts

Example
static GUI_FONT _Font; /* Font structure in RAM */

void MainTask (void) {
GUI_Init();
GUI_SIF_CreateFont (_DownloadedFont, &_Font, GUI_SIF_TYPE_PROP) ;
GUI_DispString("Hello World!");
while (1) {
GUI_Exec () ;
}
}

GUI_SIF_DeleteFont()

Description
Deletes a font pointed by the parameter pFont.

Prototype
void GUI_SIF_DeleteFont (GUI_FONT * pFont) ;
Parameter Description
pFont Pointer to the font to be deleted.

Additional information

After using a font created with GUI_SIF_cCreateFont () the font should be deleted if
not used anymore.

Example

GUI_FONT _Font; /* Font structure in RAM */
GUI_SIF_ CreateFont (_DownloadedFont, &_Font, GUI_SIF_TYPE_PROP) ;
/*
Use the font
*/
GUI_SIF_ DeleteFont (& _Font) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

207

10.10 °'TTF’ file related font functions

The emWin implementation of TTF file support is based on the FreeType font library
from David Turner, Robert Wilhelm and Werner Lemberg. For details, refer to “True-
Type Font (TTF) format” on page 201.

GUI_TTF_CreateFont()

Description
Creates and selects an emWin font by using a TTF font file.

Prototype
int GUI_TTF_CreateFont (GUI_FONT * pFont, GUI_TTF_CS * pCS);

Parameter Description
pFont Pointer to a GUI_FONT structure in RAM filled by the function.
pCS Pointer to a GUI_TTF_CS structure containing the creation parameters.

Return value
0 on success, 1 on error.

Elements of GUI_TTF_CS

Data type Element Description

Pointer to GUI_TTF_DATA structure which contains location
and size of the font file to be used.

Pixel height of new font. It means the height of the surround-
ing rectangle between the glyphs 'g' and 'f'. Note that it is not
PixelHeight PixelHeight the distance between two lines of text. With other words the
value returned by GUI_GetFontSizeY () is not identical
with this value.

Some font files can contain more than one font face. In case
FaceIndex FacelIndex of more than one face this index specifies the zero based face
index to be used to create the font. Usually 0.

GUI_TTF_DATA * pTTF

Elements of GUI_TTF_DATA

Data type Element Description
const void * pData Pointer to TTF font file in addressable memory area.
NumBytes NumBytes Size of file in bytes.

Additional information

When using the function the first time it initializes the TTF engine and the internal
cache system. If the cache should use other values as defined per default it needs to
be configured before the first call of this function. For details how to configure the
cache, refer to "GUI_TTF_SetCacheSize()” on page 209.

The internal data cache manages the complete mechanism of creating fonts and
caching bitmap data. Font faces are uniquely identified from the cache by the
address given in parameter pTTF and the parameter FaceIndex, which normally is 0.
If the same font file for example should be used for creating fonts of different sizes
the parameter pTTF should point to the same location of a GUI_TTF_DATA structure.
The parameter pixelHeight specifies the height of the surrounding rectangle
between the glyphs ‘g’ and ‘f’. The value pixelHeight does not represent the offset
between lines.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

208

CHAPTER Fonts

Example

GUI_TTF_CS Cs0, Csl;
GUI_TTF_DATA Data;

GUI_FONT Font0, Fontl;

/* Set parameters for accessing the font file */

Data.pData = aTTF; /* Address */

Data.NumBytes = sizeof (aTTF); /* Size */

/* Set creation parameters of first font */

Cs0.pTTF = &Data; /* Use address of GUI_TTF_DATA */
Cs0.PixelHeight = 24; /* Pixel height */

Cs0.FaceIndex = 0; /* Initialize to 0 */

/* Set creation parameters of second font */

Csl.pTTF = &Data; /* Use address of GUI_TTF_DATA */
Csl.PixelHeight = 48; /* Pixel height */

Csl.FaceIndex = 0; /* Initialize to 0 */

/* Create 2 fonts */
GUI_TTF_CreateFont (&Font0, &CsO0) ;
GUI_TTF_CreateFont (&Fontl, &Csl);

/* Draw something using the fonts */
GUI_SetFont (&Font0) ;
GUI_DispString("Hello world\n") ;
GUI_SetFont (&Fontl) ;
GUI_DispString("Hello world") ;

GUI_TTF_DestroyCache()

Description

This function frees all memory allocated by the TTF cache system and destroys the
cache.

Prototype

void GUI_TTF_DestroyCache (void) ;

Additional information

The next time GUI_TTF_CreateFont () is used emWin automatically creates and ini-
tializes a new cache.

GUL_TTF_Done()

Description

This function frees all memory allocated by the TTF engine and its internal cache sys-
tem.

Prototype

void GUI_TTF_Done (void) ;

Additional information

The next time GUI_TTF_CreateFont () is used emWin automatically initializes the TTF
engine and creates and initializes a new cache.

GUL_TTF_GetFamilyName()

Description
The function returns the font family name defined in the font file.

Prototype
int GUI_TTF_GetFamilyName (GUI_FONT * pFont, char * pBuffer, int NumBytes) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

209

Parameter Description
Pointer to a GUI_FONT structure which has been created using

pFont GUI_TTF_CreateFont ().
pBuffer Buffer to be filled with the family name.
NumBytes Size of buffer in bytes.

Return value
0 on success, 1 on error.

GUIL_TTF_GetStyleName()
Description
The function returns the style name (bold, regular, ...) defined in the font file.

Prototype
int GUI_TTF_GetStyleName (GUI_FONT * pFont, char * pBuffer, int NumBytes) ;

Parameter Description
Pointer to a GUI_FONT structure which has been created using

pFont GUI_TTF_CreateFont ().
pBuffer Buffer to be filled with the style name.
NumBytes Size of buffer in bytes.

Return value
0 on success, 1 on error.

GUL_TTF_SetCacheSize()

Description

Sets the size parameters used to create the cache on the first call of
GUI_TTF_CreateFont ().

Prototype

void GUI_TTF_SetCacheSize (unsigned MaxFaces,
unsigned MaxSizes, U32 MaxBytes);

Parameter Description
MaxFaces Maximum number of font faces the cache should be able to handle simultaneously. 0
selects default value.
MaxSi Maximum number of size objects the cache should be able to handle simultaneously.
axslzes 0 selects default value.
MaxBytes Maximum number of bytes used for the bitmap cache. 0 selects default value.

Additional information

If for example 3 font faces should be used, each with 2 sizes, the cache should be
able to manage 6 size objects.

The default values used by the TTF engine are: 2 faces, 4 size objects and 200K of
bitmap data cache.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER Fonts

10.11 ’XBF’ file related font functions

GUI_XBF_CreateFont()

Description

Creates and selects a font by passing a pointer to a callback function, which is
responsible for getting data from the XBF font file.

Prototype
int GUI_XBF_CreateFont (GUI_FONT * pFont,
GUI_XBF_DATA * pXBF_Data,
const GUI_XBF_TYPE * pFontType,
GUI_XBF_GET_DATA_FUNC * pfGetData,
void * pvoid);
Parameter Description
pFont Pointer to a GUI_FONT structure in RAM filled by the function.
pXBF_Data Pointer to a GUI_XBF_DATA structure in RAM filled by the function.
pFontType See table below.
Pointer to a callback function which is responsible for getting data from the font file.
pfGetData See prototype below.
pVoid Application defined pointer passed to the ‘GetData’ callback function.

Permitted values for element pFontType

Should be used if the parameter pFont

GUI_XBF_TYPE_PROP . .
points to a proportional font.

Should be used if the parameter pFont

I _XBF_TYPE_PROP_EXT
GUIL_ - —PROP_ points to an extended proportional font.

Should be used if the parameter pFont
GUI_XBF_TYPE_PROP_FRM points to an extended framed proportional
font.

Should be used if the parameter pFont
GUI_XBF_TYPE_PROP_AA2_EXT | points to an extended proportional font,
which uses 2bpp antialiasing.

Should be used if the parameter pFont
GUI_XBF_TYPE_PROP_AA4_EXT | points to an extended framed proportional
font, which uses 4bpp antialiasing.

GUI_XBF_GET_DATA_FUNC

int GUI_XBF_ GET DATA FUNC (U32 Off, Ule6 NumBytes,
void * pVoid, void * pBuffer);

The function has to set pBuffer to point to the location the requested data resides in.

Additional information

The parameter pfGetData should point to an application defined callback routine,
which is responsible for getting data from the font. Parameter pvoid is passed to the
callback function when requesting font data. It can be used for example to pass a file
handle to the callback function.

The function requires pointers to a GUI_FONT structure and a GUI_XBF_DATA struc-
ture. The function will fill these structures with font information. It is required, that
the contents of these structures remain valid during the usage of the font. The func-
tion does not know what kind of XBF font has to be created, so the parameter pFont-
Type has to be used to tell the function the type of the font to be created. This has
been done to avoid unnecessary linkage of code.

The maximum number of data bytes per character is limited to 200 per default. This
should cover the most requirements. If loading a character with more bytes a warn-
ing will be generated in the debug version. The default value can be increased by
adding the following define to the file GuIConf.h:

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

211

#define GUI_MAX XBF_BYTES 500 // Sets the maximum number of bytes/chars to 500

Example

static GUI_FONT Font; /* GUI_FONT structure in RAM */
static GUI_XBF_DATA XBF_Data; /* GUI_XBF_DATA structure in RAM */

static int _cbGetData(U32 Off, Ul6 NumBytes, void * pVoid, void * pBuffer) {
/* The pVoid pointer may be used to get a file handle */

.../* TBD */

/* Set file pointer to the given position */

.../* TBD */

/* Read the required number of bytes into the given buffer */
./* TBD */

/* Return 0 on success. Return 1 if the function fails. */

}

void CreateXBF_Font (void * pVoid) {

GUI_XBF_CreateFont (&Font, /* Pointer to GUI_FONT structure */
&XBF_Data, /* Pointer to GUI_XBF_DATA structure */
GUI_XBF_TYPE_PROP, /* Font type to be created */
_cbGetData, /* Pointer to callback function */
pVvoid) ; /* Pointer to be passed to callback */

}
GUI_XBF_DeleteFont()

Description
Deletes an XBF font pointed by the parameter pFont.

Prototype

void GUI_XBF_DeleteFont (GUI_FONT * pFont) ;
Parameter Description

pFont Pointer to the font to be deleted.

Additional information

After using a font created with GUI_XBF_cCreateFont () the font should be deleted if
not used anymore.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER Fonts

10.12 Common font-related functions

GUI_GetFont()

Description
Returns a pointer to the currently selected font.

Prototype
const GUI_FONT * GUI_GetFont (void)

GUI_GetCharDistX()

Description

Returns the width in pixels (X-size) used to display a specified character in the cur-
rently selected font.

Prototype
int GUI_GetCharDistX(Ul6 c);

Parameter Description
c Character to calculate width from.

GUI_GetFontDistY()

Description
Returns the Y-spacing of the currently selected font.

Prototype
int GUI_GetFontDistY (void) ;

Additional information

The Y-spacing is the vertical distance in pixels between two adjacent lines of text.
The returned value is the yDist value of the entry for the currently selected font.
The returned value is valid for both proportional and monospaced fonts.

GUI_GetFontinfo()

Description
Calculates a pointer to a GUI_FONTINFO structure of a particular font.

Prototype
void GUI_GetFontInfo(const GUI_FONT*pFont, GUI_FONTINFO* pfi);
Parameter Description
pFont Pointer to the font.
pfi Pointer to a GUI_FONTINFO structure.

Additional information

The definition of the GUI_FONTINFO structure is as follows:

typedef struct {
Ulé6 Flags;
} GUI_FONTINFO;

The member variable flags can take the following values:

GUI_FONTINFO_FLAG_PROP
GUI_FONTINFO_FLAG_MONO
GUI_FONTINFO_FLAG_AA
GUI_FONTINFO_FLAG_AA2
GUI_FONTINFO_FLAG_AA4

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

213

Example
Gets the info of GUI_Font6x8. After the calculation, FontInfo.Flags contains the

flag GUI_FONTINFO_FLAG_MONO.

GUI_FONTINFO FontInfo;
GUI_GetFontInfo (&GUI_Font6x8, &FontInfo);

GUI_GetFontSizeY()

Description
Returns the height in pixels (Y-size) of the currently selected font.

Prototype
int GUI_GetFontSizeY (void) ;

Additional information

The returned value is the vsize value of the entry for the currently selected font.
This value is less than or equal to the Y-spacing returned by the function

GUI_GetFontDistY ().
The returned value is valid for both proportional and monospaced fonts.

GUI_GetLeadingBlankCols()

Description
Returns the number of leading blank pixel columns in the currently selected font for
the given character.

Prototype
int GUI_GetLeadingBlankCols (Ul6 c¢);
Parameter Description
c Character to be used.
Example

The result for the character ‘B’ shown in the screenshot above should be 2.

GUI_GetStringDistX()

Description
Returns the X-size used to display a specified string in the currently selected font.

Prototype

int GUI_GetStringDistX(const char GUI_FAR *g);
Parameter Description

IS Pointer to the string.

GUI_GetTextExtend()

Description
Calculates the size of a given string using the current font.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER Fonts

Prototype

void GUI_GetTextExtend (GUI_RECT* pRect, const char* s, int Len);

Parameter Description
pRect Pointer to GUI_RECT-structure to store result.
IS Pointer to the string.
Len Number of characters of the string.
GUI_GetTrailingBlankCols()
Description

Returns the number of trailing blank pixel columns in the currently selected font for
the given character.

Prototype
int GUI_GetTrailingBlankCols (Ul6 c);
Parameter Description
c Character to be used.
Example

The result for the character ‘B’ shown in the screenshot above should be 1.

GUI_GetYDistOfFont()
Description
Returns the Y-spacing of a particular font.

Prototype
int GUI_GetYDistOfFont (const GUI_FONT* pFont) ;

Parameter Description

pFont Pointer to the font.

Additional information
(see GUI_GetFontDistY())

GUI_GetYSizeOfFont()
Description
Returns the Y-size of a particular font.

Prototype
int GUI_GetYSizeOfFont (const GUI_FONT* pFont) ;

Parameter Description

pFont Pointer to the font.

Additional information
(see GUI_GetFontSizeY())

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

215

GUIL_IsInFont()

Description
Evaluates whether a particular font contains a specified character or not.

Prototype

char GUI_IsInFont (const GUI_FONT * pFont, Ul6 c);
Parameter Description

pFont Pointer to the font.

G Character to be searched for.

Additional information
If the pointer pFont is set to 0, the currently selected font is used.

Example
Evaluates whether the font GUI_FontD32 contains an "X":
if (GUI_IsInFont (&GUI_FontD32, 'X') == 0) {

GUI_DispString ("GUI_FontD32 does not contain 'X'");
}

Return value

1, if the character was found.
0, if the character was not found.

GUI_SetDefaultFont()

Description
Sets the default font to be used after cur_Init ().

Prototype

void GUI_SetDefaultFont (const GUI_FONT GUI_UNI_PTR * pFont) ;
Parameter Description

pFont Pointer to the font to be used.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

216

10.13 Character sets
10.13.1 ASCII

emWin supports the full set of ASCII characters. These are the following 96 charac-
ters from 32 to 127:

CHAPTER Fonts

Hex| O 1 2 3 4 5 6 7 8 9 A B C D E F
2x ! "# $ % & '() i + , .

3x 0 1 2 3 4 5 6 7 8 9 ; < = > ?
4x A B C D E F G H I J K L M o
5X P Q R S T U v W X Y Z [\] A _
6X a b c d e f g h i j k 1 m n o
7x | P q r s t u v w X y z { |) =

Unfortunately, as ASCII stands for American Standard Code for Information Inter-
change, it is designhed for American needs. It does not include any of the special
characters used in European languages, such as A, O, U, &, a, and others. There is no
single standard for these "European extensions" of the ASCII set of characters; sev-
eral different ones exist. The one used on the Internet and by most Windows pro-
grams is ISO 8859-1, a superset of the ASCII set of characters.

10.13.21S0O 8859-1 Western Latin character set

emWin supports the ISO 8859-1, which defines characters as listed below:

Code Description Char
160 non-breaking space

161 inverted exclamation i
162 cent sign ¢
163 pound sterling £
164 general currency sign X
165 yen sign ¥
166 broken vertical bar H
167 section sign 8
168 umlaut (dieresis) :
169 copyright ©
170 feminine ordinal a
171 left angle quote, guillemotleft «
172 not sign =
173 soft hyphen

174 registered trademark ®
175 macron accent -
176 degree sign °
177 plus or minus ==
178 superscript two 2
179 superscript three 3
180 acute accent !
181 micro sign M
182 paragraph sign]
183 middle dot .
184 cedilla ,
185 superscript one 1
186 masculine ordinal o
187 right angle quote, guillemot right »
188 fraction one-fourth Va
189 fraction one-half [z

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

217

Code Description Char
190 fraction three-fourth a
191 inverted question mark é
192 capital A, grave accent A
193 capital A, acute accent A
194 capital A, circumflex accent A
195 capital A, tilde A
196 capital A, dieresis or umlaut mark A
197 capital A, ring A
198 capital A, diphthong (ligature) A
199 capital C, cedilla C
200 capital E, grave accent E
201 capital E, acute accent E
202 capital E, circumflex accent E
203 capital E, dieresis or umlaut mark E
204 capital I, grave accent i
205 capital I, acute accent i
206 capital I, circumflex accent i
207 capital I, dieresis or umlaut mark I
208 Eth, Icelandic b
209 N, tilde N
210 capital O, grave accent o]
211 capital O, acute accent o)
212 capital O, circumflex accent o)
213 capital O, tilde 0
214 capital O, dieresis or umlaut mark o)
215 multiply sign X
216 capital O, slash @
217 capital U, grave accent N
218 capital U, acute accent U
219 capital U, circumflex accent 0
220 capital U, dieresis or umlaut mark U
221 capital Y, acute accent Y
222 THORN, Icelandic [~]
223 sharp s, German (s-z ligature) B
224 small a, grave accent a
225 small a, acute accent a
226 small a, circumflex accent a
227 small a, tilde a
228 small a, dieresis or umlaut mark a
229 small a, ring 3
230 small ae diphthong (ligature) ES
231 cedilla G
232 small e, grave accent e
233 small e, acute accent é
234 small e, circumflex accent é
235 small e, dieresis or umlaut mark é
236 small i, grave accent i
237 small i, acute accent i
238 small i, circumflex accent i
239 small i, dieresis or umlaut mark i
240 small eth, Icelandic o]
241 small n, tilde)
242 small o, grave accent 0
243 small o, acute accent 0
244 small o, circumflex accent 0
245 small o, tilde 0
246 small o, dieresis or umlaut mark 0
247 division sign =
248 small o, slash [4]

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER Fonts
Code Description Char
249 small u, grave accent u
250 small u, acute accent a
251 small u, circumflex accent G
252 small u, dieresis or umlaut mark U
253 small y, acute accent y
254 small thorn, Icelandic b
255 small y, dieresis or umlaut mark y
10.13.3 Unicode

Unicode is the ultimate in character coding. It is an international standard based on
ASCII and ISO 8859-1. Contrary to ASCII, UNICODE requires 16-bit characters
because all characters have their own code. Currently, more than 30,000 different
characters are defined. However, not all of the character images are defined in
emWin. It is the responsibility of the user to define these additional characters.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

219

10.14 Font Converter

Fonts which can be used with emWin must be defined as Gur_ronNT structures in C.
The structures -- or rather the font data which is referenced by these structures --
can be rather large. It is very time-consuming and inefficient to generate these fonts
manually. We therefore recommend using the Font Converter, which automatically
generates C files from fonts.

The Font Converter is a simple Windows program. You need only to load an installed
Windows font into the program, edit it if you want or have to, and save it as a C file.
The C file may then be compiled, allowing the font to be shown on your display with
emWin on demand.

The character codes 0x00 - Ox1F and 0x80 - Ox9F are disabled by default. The fol-
lowing is a example screen shot of the Font Converter with a font loaded

2" FEdit ¥2.00c - Ariall4
File Edit Wiew 2
T~ [038 S E | H [0 Y =]
D 039 T A B r fil E Z H =] | K it] il = o
s [[F T [T |¥ |@ [®x |w | [T |[¥ |& |& |/ |1
TII]3B i o B y a £ 3 n [I K A u " £ o

03C bl i} ¢ o T u il ¥ i} w i u} a i} “
I* ln4o E ' |F [e [s [1 i J B |k [F | K ¥olu
= 041 A B B r i E H 3 L] I K n 0] H o] n
+ D42 P c [T ¥y o [% [u |4 w |w|®s [6 [& 3 [| A
— 043 a i} B r I =} ks 3 7] o} K n [T H o n
=| (D44 n C T y i) x L y w 1, b = b 3 1 a -

i r = = £ - - H H . as ™ - P .
- [| _|J
_ font: Arial
— height: 14
— current char: 0O3CE
o current width: 5

max width: 13

T disabhled: no
1
Ready I_IW i

10.14.1 Adding fonts

Once you have created a font file and linked it to the project, declare the linked font
as extern const GUI_FONT, as shown in the example below.

Example
extern const GUI_FONT GUI_FontNew;

int main(void) {
GUI_Init();
GUI_Clear();
GUI_SetFont (&GUI_FontNew) ;
GUI_DispString("Hello world\n") ;
return 0;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

220

CHAPTER Fonts

10.15 Standard fonts

emWin is shipped with a selection of fonts which should cover most of your needs.
The standard font package contains monospaced and proportional fonts in different
sizes and styles. Monospaced fonts are fonts with a fixed character width, in which
all characters have the same width in pixels. Proportional fonts are fonts in which
each character has its own individual pixel-width.

This chapter provides an overview of the standard emWin fonts.

10.15.1 Font identifier naming convention

All standard fonts are named as follows. The elements of the naming convention are
then explained in the table:
GUI_Font[<style>] [<width>x]<height>[x<MagX>x<MagY>] [H] [B] [_<characterset>]

Element Description
GUI_Font Standard prefix for all fonts shipped with emWin.
<stvles Specifies a non-standard font style. Example: Comic style in
sty-e GUI_FontComic18B_ASCII.
<width> Width of characters, contained only in monospaced fonts.
<height> Height of the font in pixels.
<MagX> Factor of magnification in X, contained only in magnified fonts.
<MagyY> Factor of magnification in Y, contained only in magnified fonts.
H Abbreviation for "high". Only used if there is more than one font with the same
height. It means that the font appears "higher" than other fonts.
B Abbreviation for "bold". Used in bold fonts.
Specifies the contents of characters:
ASCII: Only ASCII characters 0x20-0x7E (Ox7F).
1: ASCII characters and European extensions O0xAQ - OxFF.
<characterset> o
HK: Hiragana and Katakana.
1HK: ASCII, European extensions, Hiragana and Katakana.
D: Digit fonts, character set: +-.0123456789.
Example 1

GUI_Fontlé6_ASCII

Element Description
GUI_Font Standard font prefix.
16 Height in pixels.
ASCII Font contains ASCII characters only.
Example 2

GUI_Font8x15B_ASCII

Element Description
GUI_Font Standard font prefix.
8 Width of characters.
x15 Height in pixels.
B Bold font.
ASCII Font contains ASCII characters only.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Example 3

GUI_Font8xl6x1lx2

221

Element Description
GUI_Font Standard font prefix.
8 Width of characters.
x16 Height in pixels.
x1 Magnification factor in X.
X2 Magnification factor in Y.

10.15.2 Font file naming convention

The names for the font files are similar to the names of the fonts themselves. The
files are named as follows:

F[<width>]<height>[H] [B] [<characterset>]

Element Description
F Standard prefix for all fonts files shipped with emWin.
<width> Width of characters, contained only in monospaced fonts.
<height> Height of the font in pixels.
o Abbreviation for "high". Only used if there is more than one font with the same
height. It means that the font appears "higher" than other fonts.
B Abbreviation for "bold". Used in bold fonts.
Specifies the contents of characters:
ASCII: Only ASCII characters 0x20-0x7E (0x7F).
<ch £ £> 1: ASCII characters and European extensions 0xAO - OxFF.
characterse HK: Hiragana and Katakana.
1HK: ASCII, European extensions, Hiragana and Katakana.
D: Digit fonts.

10.15.3 Measurement, ROM-size and character set of fonts

The following pages describe the standard fonts shipped with emWin. For each font
there is a measurement diagram, an overview of all characters included and a table
containing the ROM size in bytes and the font files required for use.
The following parameters are used in the measurement diagrams:

Element

Description

0w

Size of font in Y.

Distance of base line from the top of the font.
Height of capital characters.

Height of lowercase characters.

Size of underlength used by letters such as "g", "j" or "y".

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co.

KG

222 CHAPTER

10.15.4 Proportional fonts

Fonts

10.15.4.10verview
The following screenshot gives an overview of all available proportional fonts:

GUI_Font8_ASCII +AECS
GUI_Fam LABECS
GUIZFont1B5_ASCII L AECq
GUI_Font1@S_1 T ABCq
GUI_Font1@8_RSCII TaBCy
GUI_Fonti@_1 TaBCa
GUI_Font13_ASCII taBCy
GUI_Faont13_1 1ABCO
GUI_Font13B_ASCII iABCq
GUI_Font13B_1 1ABCg
GUI_Font13H_ASCII 18BCY
GUI_Fomtl13H_1 ix-‘«E.Cg
GUI_Fent13HB_RSCII 1ARCQ
GUI_Font13HE_1 1ABCg
GUI_Font16_ASCII 1ABCY
GUI_Fomt1é_1 EABCQ
GUT_Fomt16_HK ic'bv&-‘;“l 5
GUI_Fomt16_1HK E.-"J'\EFCQ
GUI_Font16B_ASCII iAR Cy
GUI_Fomt16E_1 EAB Cy

GUI_FontConici8B_RSCII | gp ey
BUI_FontComicl2E_1 EABI:Q

GUI_Font2e_ASCII +
= {ABCg

GUI_Faontz2a_1 T
e ABCg
GUI_FontZ2BE_ASCII iABCg
GUI_Font2B8B_1 T
_Fan _ EABCQ

GUI_Fontz24_ASCII iABCg
GUI_Fontz24_1 iABCg
GUI_Fontz24B_ASCII iABCg
GUI_Fontz24B_1 iABCg
GUI_FontComic24B_ASCII iABCg
GUI_FontComic24B_1 %ABCg

st IABCg
‘ABCg
‘ABCg
‘ABCg

10.15.4.2Measurement, ROM size and used files

GUI_Faontaz2_1

GUI_Font32B_ASCII

GUI_Faont32B_1

The following table shows the measurement, ROM size and used files of the fonts:

ROM
Font name Measurement size in Used files
bytes
GUI_Font8_ASCII F:8,B:7,C:7,L:5 U:1 1562 FO8_ASCII.c
]) ,)) 1562+ FO8_ASCII.c
GUI_Font8_1 F:8,B:7,C:7,L:5,U:1 1586 FO8 1.
GUI_Font10S_ASCII F: 10,B:8,C:6,L:4,U:2 1760 F10S_ASCII.c

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

223

ROM
Font name Measurement size in Used files
bytes

))))) 1760+ F10_ASCII.c
GUI_Font10S_1 :10,B:8,C:6,L: 4,U: 2 1770 F10 1.c
GUI_Font10_ASCII :10,B:9,C:8,L:6,U: 1 1800 F10_ASCII

) i)]) 1800+ F10_ASCII.c
GUI_Font10_1 :10,B:9,C:8,L:6,U: 1 2456 F10 1.c
GUI_Font13_ASCII :13,B:11,C: 8, L: 6, U: 2 2076 F13_ASCII.c

) 2076+ F13_ASCII.c
GUI_Font13_1 :13,B:11,C: 8,L: 6, U: 2 2149 F13 1.c
GUI_Font13B_ASCII :13,B:11,C: 8, L: 6, U: 2 2222 F13B_ASCII.c

i)))) 2222+ F13B_ASCII.c
GUI_Font13B_1 :13,B:11,C: 8, L: 6, U: 2 2216 F13B 1.c
GUI_Font13H_ASCII 113,B:11,C: 9, L: 7, U: 2 2232 F13H_ASCII.c

))))) 2232+ F13H_ASCII.c
GUI_Font13H_1 :13,B:11,C: 9, L: 7, U: 2 2291 F13H 1.c
GUI_Font13HB_ASCII :13,B:11,C: 9, L: 7, U: 2 2690 F13HB_ASCII.c

. 2690+ F13HB_ASCII.c
GUI_Font13HB_1 :13,B:11,C: 9, L: 7, U: 2 2806 F13HB 1.c
GUI_Font16_ASCII : 16, B: 13, C: 10, L: 7, U: 2714 F16_ASCII.c

])) i) 2714+ F16_ASCII.c
GUI_Font16_1 : 16, B: 13, C: 10, L: 7, U: 3850 F16 1.c
GUI_Fontl6_HK : 16, B: 13, C: 10, L: 7, U: 6950 F16_HK.c

120+ F16_1HK.c

. 6950+ F16_HK.c

GUI_Font16_1HK : 16, B: 13, C: 10, L: 7, U: 2714+ F16 ASCIL.c
3850 F16_1.c

GUI_Font16B_ASCII : 16, B: 13, C: 10, L: 7, U: 2690 F16B_ASCII.c

)]))) 2690+ F16B_ASCII.c
GUI_Font16B_1 : 16, B: 13, C: 10, L: 7, U: 2790 F16B_1.c
GUI_FontComic18B_ASCII : 18, B: 15, C: 12, L: 9, U: 3572 FComic18B_ASCII.c

. 3572+ FComic18B_ASCII.c

GUI_FontComic18B_1 : 18, B: 15, C: 12, L: 9, U: 4334 FComic18B._ 1.c
GUI_Font20_ASCII : 20, B: 16, C: 13, L: 10, U: 4044 F20_ASCII.c

) i])] 4044+ F20_ASCII.c
GUI_Font20_1 : 20, B: 16, C: 13, L: 10, U: 4244 F20 1.c
GUI_Font20B_ASCII : 20, B: 16, C: 13, L: 10, U: 4164 F20B_ASCII.c

])])] 4164+ F20B_ASCII.c
GUI_Font20B_1 : 20, B: 16, C: 13, L: 10, U: 4244 F20B_1.c
GUI_Font24_ASCII : 24, B:20,C: 17, L: 13, U: 4786 F24_ASCII.c

. 4786+ F24_ASCII.c
GUI_Font24_1 : 24, B: 20, C: 17, L: 13, U: 5022 F24 1.c
GUI_Font24B_ASCII : 24, B: 19, C: 15, L: 11, U: 4858 F24B_ASCII.c

) 4858+ F24B_ASCII.c
GUI_Font24B_1 :24,B:19,C: 15, L: 11, U 5022 F24B 1.c
GUI_FontComic24B_ASCII :24,B:20,C:17,L: 13, U 6146 FComic24B_ASCII

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

224 CHAPTER Fonts
ROM
Font name Measurement size in Used files
bytes
; 6146+ FComic24B_ASCII
GUI_FontComic24B_1 F: 24, B: 20, C: 17, L: 13, U: 4 5598 FComic24B_1
GUI_Font32_ASCII F: 32, B: 26, C: 20, L: 15, U: 6 7234 F32_ASCII.c
)]))] 7234+ F32_ASCII.c
GUI_Font32_1 F: 32, B: 26, C: 20, L: 15, U: 6 2734 F32 1.0
GUI_Font32B_ASCII F: 32, B: 25, C: 20, L: 15, U: 7 7842 F32B_ASCII.c
. .))) 7842+ F32B_ASCII.c
GUI_Font32B_1 F: 32, B: 25, C: 20, L: 15, U: 7 8118 F328 1.c
10.15.4.3Characters

The following shows all characters of all proportional standard fonts:

GUI_Font8_ASCII

MEERE ¥+, -, 81 234567895 =TAABCDEF GHIJKLMHOF BR S TULLEY
Z0-1 " Abeodet ghiklnnopar stz {1

GUI_Font8 1

MEENEN R+~ B 23456789 = >'7'EIF|ElI:I:ZlEFI:HIq.'l'KLI‘1NI:IF"II!RSTU'JL-JIX!"rI
N R TS MR R e

n [] [N LMl) k=] =]
éééewﬁ#&qﬁn Eﬂuuuu'&rgb

GUI_Font10S_ASCII

LA - 2B BE TE S 0= P ABCOEF GHIKLMMOPRRET L W Y 2N "abe def
ghijklmnopgrstuswapai]

GUI_Font10S 1

PR - O 2EAEE T <= P @ ABC DEF GHIJKLMNOP RRET U WY 2N "abedek
g":ljklrnnop r.-l:uvwxy..{ll-” e B, '»AA&;A&EEA.&.EI;EEEEIIIIEIqu:IIfI

G @00 T RS I5E55 e g S48 ARE S S50+ o GUTiRp I

GUI_Font10_ASCII

MEFHE T+ - 101 23456759 ===""@ABCDEF GHIJKLMNOP QRS TUY
Wi 20 abodefahiikimnopar stuseae ez

GUI_Font10_1

PEFRET+ - 01 23456789 === @ ABCDEF GHIUKLMNOP QRS TLYN
WM [‘abcdefghuklmnupqrstuvwxgz{(f}; RS R g B 0433
BT g et i AA AR AR P CEREEIIBRCD cﬁOx@uuﬂquBaaaaa
EEQEEEEMEHDDDDD ALY R

GUI_Font13_ASCII

R, -, 01 23456750 <==NDABCDEFGHIIKLMNOPORST
ey 201" abcdefahijklmnopgrstusaseez | e

GUI_Font13_1

"R - 10123456789) <==P@ABCDEFGHLKLMNOPOQRST
LI'-.-"-.-'-.-'X""'Z['I,]A aI:u:u:Ingh|]I<Imncupqrstuvwxgz{|}-~ itE=¥ 5 Do
ICEREFERT] | 1%‘;&1;&%&.:.ﬁ..ﬁ.AAA.&FECEEEEIIIIBNOOOOO =@0000
‘fI:-Baaaaaﬁae;eeeeuuanmnm @y

GUI_Font13B_ASCII

1" #4068 {)* + - /0123456789 < = =?@ABCDEFGHIIKLMN
OPQRSTUYWXYZ[] _" abcdefghijklmnopgrstuywryz{ | }

~

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

225

GUI _Fonti3B 1

1" #4008 Y + - /0123456789 < = > ?@ABCDEFGHLIKLMN
OPQRSTUYWXYZ[\]"_ ahcdefghljklmnupq!'stu'rw:-:yzﬂ]-
~|§_£ht¥j§ - 423 P 1“»‘;&‘;‘13ﬁcAAAAA.ﬁ.EEEEE
EIfITpNDOOO0 «@0000YPRas545dcecéBaiidnoodoo+a
aadiyby

GUI_Font13H_ASCII

M#E%E OF+,- 0123456789, < == D ABCDEFGHIIKLM
NOPQRSTLMAWYZ [N "abodefohiik imnopgrstusewsyzd |
}l'\\.l

GUI_Font13H_1

IM#EUE)"+, - (1123456759 ;< =>P@ABCDEFGHIIKLM
HOF‘QRSTUVW}(YZ [abu:defghijkImnupqrsbwwxﬁ,rz{|
E ég)a«—'- ‘:':|:23 0 10nii A AR R AR FEC

EEEHTTBRC GGOX@UUUUWBaaaaaéae;eeem|||ér'u:n:n:n:|
c ooy

GUI_Font13HB_ASCII

"ghoa ' ()*+,-./0123456 780 ; < = > 7@ABCDEFGH
LIKLMNOPOQRSTUYWRYZ[]~ _ " abocdefghijklmnopg
rstuvwxeyz{ |}~

GUI _Font13HB 1

Matoa () +,-./0123456789:; < = > 7@ ABCDEFGH
LDKLMNOPORSTUYW Y2]~ ahc:defghllklmnupq

rstuvwxyz{ G FO¥ Ao -R) “+23 « 10
e Ak R e Pt ORAS060 - Ghob0 7
Ra4534582cb888iNaRoo006 - aihiypy

GUI_Font16_ASCII

I"% &'+ - 01 23456789 ; <=="@ABCDEF GHIJKLM
MOPCIRSTUWEY IV "abodefghijklmnopgrst oy z{|}

GUI_Font16_1
"#5% 8%+ - 0123456780 «=>P@ABCDEF GHIJKLM
MOPLRSTUWWRY I\ ahcdefghuklmnnpqrstuwxj.fz{l}
~ RSP -E T » Vel AAAAARECEEE
ElBHOOO00=@uUl0YbRiiasadmceesaiidfnddtn
+guddaypy

GUI _Fonti6 HK

BFHLL S 3 22 ERMMEECCTIFLD
EELLELY T REETFLFEE o0 3T Tk
Do Tl R 7Y e o el b AR 0 S A AN .
HEALrdbeoTrwr Lol ihibnhd
AERATTiAA s A A EET T
e e I s PV o b LR S S R
FFPFFF=F2 e e
SRR T I AAE 2 I IT 0D
R Ay

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

226 CHAPTER Fonts

GUI_Font16_1HK
EE% 8%+ - 01234567 89;; «== Y@ ABCDEF GHIJKLk
NOPQRSTUNWEY IV ahcdefghuklmnupqrstuwx}rz{l}
~ PR § P -E Y 0 » Va4 AAAAAAIE CEEE
ElBHNOOO00=@0000YbRia545 e ke dailBRbGAGE
puliighy & H 1l 5 3 22 FEAME T
Wiz LY FREL ELELE -0

R AR PP AN Y =N 2] b=l b=l b= A LR SR 00 S S S
AAUIEE EA DS e T LN BN
HhbhdEARATTAA vl a AL+
SN e e e I r I A A Gl R RTL
s VAR sk ol U Uiy aP=A" i ST AP L R ol ol il
FF R T A AR el TS
IR = A A I

GUI_Font16B_ASCII

I"A%% &)+, - 0123456789 ;< =>?@ABCDEFGHLIKL M
NOPQRSTUWWXYZ[)* “abcdefghijklmnopgrstuvw

xyz{[}~

GUI_Font16B_1

"#8% &'0%+,-./0123456789:;<=>2@ABCDEFGHIJKLM
NOPORSTUVWXYZ[* "abcdetfghijklmnopgrstuvw
myzf[}~ E¥§ TP @ 2=y e ‘xi‘fz%c

uuuuuuu

GUI_FontComic18B_ASCII
I"#$%&' 0*+,-./0123456789:;«<>?2@ABCD
EFGHITKLMNOPQRSTUVWXYZ[\]" "ab
cdefghijklmnopqrstuvwxyz{|}~0€

GUI_FontComic18B_1
1"#2$%,&')™+ -. /0123456 789::¢=> 2@ ABCD
EFGHITKLMNOPQRSTUVWXYZ[\]" " ab
cdefghl|k|mnopqrs1'uvwxyz:[|}~ﬂ iCERYIS
@%«-0 %423 - ”»%%mmmﬁxfc

cecteEZilidRo668E reullly by

GUI_Font20_ASCII
I"#$%&'()" +.- /0123456789, <=>?@AB
CDEFGHIJKLMNOPQRSTUWVWXYZ[\"
_ abcdefghijkimnopgqrstuvwyz{|}~

GUI_Font20_1
"#3$%&'()"+,-./0123456789:;<=>?(@AB
CDEFGH'JKLMNDPQRSTUW){YZD]h
abcdefghu_klmnopqrstuuwxyz{[h
Y8 ERG-E 42 MAT-, 19 ¥4 Y58 4¢AﬂA Aﬁu
ﬁE(;EEEEIIIIE)NODOOOxﬁUUUUYDI’La

P T

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

GUI_Font20B_ASCII

GUI_Font20B 1

"#5 % &) +,-.f0123456789: ;<=>?@DA
BECDEFGHIJKLMNOPQRSTUVWXYZ[
\]*_"abcdefghijkimnopqrstuvwxyz{}

"#$5 % & () +,-.f0123456789:;<=>?7@A
BCDEFGHIJKLMNOPQRSTUVWXY Z[
L1 Rl abcdefghijkl_rnnupqrstuvwxyzﬂ}
~ (EROUE Q) o4 . 105 YitVag
AAAAAEGEEEEIDNOOOOOxEUU
DUYPBAAddiaaceéediiiiono6660+eu
uaiypy

GUI_Font24_ASCII

GUI_Font24 1

I"#$%&'()*+,-./0123456789:;<=>7
@ABCDEFGHIJKLMNOPQRSTU
VWXYZ[*_"abedefghijklmnopgrst
uvwxyz{|}~

I"#$%&' ()*+,-./0123456789;;<=>7
@ABCDEFGHIJKLMNOPQRSTU
VWXYZ[\J* _"abcdefghijklmnopgrst
UVWy2{}~ (£ § CRa-B) “12 Y
1 19 Va4 AAAAAAAECEEEEI
BNOOOOOx@UUUUYPRadaaEa
aeceédaiilibAdo685+auuduyby

GUI_Font24B_ASCII

GUI_Font24B 1

UMO03001 User & Reference Guide for emWin V5.20

1"#5%&'()*+,-./0123456789:;<=>
?7@ABCDEFGHIJKLMNOPQRST
UVWXYZ[\]* "abcdefghijklmnop
grstuvwxyz{|}~

1"H#$%& () +,-./0123456789:;<=>
7@ABCDEFGHIJKLMNOPQRST
UVWXYZ[\]* "abcdefghijklmnop
grstuvwxyz{[}~ j¢£o¥'§ P«-@
o2 M- 199V YeYas AAAAAAECE

EEEIBPNOOOOOxaUUlUYPRAA
daaaseceeeiiidonooooo+aulal
yby

227

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER

GUI_FontComic24B_ASCII
I"#$%&' O*+,-./0123456789:
:<=>?@ABCDEFGHITKLMNOP
QRSTUVYWXYZI\]"_" abcdefghi
jkimnopqrstuvwxyz{|}~[

GUI_FontComic24B_1
'#$%&' 0%+, - ./0123456789:
;< =>?@ABCDEFGHITKLMNOP
QRSTUVWXYZI\]"_" abcdefghi
jkimnopgrstuvwxyz{|}~[I¢ER¥]
§70%~-® °+2°7 yq). 19n% ;i
CAAAAAAACEEEEITIIDNOOO
O0x@UUUUYPRaddddaceceédéi
111606006 ~gudllypy
GUI_Font32_ASCII
"#3%&'()*+,-./012345678
9 <=>?@ABCDEFGHIJK
LMNOPQRSTUVWXYZ[\]
A “abcdefghijklmnopgrstuv
WXy Z{|}~
GUI_Font32_1
"#3%&' ()*+,-./012345678
9., <=>7@ABCDEFGHIJK
LMNOPQRSTUVWXYZ[\]
A “abcedefghijklmnopgrstuy

wxyz{|}~ LIS O @

3 s L) - .
L o s " - s

rrrrr

EE&lNmdnooeao+aululiypy

Fonts

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

229

GUI_Font32B_ASCII
"#$%8&' () +,-./101234567
89:;<=>?@ABCDEFGHIJ
KLMNOPQRSTUVWXYZ|[
\]* _“abcdefghijkimnopq
rstuvwxyz{|}~

GUI_Font32B_1
"#$%8&' () +,-./01234567
89:;<=>?@ABCDEFGHIJ
KLMNOPQRSTUVWXYZ|[
\]* _"abcdefghijkimnopq
rstuvwxyz{|}~ i¢£c¥ § ©°
«1-® ¥ uY 1“}}1/41/2%¢,A
AAAAAEQEEEEIIIIBNO

r L []

daxeceéédliionoodoo+o
uadaiypy

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER Fonts

10.15.5 Proportional fonts, framed

10.15.5.10verview

The following screenshot shows the currently available framed proportional fonts:

GUI_Faont28F_ASCII L
tABCQA

10.15.5.2Measurement, ROM size and used files
The following table shows the measurement, ROM size and used file of the font:

ROM
Font name Measurement size in Used files
bytes
GUI_Font20F_ASCII F: 20, B: 19, C: 19, L: 19, U: 1 5248 F20F_ASCII.c

10.15.5.3Characters

The following shows all characters of the font:

GUI_Font20F_ASCII

1" #E % ()74 - f01 23456789, <==7@
ABCDEFGHIJKLIMMOPQRSTILI W WY
Z[W*_" @b edefdi ki dapd stz
b=

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

10.15.6 Monospaced fonts
10.15.6.10verview

231

The following screenshot gives an overview of all available monospaced fonts:

Fantdx=g

GUI_Fontg:x18_RASCII
GUI_Font8x12 ASCII
GUI_Faontg:x13 _ASCII
GUI_FontSx13_1

GUI_Font8:x15B_ASCII

GUI_Font8:x15E_1
GUI_Faontixle
GUI_Faont8:xly
GUI_Fontg:x1g

GUI_Font8xl&xl=2

GUI_Font38xléxzxz

GUI_Font38x1&x3=3

UMO03001 User & Reference Guide for emWin V5.20

LREG3

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

232

CHAPTER

10.15.6.2Measurement, ROM size and used files
The following table shows the measurement, ROM size and used files of the fonts:

Fonts

ROM size in

Font name Measurement Used files
bytes
GUI_Font4x6 6,B:5 C:5 L:4,U:1 620 F4x6.c
GUI_Font6x8 8,B:7,C:7,L:5 U:1 1840 F6x8.c
GUI_Font6x8_ASCII 8,B:7,C:7,L:5 U:1 1568 F6x8_ASCII.c
. 1568+ F6x8_ASCII.c
GUI_Font6x8_1 8, B:7,C:7,L:5 U:1 1584 F6x8_1.c
1840
GUI_Font6x9 9,B:7,C:7,L:5 U:2 (same ROM location F6x8.c
as GUI_Font6x8)
GUI_Font8x8 8,B:7,C:7,L:5 U:1 1840 F8x8.c
GUI_Font8x8_ASCII 8,B:7,C:7,L:5 U:1 1568 F8x8_ASCII.c
. 1568+ F8x8_ASCII.c
GUI_Font8x8_1 8,B:7,C:7,L:5 U:1 1584 F8x8_1.c
1840
GUI_Font8x9 9,B:7,C:7,L:5 U:2 (same ROM location F8x8.c

as GUI_Font8x8)

GUI_Font8x10_ASCII :10,B:9,C:9,L:7,U: 1 1770 F8x10_ASCII.c
GUI_Font8x12_ASCII :12,B:10,C:9,L:6,U: 2 1962 F8x12_ASCII.c
GUI_Font8x13_ASCII :13,B:11,C:9,L:6,U: 2 2058 F8x13_ASCII.c
. 2058+ F8x13_ASCII.c
GUI_Font8x13_1 :13,B:11,C:9,L: 6, U: 2 2070 F8x13_1.c
GUI_Font8x15B_ASCII :15,B:12,C:9,L:7,U: 3 2250 F8x15_ASCII.c
. 2250+ F8x15B_ASCII.c

GUI_Font8x15B_1 :15,B:12,C:9,L:7,U: 3 2262 F8x15B_1.c
GUI_Font8x16 : 16, B: 12, C: 10, L: 7, U: 4 3304 F8x16.c

3304
GUI_Font8x17 :17,B:12,C: 10, L: 7, U: 5 (same ROM location F8x16.c

as GUI_Font8x16)

3304
GUI_Font8x18 :18,B:12,C: 10, L: 7, U: 6 (same ROM location F8x16.c

as GUI_Font8x16)

3304
GUI_Font8x16x1x2 : 32, B: 24, C: 20, L: 14, U: 8 (same ROM location F8x16.c

as GUI_Font8x16)

3304
GUI_Font8x16x2x2 : 32, B: 24, C: 20, L: 14, U: 8 (same ROM location F8x16.c

as GUI_Font8x16)

3304
GUI_Font8x16x3x3 : 48, B: 36, C: 30, L: 21, U: 12 (same ROM location F8x16.c

as GUI_Font8x16)

GUI_Font8x16_ASCII :16,B:12,C: 10, L: 7, U: 4 2328 F8x16_ASCII.c
. 2328+ F8x16_ASCII.c
GUI_Font8x16_1 116, B:12,C: 10, L: 7, U: 4 2352 F8x16._1.c

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

233

10.15.6.3Characters

The following shows all characters of all monospaced standard fonts:

GUIl_Font4x6

TUHERR' C)E+, = A01234EE7ED: ; <=>TARECODEF GHITELHNOPORETUMHENZC, D™ " ab-<d2F 3hi jklHno
paritunnsaz 4%

GUIl_Font6x8

| UBERET Lo, -, ~B1 234307591 1= >73HBCDEFGHIJKLMNDPQRST
UUMHVZ[\] abcdnghl&klmn Iy AR} xg BN L e g o
¥ M g %ggﬁ ﬁﬁHHEQE {6 b 6] [T A S]
uﬂu?bﬁhéﬁﬁaaaﬁéé E1iTIH [=faTuit= Tl [T 1]

GUI_Font6x8_ ASCII

|y

7%+, -, ~01 23436789 1 <= 7IABCDEFGHI JELMHOPREST
[RIRIT RSl e b

“abcdnghlelmnopqrstuvwxuz{I}

GUI_Font6x8 1

PUBENET Cosd, -, <A1 234567331 ; <= PAABCDEFGH JKLMNOPRRST
UUIJ.IHEZE\]A ~ Shcdef i ik 1rnok etz |37 jefe¥ | EER

N Ts DL AAREAR téézifi:hﬁhd&ﬁnx@uuﬂuvbﬁ
éééﬁaéa;éééeiiilﬂ dddddratidided

GUIl_Font6x9

| VRERET C %+, - #B1 234567589 § <=> TAABCDEFGHI JKLMHOPRRST

U201 _ > abcdet ghijk lmnopgrstuuwsgz | 37 v,y idda
¥ EIEn-0T 7 e2E], 1 0n AEARAAECEEEET 11 T BRRSEEEXED
AOOYPRASTESdncBEEE] £ T BFRRATEGTeGTTIg B

GUI_Font8x8

PUHSVE T (e AO0123456789 1) {=>7EABCDEFG
HIJHLHHDPQRST UUKYZ[\]“*‘ahcdef hiJjklmno
?grstuuuxyz{l}"’++++#g 4%Ln¥:§ Seo-07 %
g OBlilei LaAaaanadCEE E1 i1 TOROOO00 XS0
a0 bﬂ&éﬁ&aaﬁcééﬁeiillﬁﬁhdﬁﬂn—ﬁﬁﬁﬁuyky
GUI_Font8x8_ASCII
PUHSWE T (It — 123456739:;(:}?@&BCDEFG
HIJHLHHDPQRSTU HYZI[™1_*abocdefghi.jgklmno
parstuvwxyz=zL1 3™
GUI_Font8x8_1
PRSI ET LD — AO1234A56789 : ; {=>7EABCDEFG
HIJRLMHDPQRS&'UUU}_{YZ[\]A ‘ahcdefgh1fk1mnu
rstuuwx =41 l25ﬂ¥=§ [{a ——F™ [
M?MLA& ERARCEEEE I 1 IDROOOS0 BOVOLYDRA
aaaa acedadsgl 1 i IIMNosO80 - aiudiiigEy

GUI_Font8x9

PUHEME " (et , — . /0123456TFE9 ! [{=>7EABCDEFG
HIJRLMNDPQRSTUUUHYZ[\]A_‘ahcdefghiJklmnu
pgrstuvwxyzCI X "4¥++ ¢) dgEc¥ 12 HIEK--Q7° %
== T - 1 Oeklai i AaAaARAECEEEE I I T TBROGOT0 XS0
uﬂu?bﬂaaﬁﬁaamcééﬁeiilléﬁhdﬁﬂu @unaug kY

GUI_Font8x10 ASCII

PURG R Comr —_ sB123456789 - < =>7EABCDEFG
HIJHLHHGPQRSTUUH BYZI~1*_"abcdefghijklmno
POrstuvwxy=L 1 3V

GUI_Font8x12_ASCII

TR R OO —_/B123456789 1 5 {=>?BABCDEFG
HIJELMHOPGRSTUUMEYZI~]1"_"abcdefghijklmno
parstuvwxyz{ 13 a

GUI_Font8x13_ASCII

PUgske " (=et+, — ~0123456789 ;<= 1OABCDEF
HIJELMHNOPORSTUVWIEYZ[~]"_ abcdefghijklmno
porstuvwEyzd | 10

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

234 CHAPTER Fonts

GUI_Font8x13 1

PUgsXE" (=4 — <0123456789: ; ¢=»?@ABCDEFG
HIJELMHOPQRSTUVWEYZ[~]"_" abodefghijklmno
pqrstuvwxyz%li” [CEOEIS @3 ~—@ k2.
Lokl ARALA ECEEEEIIiIBHGG@ﬁOX@UUUU?bB

2353552055881 1 1 18RASASE @Y Ry

GUI_Font8x15B_ASCII

PURSRE ()*+,- /01234567891 ;<{=>TEABCDEFG
HIJKLMNOPQRSTUUWRYZ[%]"_"abcdefghijklmno
pqrstuvw=zyz{| >0

GUI_Font8x15B_1

PSR ()%, - /8123456789 1 ;<=>?@ABCDEFEG
HIJELMNOPQRSTUUWEYZ[\]"_"abcdefghijklmno
parstuvuxyz{| 3~ j¢Eu% 8 020 422 pq-
2% ARARARMGEEEET I TIDADODDD=A00DIYPD
aadddaeceetfliliTanoo00o+andiiigpij

GUI_Font8x16
UG8’ ()=, —. /0123456789 : ; <=>TRABCDEFG
HIJKLMNOPQRSTUVUXYZ[N1"_“abcdefghi jklmno

pyrstuowxyz {1} prads E¢£H¥:§"Eﬂ«ﬂ—m_°t
2370 1 o»lu L AAARARAECEERET 1 1 TDNOOOGD =00
Dilitbpaddaaaecestei i1 Tonoo600 redniilgky

GUI_Font8x17
1UHS2&")=+, -, 20123456789 : <=>TEABCDEFG
HIJHLHHDPHRSTUUMKTZ[\]A_‘ahcdefghijklmnu
pyrstuvwnyz{ 13" prpdys itEaFIE B e--0 ®¢
23 g« 1 onyiy L ARARRAECEEEET I 1 TDNOOOD0=00
DilithpaadaaaxscecteiiiTonoodoo redniilgky
GUI_Font8x18

tUHS#&’ ()=, — . 20123456789 : : <=>T@ABCDEFG
HIJKLMNOPQRSTUVWXYZ[\1"_“abcdefghi jklmmo

pyrstuvwyz{ 13" " epredys iCEFIE Bre--n %
2370 1 el ARARRAECEERE T I 1 TDNO0OGD=00
ﬂﬁﬂ?bﬂ&&ﬁﬁﬁ&wcéééﬁiiiTEﬁﬁﬁﬁEﬁ%ﬁﬁﬁﬁﬁgbg
GUI_Font8x16x1x2

V'S8 (e, -, /0123456789: 5 ¢=>TRABCDERG
HIJHLHH[IPI]HSTUUMXTZ[\]“_‘ahcdﬂfghijkl@nu
prrstuvnz{l} " edy icfF§ Blea-n Ot
237 s Youlgisi ARARARRCEEEE T T TANODD0XBU

U0UbpaaaARaEcRELE1 11 Tbnooo0G atidighy

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

235

GUI_Font8x16x2x2

UGG (Do, — 20123
156789 : ; <=>7eABCDEFG
HIJELHNOPQRSTUUWXYZL
“1*_“abcdefghi jklmno
prstuvuxyz {1} “epts
Js icio¥ § Bra-- ¢
23 7= 1 ok i ARAAARA
ECEEEEI I 1TBNOOOOO =80
OOUePRaadaaazceetell
1 1HNDOOD0 +eaiiu]gky

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

236

GUI_Font8x16x3x3

PUHGE [Dees,
—-.»/0123456789
: » <=>TEABCDEF
GHIJKLMNOPQRS
TUVWXYZ[NTT
abcdefghi jklmn
nopgrstuvuxyz
{1} "prads d

tEE¥ 15 BEi«--0
Co 423 *"l_liﬂ_ 10,

%%%LAAARAAIECE

JJ* J= 0 1"k J JL. E B L "k 0 R AT

0=A000UYPRaAA
aaaxrceeeeiiil

Tl oy, = gy FLF = =y g B H

SNoO0000 -sOiu
T4r

GUI_Font8x16 ASCII

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Micr

tUHG&" ()=, — . /0123456789 : ; <=>7EABCDEFG
HIJELMNOPQRSTUUMXYZI5]1"_~abcdefghi jklmno
parstuvuxyz{l3™

ocontroller GmbH & Co. KG

237

GUI_Font8x16_1
1UHG& ()=, — 20123456789 : ; <=>7EABCDEFG
HIJHLHHDPQRSTUUMKTZ[\]A_‘ahcdefghijklmnu
pyrstuvwmaz{ 1} icEx¥ I8 D2e--@ °+23 .

addaarceééeeiiiTénooooo suaiugky

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER Fonts

10.15.7 Digit fonts (proportional)
10.15.7.10verview

The following screenshot gives an overview of all available proportional digit fonts:

>3

GUI_Fanthaz

GUI_FaontD4s

GUI_FaontDed

GUI_FantDea

A N R T TN U 5N 8 TS TSR TN AN S e sy

10.15.7.2Measurement, ROM size and used files
The following table shows the measurement, ROM size and used files of the fonts:

Font name Measurement ROI\élyi;zse n Used files
GUI_FontD32 F: 32, C: 31 1574 FD32.c
GUI_FontD48 F: 48, C: 47 3512 FD48.c
GUI_FontD64 F: 64, C: 63 5384 FD64.c
GUI_FontD80 F: 80, C: 79 8840 FD80.c

10.15.7.3Characters

The following shows all characters of all proportional digit fonts:

GUI_FontD32 9.|.— 012345678

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

239

-

3+:4_5 34
2540

GUI_FontD64

GUI_FontD80

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER Fonts

10.15.8 Digit fonts (monospaced)
10.15.8.10verview

The following screenshot gives an overview of all available monospaced digit fonts:

PR

GUI_Faontha2d4:=32

GUI_Faontlacx4s

GUI_FontD48x=cd

GUI_FontDeBx=26

A N R T TN U 5N 8 TS TSR TN AN S e sy

10.15.8.2Measurement, ROM size and used files
The following table shows the measurement, ROM size and used files of the fonts:

Font name Measurement ROI\élyi;zse n Used files
GUI_FontD24x32 F: 32, C: 31 1606 FD24x32.c
GUI_FontD36x48 F: 48, C: 47 3800 FD36x48.c
GUI_FontD48x64 F: 64, C: 63 5960 FD48x60.c
GUI_FontD60x80 F: 80, C: 79 9800 FD60x80.c

10.15.8.3Characters

The following shows all characters of all monospaced digit fonts:

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

241

GUI_FontD24x32

9-{-— .012345678

GUI_FontD36x48

4t57852°

e
13388

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

GUI_FontD60x80

242 CHAPTER Fonts

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

243

Chapter 11

Font Converter

The Font Converter is a Windows program which allows convenient converting of
existing Windows fonts to emWin (bitmap) fonts which can be easily integrated into
emWin based applications. emWin fonts should be defined either as GUI_FONT struc-
tures in C files or should exist as binary files containing System Independent Fonts
(SIF) or External Bitmap Font (XBF). Manual creation of those fonts is possible, but
since this would be very time-consuming and inefficient, it is recommended to use
the Font Converter instead.

The Font Converter is not part of the emWin Basic package. The full version has to be
purchased separately. The emWin Basic package comes with the demo version of the
Font Converter which provides full functionality but accurate storage of pixel data.
Nevertheless the structure of C file fonts is stored well, so one might have a look at it
in order to estimate the possibly saved effort by using the Font Converter.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER Font Converter

11.1 Requirements

The Font Converter is a Windows program, so it can be used only within a windows
environment. The source fonts need to meet the following requirements:

- The font is installed in Windows.

- The font is usable in Windows. (e.g. in MS Word)

- The font consists of TrueType outlines.

The following is a sample screen shot of the Font Converter with a font loaded:

Wiew Options Help

DIE| s [F[e]| Al [=T[=] =[=[t[4] »[«][2]3] 4[] 2| F|2]T[1]
S I I I I S P P T A T 17

3050 | £ Hiragana Al
3060 = = -3 == |+ X iz M | A | D T Hiragana
3070 ElE ool sl &S lse [~ ~11F [F T E Hiragana —
3080 ir | & i 5 2 | W [I I F]) A |8 | b Hiragana
3090 7 2 - o | T ° N N Hiragana
30A0 ; Tl A e o = =1+ ool | | % |7 Katakana
3080 M 7 A = = | H + 2 2| = |+ | ¥ w o i Katakana
30C0 5 7 =+ | v R = | k R ERE + | 7 P Katakana
30D0 A e B = - 7 7 ~ | S B S < Katakana
S;IJIEI] Ly A F | + -t = 1 = 1] Il L- o 7 | 7 Katakana T
Font Information
Font: M3 Mincho
Height: 16
Max Width: 16
Baseline: 14
:5 -: Character Information
Code: 12455 (Ox3044)
Character: KATAKANAZ LETTER o
Width: 15
Disabled: Ho
Height: 14
X-Position: 1
T-Position: 1
Cursor dist: 16
I 11

|Readv i

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

245

11.2 Using the Font Converter

The Font Converter can create an emWin font file from an installed Windows font or it
can be used to edit the font data of a existing C font file.

11.2.1 Creating an emWin font file from a Windows font

The basic procedure for using the Font Converter for creating an emWin font file from
an installed Windows font is illustrated below. The steps are explained in detail in the
sections that follow.

Step 1: Start the application.

The Font Converter is opened and
automatically displays the Font genera-
tion options dialog box. . .
The same dialog box appears if File/New & 188 UNICIDE @ s e
is chosen from the Font Converter menu e el | B
at any point.

Font generation options 3|
Twpe of font to generate
Antialiased, 2bpp
Step 2: Specify font generation options. ’E‘::;L'da;sd' Abpp Cancel |
In this example, a font is to be generated E stemded, framed
in extended mode and with Unicode 16 Extended. antisliazed, 2bpp
Bit encoding. (The antialiasing option is Extended. antialiazed. 4bpp
irrelevant here since an _ o
antialiased mode was not selected.) ~ Encoding Antialiasing
Click OK. & 16 Bit UNICODE =) l5ihg 05
B RBit ASCI + 150 8359 € [rternal
© 8/16 Bit SHIFT_JIS

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

246

CHAPTER

Font Converter

Step 3: Specify font options.

In this example, a regular-style, 16 pixel
Arial font is chosen.

Click OK.

HE

Font
Eont: Fant style: Size:
IAriaI IHeguIar |1 E

ak I
[(Eed |

EETrE— -
Avial Black = [ltalic ance
) Aiial Narmow Eold
T Arial Unicode MS Bold Italic . .
Batang Urit of Size
() Book Antiqua ;
) Bookman Old Style j j € Pissls
— Sample
AaBbYyZz

Thizg iz an OpenType font. Thiz zame font will be uzed on bath your
printer and your screen.

Step 5: Save the emWin font file.
Choose File/Save As.

Select the desired format of the font data
file, C file, system independent font or
external bitmap font.

Select a destination and a name for the
font file.

Click Save.

The Font Converter will create a separate
file in the specified destination,

containing the currently loaded font data.

Save in; I E_], ty Computer

leme B

i Font converter for emwin ¥3.04 - Untitled [_0[x]
File Edt Yiew Options Help
IR Al [Fle] Al =[] sl e8] wlw]z]z] Al 2]
0000 ﬁ]
0010
0020 | " # $ % & ! {)] + .
0030 a 1 2 3 4 5 B 7 &} 9 R <
040 (& INlcE c i} E F G H 1 J K L
0050 P Q R g T 8] ki WY X ¥ Z [A
0060 [a b c d e [i q h i i k 1
. 0070
Step 4: Edit the font as necessary. e
H n n
_See sect!on User In_terfac_:e for more . FE—
information on working with the Font NN o drial
Converter user interface. N o Bax Witz o8
11 Nl Character Information
[] Code: 65 [Dx0041)
Character: LATIN CAPITAL LETTER A
Wideh: a
Disabled: o
Height: 10
¥-Position: u]
Y-Position: 3
| H Cuzsor dist: @
Ready 4
Save As HE

(531,’3 Floapy (A1)
{=Local Dsk ()
@Cnmpact Disc (D)

Ariall B

File hame:

Save az bype:

[see |
Cancel |

Save

4

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller

GmbH & Co. KG

247

11.2.2 Font generation options dialog

After starting the program or when choosing the menu point File/New, the following
dialog automatically occurs:

Font generation options |

Type of fant ko generate

iStandard]S
Antialiazed, 2bpp

Antialiazed, 4bpp Cancel
E stended

Extended, framed
Extended, antialiazed. 2bpp
Extended, antialiazed. 4bpp

— Encading — Antialiazing
& 16 Bit UNICODE % |lsing 05
" BRItASCI + 150 8859 € rternal

" BAG Bt SHIFT_JIS

The selections made here will determine the output mode of the generated font, how
it is to be encoded, and how it will be antialiased (if an antialiased output mode is
selected).

11.2.2.1 Type of font to generate

Standard
Creates a 1 bit per pixel font without antialiasing.

Antialiased, 2bpp
Creates an antialiased font using 2 bits per pixel.

Antialiased, 4bpp
Creates an antialiased font using 4 bits per pixel.

Extended

Creates a non antialiased 1 bit per pixel font with extended character information.
This type supports compound characters like they are used in Thai language.

Extended, framed

Creates a non antialiased 1 bit per pixel font with extended character information
with a surrounding frame. A framed font is always drawn in transparent mode
regardless of the current settings. The character pixels are drawn in the currently
selected foreground color and the frame is drawn in background color. For more
details please refer to the emWin user manual.

Extended, antialiased, 2bpp

Creates an antialiased 2 bit per pixel font with extended character information. Each
character has the same height and its own width. The pixel information is saved with
2bpp antialiasing information and covers only the areas of the glyph bitmaps.

Extended, antialiased, 4bpp

Creates an antialiased 4 bit per pixel font with extended character information. Each
character has the same height and its own width. The pixel information is saved with
4bpp antialiasing information and covers only the areas of the glyph bitmaps.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER Font Converter

11.2.2.2 Encoding

Unicode 16 Bit

With Unicode encoding, you have access to all characters of a font. Windows font
files contain a maximum of 65536 characters. All character codes of the C file are the
same as those in the Windows font file.

ASCII 8 Bit + ISO 8859

This encoding mode includes the ASCII codes (0x20 - 0x7F) and the ISO 8859 char-
acters (0OxAO - OxFF).

SHIFT JIS 8/16 Bit

Shift JIS (Japanese Industry Standard) enables mapping from Unicode to Shift JIS in
accordance with the Unicode standard 2. For example, the Katakana letter “"KU" is
shifted from its Unicode value of Ox30AF to the Shift JIS value of 0x834E, the Kanji
character 0x786F is shifted to O0x8CA5 and so on.

11.2.2.3 Antialiasing

You can choose between two ways of antialiasing. This choice only applies when an
antialiased font type has been selected.

Using OS
The operating system is used to do the antialiasing. The resulting characters appear

exactly the same as in any other windows application where antialiased characters
are displayed.

Internal

The internal antialiasing routines of the Font Converter are used to do the antialias-
ing. The resulting characters are more exact with regard to proportions.

11.2.3 Font Dialog

After clicking OK in the Font generation options dialog box, a second dialog is dis-
played as follows:

ot ___________________________________HH|

Eant: Font style: Size:
IMS Mincho IFleguIar I'Ilj ak

Canizel

M5 Sanz Senif
M5 Serif

' MT Extra _y |Bold ltalic
} Palating Linatype

Photoshop Large

Fhaotoghop Small ;I

LInit of Size
% Piuels
i Puoints

Script:
Western ;I

Thiz iz a TrueT ype font. This zame font will be used on both wour
priniter and your screet.

This is where the font to be converted into a C file is selected. Be sure that you do
not violate any copyright laws by converting a font with the Font Converter.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

249

11.2.3.1 Font, Font Style, and Size

These menus are used to select the particular font to be converted. The size of the
font is specified in pixels.

11.2.3.2 Script

The Script box is used to select the character set which should be mapped down from
Unicode into the first 256 characters in accordance with ISO 8859. It only applies
when using the 8 Bit ASCII + ISO 8859 encoding mode.

11.2.3.3 Unit of Size

This option button can be used to set 'Points’ or 'Pixels’ as measuring unit. Please
note that emWin does not know something about the unit 'Points’ whereas most of
other PC applications use the point size for specifying the font size. The Font Con-
verter uses the operating system for getting the desired font resource. Please note
that the font mapper of the operating system is not able to create each font in each
desired pixel height. In these cases the font mapper of the operating system creates
the nearest possible pixel height. This is not a bug of the Font Converter.

11.2.4 User Interface

After clicking OK in the Font dialog box, the main user interface of the Font Converter
appears, loaded with the previously selected font. You may convert the font into a C
file immediately if you wish or edit its appearance first.

The Font Converter is divided into two areas. In the upper area, all font characters
appear scaled 1:1 as they will be displayed on your target device. Disabled charac-
ters are shown with a gray background. Per default all character codes which are not
included in the chosen font are disabled. For example, many fonts do not include
character codes from 0x00 to Ox1F and 0x7F to Ox9F, so these codes are grayed.
The current character is displayed in a magnified scale on the left side of the lower
area. Additional information about the font and the current character can be seen on
the right side. If you want to modify the character data, you must first activate the
lower area, either by pressing the <TAB> key or by simply clicking in the area.

11.2.4.1 Selecting the current character

Characters may be selected:

e by using the keys <UP>, <DOWN>, <LEFT>, <RIGHT>, <PGUP>, <PGDOWN>,
<POS1l>, or <END>,
by using the scroll bars; or
by clicking a character with the left mouse button.

11.2.4.2 Toggling character status

Use the right mouse button to toggle the status of a specific
character or to enable/disable an entire row of characters. The
menu point Edit/Toggle activation as well as the <spaACE> key will

Toggle characker

Dizahle row
toggle the status of the current character.
Enahle row
If you need to change the status of a par-
ticular range of characters, choose Edit/ SiEEEfrEne A e E e |
Enable range of characters or Edit/Dis- First character
able range of characters from the menu. | © I Al gk
The range to be enabled or disabled is
then specified in a dialog box using hexa- | Last Characterl FFFF Lancel

decimal character values. To disable all
characters, select Edit/Disable all charac-
ters from the menu.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER Font Converter

11.2.4.3 Selecting pixels

When the lower area of the user interface is activated, you can move through the
pixels with the cursor, either by using the <up>, <DOWN>, <LEFT> and <RIGHT> keys
or by clicking on the pixels with the left mouse button.

11.2.4.4 Modifying character bits

In the lower area you can use the <spPACE> key to invert the currently
selected bit. In antialiased mode, you can increase and decrease the
intensity of a pixel with the keys <+> and

<->,

The status bar displays the intensity of the current pixel as follows

Index of pixel[4,4]=2

11.2.4.5 Operations

The following size / shift / move operations are available:

Size operations

The size of a character (the font) may be modified by selecting Edit/Insert/Right,
Left, Top, Bottom or Edit/Delete/Right, Left, Top, Bottom from the menu, or by
using the toolbar:

Lll Add one pixel to the right.

IL' Add one pixel to the left.

El Add one pixel at the top

é| Add one pixel at the bottom
;ll Delete one pixel from the right.
|;| Delete one pixel from the left
:l Delete one pixel at the top

il Delete one pixel at the bottom

Shift operations

Choose Edit/Shift/Right, Left, Up, Down from the menu to shift the bits of the cur-
rent character in the respective direction, or use the toolbar:

:l Shift all pixels right.
:l Shift all pixels left.
ll Shift all pixels up.
il Shift all pixels down.

Move operations (extended font format only)

Choose Edit/Move/Right, Left, Up, Down from the menu to move the character
position in the respective direction, or use the toolbar:
i| Move image to the right.

i| Move image to the left.

il Move image up.
il Move image down.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

251

Change cursor distance (extended font format only)

Choose Edit/Cursor distance/Increase, Decrease from the menu to move the
character position in the respective direction, or use the toolbar:
il Increase cursor distance.

"ll Decrease cursor distance.

Change font height (extended font format only)

Choose Edit/Font height/[Insert, Delete] [top, bottom] from the menu to add
or remove a row to or from the font, or use the toolbar:
il Insert a row at the top of the font

él Insert a row at the bottom of the font
ll Delete a row from the top of the font
Ll Delete a row from the bottom of the font

11.2.4.6 Modifying the viewing mode

The view mode may be changed by selecting the following options from the menu:

View/All Characters

If enabled (standard), all characters are shown. If disabled, only the rows with at
least one enabled character are shown.

El Toggles viewing mode.

11.3 Options

Compatibility options

The Font Converter is able to create font files for all versions of emWin. Because
there have been a few small changes of the font format from the emWin version 3.50
to the version 3.52, the C font files for these versions should be slightly different to
avoid compiler warnings or compiler errors.

Use the command Options/Compatibility to get into the following dialog:

Compatibility options

et in WYersion
& W3 520 or later

™ W3 50x ar older Cancel |

Magnification options
The Font Converter is able to save the font data in a magnified format.
Use the command Options/Magnification to get into the following dialog:

Magnification Factor

(i

| = | |
IE ;I Cancel |

A magnification factor for the X and the Y axis can be specified here. If for example
the magnification factor for the Y axis is 2 and the height of the current font data is
18, the font height in the font file will be 36. The magnification in X works similar.

1=

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER Font Converter

After saving the font in a magnified format a short message is shown to inform the
user, that the saved font is magnified:

Font converter for emWin E |

The Faont file has been saved with
the Following magnification Factors;

wil
iz

Logging
Logging of commands can be enabled or disabled using the command
Options/Logging:

™ Suppress logging (] 4

Cancel

When logging is enabled the C files contain a history of the commands which has
been used to modify the font file.
Antialiasing

When using ‘Internal antialiasing’ it is recommended to enable Suppress optimiza-
tion. This makes sure, that the horizontal and vertical alignment of the characters
fits to each other:

Antialiasing E3 |

— Internal antialiazing

0K

v Euppress optimization

Cancel

—Antialiazing uzing 05

[~ Enable gamma comrection for 442 and 444

The option Enable gamma correction for AA2 and AA4 should be disabled. When
the option is enabled the antialiased pixels of the characters will appear a little more
darker.

11.3.1 Saving the font

The Font Converter can create C font files or system independent font data files.
Details about the SIF format can be found under “System Independent Font (SIF)
format” on page 198.

11.3.1.1 Creating a C file

When you are ready to generate a C file, simply select File/Save As from the Font
Converter menu, specify a destination and name for the file, choose the C file format
and click Save. A C file will automatically be created.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

253

The default setting for the filename is built by the name of the source font and the
current height in pixels. For example, if the name of the source font is "Example" and
the pixel height is 10, the default filename would be Examplel0.c. If you keep this
default name when generating a C file, the resulting name of the font will be
GUI_FontExamplelO.c.

Examples of C files generated from fonts can be found in the sub chapter “Font
Examples” on page 260.

11.3.1.2 Creating a System Independent Font (SIF)

When you are ready to generate the file, simply select File/Save As from the Font
Converter menu, specify a destination and name for the file, choose the system
independent font format and click Save. A system independent font file will auto-
matically be created.

This file does not contain C structures which can be compiled with emWin but binary
font data, which can be used as described in "System Independent Font (SIF) format”
on page 198.

11.3.1.3 Creating an External Binary Font (XBF)

When you are ready to generate the file, simply select File/Save As from the Font
Converter menu, specify a destination and name for the file, choose the External
binary font format and click Save. An external binary font file will automatically be
created.

This file does not contain C structures which can be compiled with emWin but binary
font data, which can be used as described in “External Bitmap Font (XBF) format” on
page 199.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER Font Converter

11.3.2 Modifying an existing C font file

The Font Converter is able to open existing font files and to modify their font data.
The tool can only open C font files generated by the Font Converter. If the C font files
have been modified manually, it can not be guaranteed, that they can be opened by
the Font Converter.

[2*Font converter for emin ¥3.10 J [=]
File Edi View Options Help
=TT e T I T R e T

Type of fort ta generate.

Step 1: Start the application.
The Font Converter is opened and automati-
cally displays the Font generation options

| Antisliased, Zhpp
| bntisliased, dhpp Cancel
Extended

Extended, framed

dialog box.
 16Bit UNICODE & sing 05
Press Ca ncel " " BRItASCI +150 8859 € Intemnal
£ B/16Bit SHIFT_IIS
Reay A

Select 'C* file EHE
Loak jn: I = Font j L £5F FE-
Fi5_L.c] F1aH_ascTLe 2] F24B_L.c] Pl 3_ASCT
Fi5_ASCILC F13HE_L.c 2] F24B_ASCILc] P56 _1.c
. F10_1.c F13HB_ASCIL 2] Faz_t.c 5] Fax156_ASC
Step 2: Use the command FIIe\Load C &) F10_ascine Elre_t.c =] Faz_asCiLe 2] Feicl6.c
fil F105_1.c F16_tHEK.c 2] Faze_L.c =] FAxB.c
1e. FI05_ASCILc F16_ASCILC 2] FazB_ASCILe =] FCormic188_
Select the desired C font file to be opened Hrise Hrie e P] Fomictoe
i F13_ASCILc F16B_1.c 2] Fex.c =] FComicz48_
and click OK. F138_1.c F16B_ASCILc =] Febx10_ASCILE =] FCamic24 .
F138_ASCILc F24_t.c 2] Fax12_ASCILC 5] FO24x32.0
FI3H_L.c F24_ASCILC] Fax13_1.c) FD32.C
K| | |
File name: || j Open I
Files of kype: I'C'—files *.c] j Cancel

g

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

11.3.3 Merging fonts with existing C font files

The Font Converter is able to add the content of an existing C font file to the current

font data. Once a font is loaded via “File”

“"New” a C font file can be merged to it using “File”
Converter requires the fonts to be of the same size, so the merging can be processed

properly.

255

-> “Load 'C’ file...” or created by “File” ->
-> “Merge 'C’ file...". The Font

|=“Font converter for emWin v3.16 - Untitled
Fle Edt Yew Cptians Help

[_[ol]

DIE sl [Fle| == [=l=] sl=[t]1] wl«|z]:] S[H] =]
0000 3
o010
0020 ! . # [} % &) i)] + .
0030 o 1 2 3 4 5 B 7] 9 ' <
020 (@ NN © C D £ F G H 1 J K L
0050 P Q R s T u W WY X Y z [B
0060 [a b c d e i a h i i K 1
0070 [p ' s t u [W % z { 1
0080
. H i 0090
Step 1: Load an existing font or create a new 020 : 3 5 = 5 5 = =
H ooso + 2 2 B o 1 5 2 W
one as described above. o Bt
0ooDo B N o] Q Q o a @ U U u u
)))) I'I‘I'iF" A E A H a A £ r I B a & B i L,L‘
In this example the existing font contains the o —
ont Information
characters A-F (0x41 - 0x46). T " rial
Height: 16
—) Max Width: 35
——) EBaseline: 13
1 T Character Information
— — Code: 65 (Dx0041)
1 1 Character: LATIN CAPITAL LETTER i
Width: 9
Disabled: o
Height: 10
X-Position: o
¥-Posgition: 3
I I ‘ Cursor dist: a
|]
Ready 2
Select °C" file [2]
Laok in: | {3l Fant = + oF B~
[EFoa_1.c] F13H_ASCILc ElFzaB_1.c 2] Fe13_ASCT
] Foa_ascie =] F13HE_L.c Bl Feap_ascine 2] FaSE_t.c
. EF101.c] F13HB_ASCILc Eiraz_i.c 2] Fe15B_ASC
Step 2: Use the command File\Merge C B F10_sscnc 2] F16_1.c ElFsz_ascic =] Faxte.c
fil (S Fi05_t.c] F16_1HK.C = Faze_t.c 4] Faxc
1ne.... %] F1o5_ascinc] F16_ASCILC =) Faze_ascinc 4] Feamiciag_
[E1F1a1.c) F16_HK.c = Fane.c 2] Feamicise_
. . %] Fi3_ascine 2 FL6E_1.c =l Fexn e 5] FComicz48_
Select the desired C font file to be merged EEER 2] F16B_ASCILe [Faxio_ascine 5] FComicz4B_,
and click OK.] F13E_AsScILe ;:ﬂqu_Lc & Fawiz_ascine 2| Fo24x32.
Sl Fiam_t.c = Fa4_ASCTLE S Fasia_tc 2] Foaz.c
4| | |
File name: || j Open I
Files of tpe: [Cfies () =] Cancel
v
% Font converter for emWin ¥3.16 - Untitled [_ O[]
File Edit View Options Help
=TT O T e I S Y Y S e A T T
0000 ﬁ’
o010
0020] " # § % & . ()] + .,
0030 o 1 2 3 4 5 B 7] 9 . <
0040 @ A B C o E F G H | J K L
0050 P [=] R S T i W W X Y z [4\
ooso [EEEEEN - c d e T q h i i k |
0070 | q ' s t u ¥ W X z i]
0080
H H 00s0
The merged font file contains the characters 00 : Iz 5 3 3 —=
_ _ ooBo = : = . 1 ¥ g A
a f (0X61 0X66)' noco A A A A A i £ o3 E E E E I
ooDo B] 0 Q 8] o] Q x @ U U u u
nen 8 = = = = = = T = = = 5 _'ILI
Now the font can be edited and saved as a
! Font Information
new font file. Fonc: drial
Height: 16
Max Width: 35
EBaseline: 13

Ready

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER Font Converter

11.4 Pattern files

If you need to create fonts with a special set of characters (often for displaying a
specific text), it can be very time consuming to enable every character by hand. In
these cases, pattern files can be used to enable your character codes.

A pattern file is nothing but a simple text file which contains the characters to be
included in the font file. It can be used by the Font Converter to enable only the char-
acters you need.

11.4.1 Creating pattern files using Notepad

One option for creating a pattern file is to use Notepad, which is part of the windows

accessories:

e Copy the text you want to display into the clipboard.

e Open Notepad.exe.

e Insert the contents of the clipboard into the Notepad document.

e Use Format/Font to choose a font which contains all characters of the text. You
can skip this step if you do not want to see the characters.

e Use File/Save As to save the pattern file. It is very important that you save the
file in text format:

Save as lype: I Text Documents [~ at] ;I

Encoding: ILIni-:u:u:Ie ll

11.4.2 Creating pattern files using the Font Converter

A pattern file may also be created directly in the Font Converter. Select Edit/Save
pattern file from the menu to create a text file which includes all currently enabled
characters.

11.4.3 Enabling characters using a pattern file

It is usually helpful to begin by disabling all characters. Select Edit/Disable all char-
acters from the menu if you need to do so.

Now choose Edit/Read pattern file. After opening the appropriate pattern file, all
characters included in the file are enabled. If the pattern file contains characters
which are not included in the currently loaded font, a message box will appear.

11.5 Supported output modes

There are three modes supported by the Font Converter: standard, 2-bit antialiased
and 4-bit antialiased. If you are using a black and white LCD display, only the stan-
dard mode makes sense. If using a grayscale or color display, it is possible to
improve the appearance of a font through antialiasing.

Antialiasing smoothes curves and diagonal lines by blending the background color
with that of the foreground. The higher the number of shades used between back-
ground and foreground colors, the better the antialiasing result. The general purpose
of using antialiased fonts is to improve the appearance of text. While the effect of
using high-quality antialiasing will be more visually pleasing than low-quality, com-
putation time and memory consumption will increase proportionally.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

257

Low-quality (2bpp) fonts require twice the memory of non antialiased (1bpp) fonts;
high-quality (4bpp) fonts require four times the memory. The following table shows
the difference between the modes by displaying the magnified character C in each:

Font Type Black On White White On Black

Standard
(no antialiasing)

1 bpp
2 shades

Low-quality
(antialiased)
2 bpp

4 shades

High-quality
(antialiased)
4 bpp

16 shades

11.5.1 Standard mode

When using this mode, a pixel can either be set or not. The memory requirement for
one pixel is one bit. If a pixel is set, it is displayed in the current foreground color.

11.5.2 Antialiased modes

These modes are recommended if you want to display characters with smoothed
edges. Every pixel is stored as a 2- or 4-bit value which describes the foreground
intensity. For example, when using 4-bit antialiasing, a value of 15 displays the pixel
in the current foreground color. An intensity of 10 means that the pixel color is a mix-
ture of 10 shares of foreground color and 5 shares of background color.

Before using one of these modes, the feature must be activated in your operating
system. Choose the effects sheet of the display properties dialog and activate smooth
edges of screen fonts.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

258 CHAPTER Font Converter

11.6 Command line options

11.6.1 Table of commands

The following table shows the available command line options:

Command Description

Create font:
<FONTNAME> Name of the font to be used

<STYLE>

REGULAR - Creates a normal font

BOLD - Creates a bold font
REGULAR_ITALIC - Creates an italic font
BOLD_ITALIC - Creates an italic bold font

<HEIGHT> Height in pixels of the font to be created
<TYPE>

STD - Standard 1 bpp font

AA2 - Antialiased font (2bpp)

AA4 - Antialiased font (4bpp)

EXT - Extended font

EXT_FRM - Extended framed font

EXT_AA2 - Extended font using 2bpp antialiasing
EXT_AA4 - Extended font using 4bpp antialiasing

create<FONTNAME>, <STYLE>,
<HEIGHT>, <TYPE>,
<ENCODING> [, <METHOD>]

<ENCODING>

UCle - 16 bit Unicode encoding

IS08859 - 8 bit ASCII + IS08859

JIS - Shift JIS

<METHOD>

0Ss - Antialiasing of operating system (default)

INTERNAL - Internal antialiasing method

Equivalent to the 'Edit’ menu:
<ACTION>

DEL - Deletes pixels

INS - Inserts pixels

edit<ACTION>,
<DETATIL>

<DETATIL>[,<CNT>]
TOP - Delete/insert from top
BOTTOM - Delete/insert from bottom
<CNT>

Number of operations, default is 1

Enables or disables the given range of characters:
<FIRST-LAST> Hexadecimal values separated by a ‘-’

defining the range of characters
enable [FIRST-LAST>,

<STATE> <STATE>
1 - Enables the given range
0 - Disables the given range
oxit Exits the application after the job is done
Merges the given ‘C’ file to the current content.
merge<FILENAME>

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

259

Command Description

Reads a pattern file:
readpattern<FILENAME> <FILENAME> Name of the pattern file to be read

Saves the font data in a specific format:
<FILENAME> File name including extension
<TYPE>

saveas<FILENAME>, <TYPE> C - Saves as 'C’ file

SIF - Saves as System independent font file
XBF - Saves as external binary font file

Shows all available commands

e All commands are processed from left to right.
e If using -exit Font Converter will stop execution if any error occurs. The return
code in this case is '= 0.

11.6.2 Execution examples
FontCvt -create"Cordia New",BOLD, 32,EXT,UC1l6

Creates an extended bold font of 32 pixels height with Unicode encoding using the
font “Cordia New".

FontCvt FontFile.c -enableO-ffff,0 -readpattern"data.txt"

Reads the C font file “"FontFile.c”, disables all characters and reads a pattern file.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER Font Converter

11.7 Font Examples

These sections provide examples of C files generated by the Font Converter in stan-
dard, 2bpp antialiased and 4bpp antialiased modes, respectively.

11.7.1 Resulting C code, standard mode

The following is an example of a C file in standard mode:
/*
C-file generated by Font Converter for emWin version 3.04
Compiled: Dec 13 2005 at 12:51:50
C-file created: Dec 21 2005 at 12:42:57
Copyright (C) 1998-2005
Segger Microcontroller Systeme GmbH
WWW . Segger . com
Solutions for real time microcontroller applications
Source file: SamplelO.c
Font: Arial
Height: 10
*/
#include "GUI.H"
#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif
/* The following line needs to be included in any file selecting the
font. A good place would be GUIConf.H
*/
extern GUI_CONST_STORAGE GUI_FONT GUI_FontSamplelO;
/* Start of unicode area <Basic Latin> */

GUI_CONST_STORAGE unsigned char acFontSamplel0_0041[10] = { /* code 0041 */
X '
X_X ,
X_X ,
X_X ,
XX,
_XXXXX__,
X X,
X X,
-}
GUI_CONST_STORAGE unsigned char acFontSamplel0_0061[10] = { /* code 0061 */
XXX ,
X X ,
CXXXX
X X ,
X__ XX ,
_XX_X ,
-}
GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSamplelO_CharInfo[2] = {
{ 8, 8, 1, acFontSamplelO_0041 } /* code 0041 */
Rt 6, 6, 1, acFontSamplelO_0061 } /* code 0061 */
Y
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Prop2 = {
97 /* first character */
,97 /* last character */
,&GUI_FontSamplelO_CharInfo[l] /* address of first character */

, (GUI_CONST_STORAGE GUI_FONT_PROP*)0 /* pointer to next GUI_FONT_PROP */
Y
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Propl = {

65 /* first character */
, 65 /* last character */
,&GUI_FontSamplelO_CharInfo[0] /* address of first character */
,&GUI_FontSamplel0_Prop?2 /* pointer to next GUI_FONT_ PROP */

Yi

GUI_CONST_STORAGE GUI_FONT GUI_FontSamplell = {

GUI_FONTTYPE_PROP /* type of font */
,10 /* height of font */
,10 /* space of font y */
, 1 /* magnification x */
1 /* magnification y */

, &GUI_FontSamplelO_Propl
}i

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

11.8 Resulting C code, 2 bpp antialiased mode

The following is an example of a C file in 2 bpp antialiased mode:
/*
C-file generated by Font Converter for emWin version 3.04
Compiled: Dec 13 2005 at 12:51:50
C-file created: Dec 21 2005 at 12:42:57
Copyright (C) 1998-2005
Segger Microcontroller Systeme GmbH
WwWw . Segger . com
Solutions for real time microcontroller applications
Source file: SamplelO.c
Font: Arial
Height: 14
*/
#include "GUI.H"
#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif
/* The following line needs to be included in any file selecting the
font. A good place would be GUIConf.H
*/
extern GUI_CONST_STORAGE GUI_FONT GUI_FontSamplelO;
/* Start of unicode area <Basic Latin> */

GUI_CONST_STORAGE unsigned char acFontSamplel0_0041[28] = { /* code 0041 */
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x0B, 0xCO0,
0x1F, 0xDO,
0x2E, OxEO,
0x3C, OxFO,
0x78, 0xB4,
0xBF, OxF8,
0xEO, 0x78,
0xEO, 0x3C,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00
}i
GUI_CONST_STORAGE unsigned char acFontSamplelO_0061[28] = { /* code 0061 */
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00,
0x6F, 0x40,
0x93, 0xCO,
0x2B, 0xCO0,
0xB7, 0xCO,
0xF7, 0xCO,
0x7B, 0xCO,
0x00, 0x00,
0x00, 0x00,
0x00, 0x00
}i
GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSamplelO_CharInfo[2] = {
{ 8, 8, 2, acFontSamplel0_0041 } /* code 0041 */
PR 6, 6, 2, acFontSamplel0_0061 } /* code 0061 */

}i
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Prop2 = {
0x0061 /* first character */
,0x0061 /* last character */
,&GUI_FontSamplelO_CharInfo[1] /* address of first character */
, (GUI_CONST_STORAGE GUI_FONT_PROP*)0 /* pointer to next GUI_FONT_PROP */
}i
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Propl = {
0x0041 /* first character */
,0x0041 /* last character */
,&GUI_FontSamplelO_CharInfo[0] /* address of first character */
,&GUI_FontSamplel(0_Prop2 /* pointer to next GUI_FONT_PROP */
}i

GUI_CONST_STORAGE GUI_FONT GUI_FontSamplell = {

261

GUI_FONTTYPE_PROP_AA2 /* type of font
,14 /* height of font */
,14 /* space of font y */
,1 /* magnification x */
,1 /* magnification y */
, &GUI_FontSamplelO_Propl
}:

UMO03001 User & Reference Guide for emWin V5.20

*/

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER Font Converter

11.9 Resulting C code, 4 bpp antialiased mode

The following is an example of a C file in 4 bpp antialiased mode:
/*
C-file generated by Font Converter for emWin version 3.04
Compiled: Dec 13 2005 at 12:51:50
C-file created: Dec 21 2005 at 12:42:57
Copyright (C) 1998-2005
Segger Microcontroller Systeme GmbH
WWW . Segger . com
Solutions for real time microcontroller applications
Source file: SamplelO.c
Font: Arial
Height: 10
*/
#include "GUI.H"
#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif
/* The following line needs to be included in any file selecting the
font. A good place would be GUIConf.H
*/
extern GUI_CONST_STORAGE GUI_FONT GUI_FontSamplelO;
/* Start of unicode area <Basic Latin> */
GUI_CONST_STORAGE unsigned char acFontSamplel0_0041[40] = { /* code 0041 */
0x00, 0x00, 0x00, 0x00,
0x00, OxCF, 0xF2, 0x00,
0x03, OxXFF, OxF6, 0x00,
0x09, OxFB, O0xFB, 0x00,
0x0E, OxE2, OxXFE, 0x00,
0x5F, 0x90, OxCF, 0x40,
0xBF, OxXFF, OxXFF, 0x90,
0xFC, 0x00, Ox6F, 0xCO,
0xF8, 0x00, Ox2F, OxF2,
0x00, 0x00, 0x00, 0x00
Y
GUI_CONST_STORAGE unsigned char acFontSamplelO_0061[30] = { /* code 0061 */
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x3D, OxFE, 0x60,
0xD3, O0xO0F, OxEO,
0x29, O0xCF, OxFO,
0xDF, O0x4F, OxFO,
0xFF, O0x3F, O0xFO,
0x6F, OxAF, OxFO,
0x00, 0x00, 0x00
Y

GUI_CONST_STORAGE GUI_CHARINFO GUI_FontSamplelO_CharInfo[2] = {
{ 8, 8, 4, acFontSamplel0_0041 } /* code 0041 */
PR 6, 6, 3, acFontSamplelO_0061 } /* code 0061 */

Y
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Prop2 = {
0x0061 /* first character */
,0x0061 /* last character */
,&GUI_FontSamplelO_CharInfo[1] /* address of first character */
, (GUI_CONST_STORAGE GUI_FONT PROP*)0 /* pointer to next GUI_FONT_ PROP */
Y
GUI_CONST_STORAGE GUI_FONT_PROP GUI_FontSamplelO_Propl = {
0x0041 /* first character */
,0x0041 /* last character */
,&GUI_FontSamplelO_CharInfo[0] /* address of first character */
,&GUI_FontSamplel0_Prop2 /* pointer to next GUI_FONT_PROP */
Y
GUI_CONST_STORAGE GUI_FONT GUI_FontSamplell = {
GUI_FONTTYPE_PROP_AA4 /* type of font */
,10 /* height of font */
,10 /* space of font y */
,1 /* magnification x */
,1 /* magnification y */
, &GUI_FontSamplel(_Propl
Y

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

263

11.10 Resulting C code, extended mode

/*

C-file generated by Font Converter for emWin version 3.04

Compiled: Dec 13 2005 at 12:51:50
C-file created: Dec 21 2005 at 12:45:52
Copyright (C) 1998-2005

Segger Microcontroller Systeme GmbH

WwWw . Segger . com

Solutions for real time microcontroller applications

Source file: Ariallé6.c
Font: Arial
Height: 16
*/
#include "GUI.H"
#ifndef GUI_CONST_STORAGE
#define GUI_CONST_STORAGE const
#endif

/* The following line needs to be included in any file selecting the

font. A good place would be GUIConf.H
*/

extern GUI_CONST_STORAGE GUI_FONT GUI_Fontlé6;

/* Start of unicode area <Basic Latin> */

GUI_CONST_STORAGE unsigned char acGUI_Fontl6_0041[20] = { /* code 0041 */
X , ,
_ X X ,
XX ., '
_ X X ,
_ X X, '
_ X X, ,
XXXXXXX, ,
X X, ,
X , X ,
X , X };
GUI_CONST_STORAGE unsigned char acGUI_Fontl6_0061[7] = { /* code 0061 */
XXX,
X X ,
X ,
XXXX
X X ,
XXX,
_XX X Y
GUI_CONST_STORAGE GUI_CHARINFO_EXT GUI_Fontl6_CharInfo[2] = {
{ 9, 10, 0, 3, 9, acGUI_Fontl6_0041 } /* code 0041 */
Rt 5, 7, 1, 6, 7, acGUI_Fontl6_0061 } /* code 0061 */

}i

GUI_CONST_STORAGE GUI_FONT_PROP_EXT GUI_Fontl6_Prop2 = {

0x0061 /* first character */
,0x0061 /* last character */

,&GUI_Fontl6_CharInfo[1] /* address of first character */
, (GUI_CONST_STORAGE GUI_FONT_PROP_EXT *)O0

}i

GUI_CONST_STORAGE GUI_FONT_PROP_EXT GUI_Fontl6_Propl = {

0x0041 /* first character */
,0x0041 /* last character */

,&GUI_Fontl6_CharInfo[0] /* address of first character */
,&GUI_Fontl6_Prop2 /* pointer to next GUI_FONT_PROP_EXT */

éﬁI_CONST_STORAGE GUI_FONT GUI_Fontl6 = {
GUI_FONTTYPE_PROP_EXT /* type of font
,16 /* height of font */
,16 /* space of font y */
,1 /* magnification x */
,1 /* magnification y */
, {&GUI_Fontl6_Propl}
,13 /* Baseline */
,7 /* Height of lowercase characters */
,10 /* Height of capital characters */
}i

UMO03001 User & Reference Guide for emWin V5.20

*/

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER Font Converter

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

265

Chapter 12

Colors

emWin supports black/white, grayscale (monochrome with different intensities) and
color displays. The same user program can be used with any display; only the LCD-
configuration needs to be changed. The color management tries to find the closest
match for any color that should be displayed.

Logical colors are the colors the application deals with. A logical colors is always
defined as an RGB value. This is a 24-bit value containing 8 bits per color as follows:
0xBBGGRR. Therefore, white would be OxFFFFFF, black would be 0x000000, bright
red OxFF.

Physical colors are the colors which can actually be displayed by the display. They
are specified in the same 24-bit RGB format as logical colors. At run-time, logical col-
ors are mapped to physical colors.

For displays with few colors (such as monochrome displays or 8/16-color LCDs),
emWin converts them by using an optimized version of the "least-square deviation
search". It compares the color to display (the logical color) with all the available col-
ors that the LCD can actually show (the physical colors) and uses the one that the
LCD-metric considers closest.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

266

CHAPTER Colors

12.1 Predefined colors

In addition to self-defined colors, some standard colors are predefined in emWin, as
shown in the following table:

GUI_BLUE B:FFanag
GUI _GREEM B::HEFFaE
GUI_RED B::B800FF
GUT _CYAH B:FFFFaE
GUI _MAGEMTH B::FFBABFF
GUI _YELLOW B::HEFFFF
GUI_LIGHTELLE B:FF2028
GUI _LIGHTGREEEH B::28FF28
GUI_LIGHTEED B::2820FF
GUI _LIGHTCYAM B:FFFF28
GUI _LIGHTHMAGEMTHA B::FF20FF
GUI _LIGHTYELLOW B::28FFFF
GUI _DARKELLE B::280088
GUI _DARKGEEEM B::BE20EE
GUI _DARKEED B::BE0028
GUI _DARKCYAM B 282088
GUI _DARKMAGEMTA B::2800238
GUI _DARKYELLOW B::BE20238
GUI_WHITE B:FFFFFF
GUI _LIGHTGERY AL 30E03
GUI _GRAY B::282028
GUI _DARKGEAY A::4B4 048
GUI _BLACE B::BEA0EE
GUI _BROWH B:2AZAARS

Example

/* Set background color to magenta */
GUI_SetBkColor (GUI_MAGENTA) ;
GUI_Clear () ;

12.2 The color bar test routine

The color bar example program is used to show 13 color bars as follows:

Black -> Red, White -> Red, Black -> Green, White -> Green, Black -> Blue, White -
> Blue, Black -> White, Black -> Yellow, White -> Yellow, Black -> Cyan, White ->
Cyan, Black -> Magenta and White -> Magenta.

This little routine may be used on all displays in any color format. Of course, the
results vary depending on the colors that can be displayed; the routine requires a
display size of 320*240 in order to show all colors. The routine is used to demon-
strate the effect of the different color settings for displays. It may also be used by a
test program to verify the functionality of the display, to check available colors and
grayscales, as well as to correct color conversion. The screen shots are taken from
the windows simulation and will look exactly like the actual output on your display if
your settings and hardware are working properly. The routine is available as
COLOR_ShowColorBar.c in the examples shipped with emWin.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

12.3 Fixed palette modes

267

The following table lists the available fixed palette color modes and the necessary
identifiers which need to be used when creating a driver- or a memory device.

Detailed descriptions follow.

No. available

Identifier colors Mask
GUICC_1 iéit;'e"")c" and 0x01 -> 00000001
GUICC_2 4 (grayscales) 0x03 -> 00000011
GUICC_4 16 (grayscales) 0x0F -> 00001111
GUICC_5 32 (grayscales) 0x1F -> 00011111
GUICC_16 16 0x0F -> 00001111
GUICC_16161 tl)lee:dﬁ]git alpha | rr -> 11111111
GUICC_111 8 0x07 -> 00000BGR
GUICC_M111 8 0x07 -> 00000RGB
GUICC_222 64 0x3F -> 00BBGGRR
GUICC_M222 64 0x3F -> 0ORRGGBB
GUICC_233 256 O0XFF -> BBGGCGRRR
GUICC_M233 256 OxXFF -> RRGGGBBB
GUICC_323 256 OxXFF -> BBBGGRRR
GUICC_M323 256 OXFF -> RRRGGBBB
GUICC_332 256 0XFF -> BBBGGGRR
GUICC_M332 256 0XFF -> RRRGGGBB
GUICC_444_12 4096 0xOFFF -> 0000BBBBGGGGRRRR
GUICC_M444_12 4096 0xO0FFF -> 0000RRRRGGGGBBEB
GUICC_444_12_1 4096 0XFFF0 -> BBBBGGGGRRRR0000
GUICC_444_16 4096 0x7BDE -> 0BBBBOGGGGORRRRO
GUICC_M444_16 4096 0x7BDE -> ORRRROGGGGOBBBBO
GUICC_M44441 :Iopii Elgnt"jiitng OXFFFF -> AAAARRRRGGGGEBEB
GUICC_555 32768 O0xX7FFF -> (0BBBBBGGGGGRRRRR
GUICC_M555 32768 0x7FFF -> ORRRRRGGGGGBBBBB
GUICC_M1555I fri?igateacb;t OXFFEF ~> TRRRRRGGGGGBBBEB
GUICC_556 65536 OXFFFF -> BBBBBGGGGGRRRRRR
GUICC_M556 65536 0XFFFF -> RRRRRGGGGGBBBBBB
GUICC_565 65536 0XFFFF -> BBBBBGGGGGGRRRRR
GUICC_M565 65536 0XFFFF -> RRRRRGGGGGCBBEBB
GUICC_655 65536 0XFFFF -> BBBBBBGGGGGRRRRR
GUICC_M655 65536 OXFFFF -> RRRRRRGGGGGBBBBB

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

268

CHAPTER Colors

No. available

Identifier colors Mask

GUICC_666 262144 0x0003FFFF -> BBBBBBGGGGGGRRRRRR

GUICC_M666 262144 0x0003FFFF -> RRRRRRGGGGGGBBBBBB

GUICC_666_9 262144 0x01FFO1FF -> 0000000BBBBBBGGGO0000000GGGRRRRRR
GUICC_M666_9 262144 0x01FFO1FF -> 0000000RRRRRRGGGO0000000GGGBBBBBB
GUICC_822216 256 O0xFF - Bits are not explicitly assigned to a color.
GUICC_84444 240 0xFF - Bits are not explicitly assigned to a color.
GUICC_8666 232 0xXFF - Bits are not explicitly assigned to a color.
GUICC_8666_1 tzr?;?ls(;:rze:cy) 0xFF - Bits are not explicitly assigned to a color.

232 + 8 bits

GUICC_886661

alpha blending

OxFFFF -> AAAAAAAACCCCCCCC

GUICC_888 16M 0x00FFFFFF -> BBBBBBBBGGGGGGGGRRRRRRRR
GUICC_M888 16M 0x00FFFFFF -> RRRRRRRRGGGGGGGGBBBBBBBB

16M + 8 bit
GUICC_8888 OxFFFFFFFF -> AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR

alpha blending

GUICC_M8888

16M + 8 bit

OxFFFFFFFF -> AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

alpha blending

GUICC_M8888I

GUICC_O0 - CUSTOM DEFINED FIXED PALETTE MODE
GUICC 1 2 0x00000001
GUICC_1_4 0x00000003
GUICC_1_5 2 (black and 0x0000001F
GUICC_1_8 white) 0x000000FF
GUICC_1_16 0x0000FFFF
GUICC_1_24 0x00FFFFFF
R - Red
G - Green
B - Blue

C - Color (in case of no explicit bit assignment to colors)
T - Transparency bit
A - Alpha mask

12.4 Detailed fixed palette mode description

The following gives a detailed description of the available colors in each predefined
fixed palette mode.

GUICC_1: 1 bpp (black and white)

Use of this mode is necessary for monochrome dis-
plays with 1 bit per pixel.

Available colors: 2:

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

269

GUICC_2: 2 bpp (4 grayscales)

Use of this mode is necessary for monochrome dis-
plays with 2 bits per pixel.

Available colors: 2 x 2 = 4: EEDO

GUICC_4: 4 bpp (16 grayscales)

Use of this mode is necessary for monochrome dis-
plays with 4 bits per pixel.

Available colors: 2 x 2 x2x 2 = 16:

GUICC_5: 5 bpp (32 grayscales)

Use of this mode is necessary for monochrome dis-
plays with 5 bits per pixel.

Available colors: 2 x 2 x2x2x2 = 32: EEEEEEEEEEEEEEEE

EEENENOO0O000000000
GUICC_111: 3 bpp (2 levels per color)

Use this mode if the basic 8 colors are enough, if
your hardware supports only one bit per pixel and
color or if you do not have sufficient video memory
for a higher color depth.

Color mask: BGR

Available colors: 2 x 2 x 2 = 8: EECDOREDO

GUICC_M111: 3 bpp (2 levels per color), red and blue swapped

Use this mode if the basic 8 colors are enough, if your hardware supports only one bit
per pixel and color or if you do not have sufficient video memory for a higher color
depth. The available colors are the same as those in 111 mode.

Color mask: RGB

Available colors: 2 x 2 x 2 = 8: EEDOEEOO

GUICC_16: 4 bpp (16 colors)

This mode can be used if the basic 16 colors are
enough, if the hardware supports only 4 bits per
pixel or if you do not have sufficient video memory
for a higher color depth.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

270 CHAPTER Colors

Available colors: 2 x 2 x2x 2 = 16:

GUICC_1616l: 8 bpp (16 colors + 4 bits alpha
mask)

Same colors as in GUICC_16. The lower 4 bits con-
tain the color and the upper 4 bits are used for alpha
blending.

Color mask: AAAACCCC

(AAAA = OxF - opaque)

(AAAA = 0x0 - transparent)

Available colors: 2 x 2 x2 x 2 = 16:

GUICC_222: 6 bpp (4 levels per color)

This mode is a good choice if your hardware does not
have a palette for every individual color. 2 bits per
pixel and color are reserved; usually 1 byte is used
to store one pixel.

Color mask: BBGGRR

EEEEEOEOEEREERORCO

Available colors: 4 x 4 x 4 = 64: EEEEEEEEDEEEOEOOO

EEEEERNOEEOOOOOO0
EEREEREOEEOOOOO0
EEEEEEEOEOOOOOOO

GUICC_M222: 6 bpp (4 levels per color), red and blue swapped

This mode is a good choice if your hardware does not have a palette for every indi-
vidual color. 2 bits per pixel and color are reserved; usually 1 byte is used to store
one pixel. The available colors are the same as those in 222 mode.

Color mask: RRGGBB

Available colors: 4 x 4 x 4 = 64:

GUICC_233: 8 bpp

This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. As shown in the picture, the
result is 8 grades for green and red and 4 grades for
blue. We discourage the use of this mode because it
do not contain real shades of gray.

Color mask: BBGGGRRR

Available colors: 4 x 8 x 8 = 256:

AN I I Y I Y I [
EEEEENNONNNNEEEE
EENEEOOONEEEEAOOO0
NOO000O0000O0O00000
AN I I Y I [I [
[e o o |
EEENEOOO0ONEEEOO00
OOO00000000000000
AN I I Y [I (Y I [
EENNENEOONNEEEEEO
EEEONOO0EEOOO00
OO000000000000000
EEEEENNENNNNNEEE
EENNEENOONEEEEOOO
EEEOOO0O00EEOOOO00
OO00O0O00O00000000O00

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

UMO03001 User & Reference Guide for emWin V5.20

GUICC_M233: 8 bpp, red and blue swapped

This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. The result is 8 grades for
green and blue and 4 grades for red. We discourage
the use of this mode because it do not contain real
shades of gray.

Color mask: RRGGGBBB

Available colors: 4 x 8 x 8 = 256:

GUICC_323: 8 bpp

This mode supports 256 colors. 3 bits are used for
the red and blue components of the color and 2 bits
for the green component. As shown in the picture,
the result is 8 grades for blue and red and 4 grades
for green. We discourage the use of this mode
because it do not contain real shades of gray.

Color mask: BBBGGRRR

Available colors: 8 x 4 x 8 = 256:

GUICC_M323: 8 bpp, red and blue swapped

271

EEEEEEEEEEEEEEEN
A I I Y Y I [
o o o o |
o o o o o |
AN I N Y I [
[e e o o o |
o o o |
OO0O00000000000000
A I Y Y Y I [
o o o o |
OOOO0OO0O0O00O00000
OO000000000000000
D o o |
ONNDEOOODONOOOO00
OO000000000000000
OO000000O0000000000

EEEEEEEEENENNEEE
EEEEEOOO0OOOOOOOO00
EEEEENEEENNNNEEE
EEEOEOOO0OOO0O0O00O00
EEEEEEEEENENENEEE
EEEOEOO0OO0O0O00000
EEEEENENENENEEEE
EEEOOOO0O000O00000
EEEEENEENNNNEEEE
EEEOOO0O00O00000000
EEEEENNENNEEEEEO
EEOO0O0O0O00O00000000
EEEEENNENNEEEEEO
ENOO000O0000000000
EENEENNENNNEEEEEO
EOOO0O0O0O00O00O00O0O000O00

This mode supports 256 colors. 3 bits are used for the red and blue components of
the color and 2 bits for the green component. The available colors are the same as
those in 323 mode. The result is 8 grades for red and blue and 4 grades for green.
We discourage the use of this mode because it do not contain real shades of gray.

Color mask: RRRGGBBB

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

272

CHAPTER

Available colors: 8 x 4 x 8 = 256:

GUICC_332: 8 bpp

This mode supports 256 colors. 3 bits are used for
the blue and green components of the color and 2
bits for the red component. As shown in the picture,
the result is 8 grades for green and blue and 4
grades for red. We discourage the use of this mode
because it do not contain real shades of gray.

Color mask: BBBGGGRR

Available colors: 8 x 8 x 4 = 256:

GUICC_M332: 8 bpp, red and blue swapped

UMO03001 User & Reference Guide for emWin V5.20

This mode supports 256 colors. 3 bits are used for
the red and green components of the color and 2 bits
for the blue component. The result is 8 grades for
red and green and only 4 grades for blue. We dis-
courage the use of this mode because it do not con-
tain real shades of gray.

Color mask: RRRGGGBB

Available colors: 8 x 8 x 4 = 256:

Colors

EEEEENEEENNENNED
EENIONEO0ONEOOOEOOO0
EEEEENEEENNENNED
EEOONEO0OOOOOO0
EEEEENNENNNONNED
EEOONEO0OOOOOO0
EEEEENNENNEONEEO
EEOONAO0EOOOOOO00
EEEEENNEONNEONEEO
EEOO0EOO0OOO0OOO00
EEEEENNONNEONEEO
EEOO0EOOO0OOO0O0O0000
EEEEENNONNEONEEO
ENOO0EOO0OOO0O00000
EEENENENONNEONESO
EOO0O0EOOO0OOO0OOO0OO0

N I I Y Y I [
o o o |
AN I I Y Y Y [I [
EEEENEEOOOEOOOOO00
AN I I Y Y [I [
EEEOEEOOOOOOOOO00
(0L o0 fe e g oo o o |
EEIOEOOO0OOO0O00000
(0 1R fe e e o o o |
EOOO0OO0O00000000n0
[0 e o o |
OOO0000O0000000000
1 o o |
OO000000000000000
o o |
OO00O0O00O000O00O00000O00

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

273

GUICC_444_12:

The red, green and blue components are each 4 bits.
Color mask: 0000BBBBGGGGRRRR
Available colors: 16 x 16 x 16 = 4096.

GUICC_444_16:

The red, green and blue components are each 4 bits. One bit between the color com-
ponents is not used. The available colors are the same as those in 44412 mode.
Color mask: 0BBBBOGGGGORRRRO

Available colors: 16 x 16 x 16 = 4096.

GUICC_M444_12: red and blue swapped

The red, green and blue components are each 4 bits. The available colors are the
same as those in 44412 mode.

Available colors: 16 x 16 x 16 = 4096.

Color mask: RRRRGGGGBBBB

GUICC_M444_16: red and blue swapped

The red, green and blue components are each 4 bits. One bit between the color com-
ponents is not used. The available colors are the same as those in 44412 mode.
Color mask: ORRRROGGGGOBBBBO

Available colors: 16 x 16 x 16 = 4096.

GUICC_M444 12 _1:

The red, green and blue components are each 4 bits. The lower 4 bits of the color
mask are not used. The available colors are the same as those in 44412 mode.

Color mask: BBBBGGGGRRRR0000

Available colors: 16 x 16 x 16 = 4096.

GUICC_M4444l: 12 bits colors + 4 bits alpha
mask

The red, green and blue components are each 4 bits,
the upper 4 bits are used for alpha blending.

Color mask: AAAARRRRGGGGBBBB

(AAAA = OxF - opaque)

(AAAA = 0x0 - transparent)

Available colors: 16 x 16 x 16 = 4096.

GUICC_555: 15 bpp

Use of this mode is necessary for a display controller
that supports RGB colors with a color-depth of 15
bpp. The red, green and blue components are each 5
bits.

Color mask: BBBBBGGGGGRRRRR

Available colors: 32 x 32 x 32 = 32768.

GUICC_M555: 15 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 15 bpp. The red, green and blue components are each 5 bits. The
available colors are the same as those in 555 mode.

Color mask: RRRRRGGGGGBBBBB

Available colors: 32 x 32 x 32 = 32768.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

274

GUICC_M1555I: 15 bits colors + 1 bit transpar-
ency

GUICC_565: 16 bpp

CHAPTER Colors

The red, green and blue components are each 5 bits,
the upper bit is used for transparency.

Color mask: ARRRRRGGGGGBBBBB

(A =1 - opaque)

(A = 0 - transparent)

Available colors: 32 x 32 x 32 = 32768.

Use of this mode is necessary for a display controller
that supports RGB colors with a color-depth of 16
bpp. The red and the blue component is 5 bits and
the green component is 6 bit.

Color mask: BBBBBGGGGGGRRRRR

Available colors: 32 x 64 x 32 = 65536.

GUICC_M565: 16 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The available colors are the same as those in 565 mode.
Color sequence: RRRRRGGGGGGBBBBB

Available colors: 32 x 64 x 32 = 65536.

GUICC_556: 16 bpp

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The blue and the green component is 5 bit and the red compo-
nent is 6 bit.

Color mask: BBBBBGGGGGRRRRRR

Available colors: 32 x 32 x 64 = 65536.

GUICC_M556: 16 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The red and the green component is 5 bit and the blue compo-
nent is 6 bit.

Color mask: RRRRRGGGGGBBBBBB

Available colors: 32 x 32 x 64 = 65536.

GUICC_655: 16 bpp

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The red and green component is 5 bit and the blue component
is 6 bit.

Color mask: BBBBBBGGGGGRRRRR

Available colors: 64 x 32 x 32 = 65536.

GUICC_M655: 16 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 16 bpp. The blue and green component is 5 bit and the red component
is 6 bit.

Color mask: RRRRRRGGGGGBBBBB

Available colors: 64 x 32 x 32 = 65536.

GUICC_666: 18 bpp

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and blue component is 6 bit.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

275

Color mask: BBBBBBGGGGGGRRRRRR
Available colors: 64 x 64 x 64 = 262144,

GUICC_M666: 18 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and the blue component is 6 bit.

Color mask: RRRRRRGGGGGGBBBBBB

Available colors: 64 x 64 x 64 = 262144.

GUICC_666_9: 18 bpp

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and blue component is 6 bit.

Color mask: 0000000BBBBBBGGGO0000000GGGRRRRRR

Available colors: 64 x 64 x 64 = 262144.

GUICC_M666_9: 18 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color-depth of 18 bpp. The red, green and blue component is 6 bit.

Color mask: RRRRRRGGGGGGBBBBBB

Available colors: 64 x 64 x 64 = 262144,

GUICC_822216: 8 bpp, 2 levels per color + 8
grayscales + 16 levels of alpha blending

This mode can be used with a programmable color
lookup table (LUT), supporting a total of 256 possi-
ble colors and alpha blending support. It supports
the 8 basic colors, 8 grayscales and 16 levels of
alpha blending for each color / grayscale. With other
words it can be used if only a few colors are required
but more levels of alpha blending.

Available colors: (2 x2x2 + 8) * 16 = 256

GUICC_84444: 8 bpp, 4 levels per color + 16
grayscales + 4(3) levels of alpha blending

This mode can be used with a programmable color
lookup table (LUT), supporting a total of 240 possi-
ble colors and alpha blending support. 4 levels of
intensity are available for each color, in addition to
16 grayscales and 4 levels of alpha blending for each
color / grayscale. With other words it can be used if
only a few levels of alpha blending are required and
different shades of colors.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

276 CHAPTER Colors

Available colors: (4 x4 x4 + 16) * 3 = 240

GUICC_8666: 8bpp, 6 levels per color + 16
grayscales

This mode is most frequently used with a program-
mable color lookup table (LUT), supporting a total of
256 possible colors using a palette. The screen shot
gives an idea of the available colors; this mode con-
tains the best choice for general purpose applica-
tions. Six levels of intensity are available for each
color, in addition to 16 grayscales.

Available colors: 6 x 6 x 6 + 16 = 232:

GUICC_8666_1: 8bpp, 6 levels per color + 16 grayscales + transparency

This mode is most frequently used with multi layer configurations and a programma-
ble color lookup table (LUT), supporting a total of 256 possible colors using a palette.
The difference between 8666 and 86661 is, that the first color indices of the 86661
mode are not used. So the color conversion routine GUI_Color2Index does never
return 0 which is used for transparency.
Available colors: 6 x 6 x 6 + 16 = 232.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

277

GUICC_886661: 16bpp - 8 bits color (6 levels

per color + 16 grayscales) + 8 bits alpha blend-
ing
The available colors of this mode are exactly the
same as described under GUICC_8666. The upper 8
bits are used for alpha blending.
Color mask: AAAAAAAACCCCCCCC
(AAAAAAAA = OxFF - opaque)
(AAAAAAAA = 0x00 - transparent)

GUICC_888: 24 bpp

Use of this mode is necessary for a display controller
that supports RGB colors with a color depth of 24
bpp. The red, green and blue components are each 8
bits.

Color mask: BBBBBBBBGGGGGGGGRRRRRRRR
Available colors: 256 x 256 x 256 = 16777216.

GUICC_M888: 24 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 24 bpp. The red, green and blue components are each 8 bits.

Color mask: RRRRRRRRGGGGGGGGBBBBBBBB

Available colors: 256 x 256 x 256 = 16777216.

GUICC_8888: 32 bpp

Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 32 bpp, where the lower 3 bytes are used for the color components
and the upper byte is used for alpha blending. The red, green, blue and alpha blend-
ing components are each 8 bits.

Color mask: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR

Available colors: 256 x 256 x 256 = 16777216.

GUICC_M8888: 32 bpp, red and blue swapped

Use of this mode is necessary for a display controller that supports RGB colors with a
color depth of 32 bpp, where the lower 3 bytes are used for the color components
and the upper byte is used for alpha blending. The red, green, blue and alpha blend-
ing components are each 8 bits.

Color mask: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

Available colors: 256 x 256 x 256 = 16777216.

GUICC_M8888I: 32 bpp, red and blue swapped

The color mode is exactly the same as described under GUICC_M8888 with the differ-
ence, that alpha blending is inverted.

Color mask: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB

(AAAAAAAA = OxFF - opaque)

(AAAAAAAA = 0x00 - transparent)

GUICC_0: Custom palette mode

Will be explained later in this chapter.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

278 CHAPTER Colors

GUICC_1_2, GUICC_1_4, ... GUICC_1_24

These color conversion routines make it possible, to use display drivers which require
a color depth of more than 1bpp, with emWin packages containing no support for col-
ors or grayscales. The routines ensure that each color of the whole palette of possible
colors will be converted into black or white.

Example

If the available emWin package does not contain color- or gray scale support and
only a driver, which requires index values of 16 bits is available, GUICC_1_16 can be
used. This color conversion scheme ensures that each color of the whole 16 bit pal-
ette will be converted into OXFFFF (normally white) or 0x0000 (normally black).

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

279

12.5 Application defined color conversion

If none of the fixed palette modes matches the need of color conversion this mode
makes it possible to use application defined color conversion routines. The purpose of
these routines is converting an RGB value into an index value for the hardware and
vice versa.

Example of defining custom color conversion routines
The following example should explain how it works:

static unsigned _Color2Index_User (LCD_COLOR Color) {
unsigned Index;
/* Add code for converting the RGB value to an index value for the hardware */
return Index;

}

static LCD_COLOR _Index2Color_User (unsigned Index) {
LCD_COLOR Color;
/* Add code for converting the index value into an RGB value */
return Color;

}

static unsigned _GetIndexMask_User (void) {
return Oxffff; /* Example for using 16 bits */
}

const LCD_API_COLOR_CONV LCD_API_ColorConv_User = {
_Color2Index_User,
_Index2Color_User,
_GetIndexMask_User

}i

The function LCD_Color2Index_User () is called by emWin if a RGB value should be
converted into an index value for the display controller whereas the function
LCD_Index2Color_User() is called if an index value should be converted into a RGB
value.

LCD_GetIndexMask_User () should return a bit mask value, which has each bit set to
1 which is used by the display controller and unused bits should be set to 0. For
example the index mask of GuIicc_44416 mode is OBBBBOGGGGORRRRO, where 0
stands for unused bits. The bit mask for this mode is 0x7BDE.

Example of using custom color conversion routines

As described in the chapter 'Configuration” a pointer to an API table is required for
creating the display driver device. As shown in the example above the API table con-
sists of function pointers to the color conversion routines.

A good location for the API table and the color conversion routines is the configura-
tion file Lcbconf . c located in the config folder. The routines can be used as follow in
the function Lcb_X_config () which is responsible to create the display driver device:

void LCD_X_Config(void) {
//
// Set display driver and color conversion for 1lst layer
//
GUI_DEVICE_CreateAndLink (GUIDRV_LIN 16, &LCD_API ColorConv_User, 0, 0);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

280 CHAPTER Colors

12.6 Custom palette mode

If none of the fixed palette modes fulfils the requirements of the application emWin is
able to use a custom palette. A custom palette simply lists all the available colors in
the same order as they are used by the hardware. This means that no matter what
colors your LCD controller/display combination is able to display, emWin will be able
to simulate them in the PC simulation and handle these colors correctly in your target
system. Working with a custom palette requires a color depth <= 8 bpp.

A custom palette is typically used during the initialization in the function
LCD_X_Config() which is responsible for creating and configuring the display driver
device.

Example

The following example should show how a custom palette can be used. It passes the
palette to the function:

static const LCD_COLOR _aColors_16[] = {
0x000000, O0x0000FF, O0xO00FF00, OxOOFFFF,
0xFF0000, O0xFFOOFF, OxXFFFFO0O, OXFFFFFF,
0x000000, 0x000080, 0x008000, 0x008080,
0x800000, 0x800080, 0x808000, 0x808080,
Y

static const LCD_PHYSPALETTE _aPalette_16 = {
COUNTOF (_aColors_16), _aColors_16
Y

void LCD_X_ Config(void) {
//
// Set display driver and color conversion for 1lst layer
//

/7

// Set user palette data (only required if no fixed palette is used)
//

LCD_SetLUTEx (0, _aPalette_16);

12.7 Gamma correction

Gamma correction can simply be achieved with custom color conversion routines.
The trick is converting the colors twice. Please note that gamma correction does not
work within the simulation.
Color2index - conversion

It should first make the gamma correction of the color to be converted. The result of
the gamma correction then should be passed to the Color2Index-function of the
desired fixed palette mode, whose result then should be returned.

Index2Color - conversion

It should first convert the index to a color with the Color2Index-function of the
desired fixed palette mode. The result then should be passed to the gamma correc-
tion routine whose result then should be returned.

Example

The sample folder LCDConf\Common\ contains the sample file
LCDConf_GammaCorrection.c. It shows in detail how gamma correction can be used.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

12.8 Color API

281

The following table lists the available color-related functions in alphabetical order
within their respective categories. Detailed description of the routines can be found

in the sections that follow.

Routine

Description

Basic color functions

GUI_GetBkColor ()

Return the current background color.

GUI_GetBkColorIndex ()

Return the index of the current background color.

GUI_GetColor ()

Return the current foreground color.

GUI_GetColorIndex ()

Return the index of the current foreground color.

GUI_SetBkColor ()

Set the current background color.

GUI_SetBkColorIndex ()

Set the index of the current background color.

GUI_SetColor ()

Set the current foreground color.

GUI_SetColorIndex ()

Set the index of the current foreground color.

Index & color conversion functions

GUI_CalcColorDist ()

Returns the difference between 2 colors

GUI_CalcVisColorError ()

Returns the difference to the next available color

GUI_Color2Index()

Convert color into color index.

GUI_Color2visColor ()

Returns the nearest available color

GUI_ColorIsAvailable()

Checks if given color is available

GUI_Index2Color ()

Convert color index into color.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

282 CHAPTER Colors

12.8.1 Basic color functions

GUI_GetBKkColor()

Description
Returns the current background color.

Prototype
GUI_COLOR GUI_GetBkColor (void) ;

Return value
The current background color.

GUI_GetBkColorindex()

Description
Returns the index of the current background color.

Prototype
int GUI_GetBkColorIndex (void) ;

Return value
The current background color index.

GUI_GetColor()

Description
Returns the current foreground color.

Prototype
GUI_COLOR GUI_GetColor (void) ;

Return value
The current foreground color.

GUI_GetColorindex()

Description
Returns the index of the current foreground color.

Prototype
int GUI_GetColorIndex (void) ;

Return value
The current foreground color index.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

283

GUI_SetBkColor()

Description
Sets the current background color.

Prototype
GUI_COLOR GUI_SetBkColor (GUI_COLOR Color);

Parameter Description
Color Color for background, 24-bit RGB value.

Return value
The selected background color.

GUI_SetBkColorindex()

Description
Sets the index of the current background color.

Prototype
int GUI_SetBkColorIndex (int Index) ;

Parameter Description
Index Index of the color to be used.

Return value
The selected background color index.

GUI_SetColor()

Description
Sets the current foreground color.

Prototype
void GUI_SetColor (GUI_COLOR Color) ;
Parameter Description
Color Color for foreground, 24-bit RGB value.

Return value
The selected foreground color.

GUI_SetColorindex()

Description
Sets the index of the current foreground color.

Prototype
void GUI_SetColorIndex(int Index);
Parameter Description
Index Index of the color to be used.

Return value
The selected foreground color index.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

284 CHAPTER Colors

12.8.2 Index & color conversion
GUI_CalcColorDist()

Calculates the distance between 2 colors. The distance will be calculated by the sum
of the square value from the distances of the red, green and the blue component:

Difference = (Redl - Red0)2 + (Greenl - Green0)2 + (Bluel - Blue0)?2

Prototype

U32 GUI_CalcColorDist (GUI_COLOR Color0O, GUI_COLOR Colorl))
Parameter Description

Color0 RGB value of the first color.

Colorl RGB value of the second color.

Return value
The distance as described above.

GUI_CalcVisColorError()

Calculates the distance to the next available color. For details about the calculation,
refer to “"GUI_CalcColorDist()” on page 284.

Prototype

U32 GUI_CalcVisColorError (GUI_COLOR color)
Parameter Description

Color RGB value of the color to be calculated.

Return value
The distance to the next available color.

GUI_Color2index()

Returns the index of a specified RGB color value.

Prototype
int GUI_Color2Index (GUI_COLOR Color)

Parameter Description
Color RGB value of the color to be converted.

Return value
The color index.

GUI_Color2VisColor()

Returns the next available color of the system as an RGB color value.

Prototype
GUI_COLOR GUI_Color2VisColor (GUI_COLOR color)

Parameter Description

Color RGB value of the color.

Return value
The RGB color value of the nearest available color.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

285

GUI_ColorisAvailable()

Checks if the given color is available.

Prototype

char GUI_ColorIsAvailable (GUI_COLOR color)
Parameter Description

Color RGB value of the color.

Return value
1 if color is available, 0 if not.

GUIL_Index2Color()

Returns the RGB color value of a specified index.

Prototype
int GUI_Index2Color (int Index)

Parameter Description
Index Index of the color. to be converted

Return value
The RGB color value.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

286 CHAPTER Colors

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

287

Chapter 13

Memory Devices

Memory Devices can be used in a variety of situations, mainly to prevent the display
from flickering when using drawing operations for overlapping items. The basic idea
is quite simple. Without the use of a Memory Device, drawing operations write
directly to the display. The screen is updated as drawing operations are executed,
which gives it a flickering appearance as the various updates are made. For example,
if you want to draw a bitmap in the background and some transparent text in the
foreground, you would first have to draw the bitmap and then the text. The effect
would be a flickering of the text.

If a Memory Device is used for such a procedure, however, all drawing operations are
executed in memory. The final result is displayed on the screen only when all opera-
tions have been carried out, with the advantage of no flickering. This difference can
be seen in the example in the following section, which illustrates a sequence of draw-
ing operations both with and without the use of a Memory Device.

The distinction may be summarized as follows: If no Memory Device is used, the
effects of drawing operations can be seen step by step, with the disadvantage of a
flickering display. With a Memory Device, the effects of all routines are made visible
as a single operation. No intermediate steps can actually be seen. The advantage, as
explained above, is that display flickering is completely eliminated, and this is often
desirable.

Memory Devices are an additional (optional) software item and are not shipped with
the emWin basic package. The software for Memory Devices is located in the subdi-
rectory GUI\Memdev.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

288 CHAPTER Memory Devices

13.1 Using Memory Devices: an illustration

The following table shows screen shots of the same operations handled with and
without a Memory Device. The objective in both cases is identical: a work piece is to
be rotated and labeled with the respective angle of rotation (here, 10 degrees). In
the first case (without a Memory Device) the screen must be cleared, then the poly-
gon is redrawn in the new position and a string with the new label is written. In the
second case (with a Memory Device) the same operations are performed in memory,
but the screen is not updated during this time. The only update occurs when the rou-
tine GUI_MEMDEV_CopyToLCD () is called, and this update reflects all the operations at
once. Note that the initial states and final outputs of both procedures are identical.

API function Without Memory Device With Memory Device

Step 0: Initial state

Step 1: GUI_Clear ()

Step 2: GUI_DrawPolygon ()

Step 3: GUI_DispString ()

Step 4:
GUI_MEMDEV_CopyToLCD ()
(only when using Memory Device)

13.2 Supported color depth (bpp)

Memory Devices are available in 4 different color depth:
1 bpp, 8 bpp, 16 bpp and 32 bpp.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

289

Creating Memory Devices "compatible" to the display

There are two ways to create Memory Devices. If they are use to avoid flickering, a
Memory Device compatible to the display is created. This "compatible" Memory
Device needs to have the same or a higher color depth as the display. emWin auto-
matically selects the "right" type of Memory Device for the display if the functions
GUI_MEMDEV_Create (), GUI_MEMDEV_CreateEx () are used.

The Window Manager, which also has the ability to use Memory Devices for some or
all windows in the system, also uses these functions.

This way, the Memory Device with the lowest color depth (using the least memory) is
automatically used.

Creating Memory Devices for other purposes

Memory Devices of any type can be created using GUI_MEMDEV_CreateFixed(). A
typical application would be the use of a Memory Device for printing as described
later in this chapter.

13.3 Memory Devices and the Window Manager

The Window Manager works seamlessly with Memory Devices. Every window has a
flag which tells the Window Manager if a Memory Device should be used for render-
ing. This flag can be specified when creating the window or set/reset at any time.

If the Memory Device flag is set for a particular window, the WM automatically uses a
Memory Device when drawing the window. It creates a Memory Device before draw-
ing a window and deletes it after the drawing operation. If enough memory is avail-
able, the whole window fits into the size of the Memory Device created by the WM. If
not enough memory is available for the complete window in one Memory Device, the
WM uses 'banding' for drawing the window. Details about 'banding' are described in
the documentation, chapter 'Memory Devices \ Banding Memory Device'. The mem-
ory used for the drawing operation is only allocated during the drawing operation. If
there is not enough memory available when (re-)drawing the window, the window is
redrawn without Memory Device.

13.4 Memory Devices and multiple layers

The Memory Device API functions do not have any option to specify a layer. Please
note that when creating a Memory Device the Memory Device is associated with the
currently selected layer. The Memory Devices also use automatically the color con-
version settings of the currently selected layer.

Example

//

// Create a Memory Device associated with layer 1
//

GUI_SelectLayer (1) ;

hMem = GUI_MEMDEV_Create (0, 0, 100, 100);
GUI_MEMDEV_Select (hMem) ;

GUI_DrawLine (0, 0, 99, 99);

GUI_MEMDEV_Select (0) ;

//

// Select layer 0

//

GUI_SelectLayer (0) ;

//

// The following line copies the Memory Device to layer 1 and not to layer 0
//

GUI_MEMDEV_CopyToLCD (hMem) ;

13.5 Memory requirements

If creating a Memory Device the required number of bytes depends on the color
depth of the Memory Device and whether transparency support is needed or not.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

CHAPTER Memory Devices

Memory usage without transparency support
The following table shows the memory requirement in dependence of the system

color depth for Memory Devices without transparency support.

Color depth of
Memory Device

System color depth
(LCD_BITSPERPIXEL)

Memory usage

1 byte / 8 pixels:

1 bpp 1 bpp (XSIZE + 7) / 8 * YSIZE
8 bpp 2, 4 and 8 bpp XSIZE * YSIZE
2 bytes / pixel:
16 bpp 12 and 16 bpp XSIZE * YSIZE * 2
4 bytes / pixel:
32 bpp 18, 24 and 32 bpp XSIZE * YSIZE * 4
Example:

A Memory Device of 111 pixels in X and 33 pixels in Y should be created. It should be
compatible to a display with a color depth of 12 bpp and should support transpar-
ency. The required number of bytes can be calculated as follows:

Number of required bytes = (111 * 2 + (111 + 7) / 8) * 33 = 7788 bytes

Memory usage with transparency support

If a Memory Device should support transparency it needs one additional byte / 8 pix-
els for internal management.

Color depth of
Memory Device

System color depth
(LCD_BITSPERPIXEL)

Memory usage

2 byte / 8 pixels:

Loee +bep (XSIZE + 7) / 8 * YSIZE * 2

s o

> oee 16, 24 and 32 bep ?thzeEsi E)li)jr(el(;(rs%zbEyE:e 7/)8/[23(25\;5125
Example:

A Memory Device of 200 pixels in X and 50 pixels in Y should be created. It should be
compatible to a display with a color depth of 4bpp and should support transparency.
The required number of bytes can be calculated as follows:

Number of required bytes = (200 + (200 + 7) / 8) * 50 = 11250 bytes

13.6 Performance

UMO03001 User & Reference Guide for emWin V5.20

Using Memory Devices typically does not significantly affect performance. When
Memory Devices are used, the work of the driver is easier: It simply transfers bit-
maps to the display controller. On systems with slow drivers (for example displays
connected via serial interface), the performance is better if Memory Devices are
used; on systems with a fast driver (such as memory mapped display memory,
GUIDRV_Lin and others) the use of Memory Devices costs some performance.

If 'banding’' is needed, the used time to draw a window increases with the number of
bands. The more memory available for Memory Devices, the better the performance.

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

201

13.7 Basic functions

The following routines are those that are normally called when using Memory
Devices. Basic usage is rather simple:

Create the Memory Device (using GUI_MEMDEV_Create ()).

Activate it (using CUI_MEMDEV_Select ()).

Execute drawing operations.

Copy the result into the display (using GUI_MEMDEV_CopyToLCD ()).

Delete the Memory Device if vyou no longer need it (using
GUI_MEMDEV_Delete()).

(O 8 WN =

13.8 In order to be able to use Memory Devices...

Memory Devices are enabled by default. In order to optimize performance of the
software, support for Memory Devices can be switched off in the configuration file
GUIConf.h by including the foIIowing line:

#define GUI_SUPPORT_MEMDEV
If this line is in the configuration f|Ie and you want to use Memory Devices, either

delete the line or change the define to 1.

13.9 Multi layer / multi display configurations

As explained earlier in this chapter Memory Devices "compatible" to the display
needs to have the same or a higher color depth as the display. When creating a Mem-
ory Device compatible to the display emWin "knows" the color depth of the currently
selected layer/display and automatically uses the lowest color depth.

13.10 Configuration options

Type Macro Default Description
Enables the use of 1bpp Memory

B GUI_USE_MEMDEV_1BPP_FOR_SCREEN 1 Devices with displays of 1bpp color
depth.

13.10.1 GUI_USE_MEMDEV_1BPP_FOR_SCREEN

On systems with a display color depth <= 8bpp the default color depth of Memory
Devices compatible to the display is 8bpp. To enable the use of 1bpp Memory Devices
with displays of 1bpp color depth the following line should be added to the configura-
tion file GUIConf.h:

#define GUI_USE_MEMDEV_1BPP_FOR_SCREEN 0

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

292

13.11 Memory device API

CHAPTER

Memory Devices

The table below lists the available routines of the emWin Memory Device API.
All functions are listed in alphabetical order within their respective categories.
Detailed descriptions of the routines can be found in the sections that follow.

Routine

Description

Basic functions

GUI_MEMDEV_Clear ()

Marks the Memory Device contents as unchanged

GUI_MEMDEV_CopyFromLCD ()

Copies contents of LCD to Memory Device

GUI_MEMDEV_CopyToLCD ()

Copies contents of Memory Device to LCD

GUI_MEMDEV_CopyToLCDAA()

Copies the contents of Memory Device antialiased.

GUI_MEMDEV_CopyToLCDAEt ()

Copies contents of Memory Device to LCD at the
given. position

GUI_MEMDEV_Create ()

Creates the Memory Device (first step).

GUI_MEMDEV_CreateEx ()

Creates the Memory Device with additional creation
flags.

GUI_MEMDEV_CreateFixed()

Creates a Memory Device with a given color depth.

GUI_MEMDEV_Delete()

Frees the memory used by the Memory Device.

GUI_MEMDEV_DrawPerspectiveX ()

Draws the given Memory Device perspectively dis-
torted into the current selected device.

GUI_MEMDEV_GetDataPtr ()

Returns a pointer to the data area for direct manipula-
tion.

GUI_MEMDEV_GetXSize()

Returns the X-size (width) of Memory Device.

GUI_MEMDEV_GetYSize()

Returns the Y-size (height) of Memory Device.

GUI_MEMDEV_MarkDirty ()

Marks a rectangle area as dirty.

GUI_MEMDEV_ReduceYSize ()

Reduces Y-size of Memory Device.

GUI_MEMDEV_Rotate()

Rotates and scales a Memory Device and writes the
result into a Memory Device using the 'nearest neigh-
bor’ method.

GUI_MEMDEV_RotateHQ ()

Rotates and scales a Memory Device and writes the
result into a Memory Device using the 'high quality’
method.

GUI_MEMDEV_RotateHQT ()

Rotates and scales a Memory Device and writes the
result into a Memory Device using the 'high quality’
method. (Optimized for images with a large amount of
transparent pixels)

GUI_MEMDEV_Select ()

Selects a Memory Device as target for drawing opera-
tions.

GUI_MEMDEV_SerializeBMP ()

Creates a BMP file from the given Memory Device.

GUI_MEMDEV_SetOrg ()

Changes the origin of the Memory Device on the LCD.

GUI_MEMDEV_Write ()

Writes the contents of a Memory Device into a Memory
Device.

GUI_MEMDEV_WriteAlpha ()

Writes the contents of a Memory Device into a Memory
Device using alpha blending.

GUI_MEMDEV_WriteAlphaAt ()

Writes the contents of a Memory Device into a Memory
Device using the given position and alpha blending.

GUI_MEMDEV_WriteAt ()

Writes the contents of a Memory Device into a Memory
Device to the given position.

GUI_MEMEDV_WriteEx ()

Writes the contents of a Memory Device into a Memory
Device using alpha blending and scaling.

GUI_MEMDEV_WriteExAt ()

Writes the contents of a Memory Device into a Memory
Device to the given position using alpha blending and
scaling.

GUI_SelectLCD()

Selects the LCD as target for drawing operations.

Banding Memory Device

GUI_MEMDEV_Draw ()

Use a Memory Device for drawing.

Auto device object functions

GUI_MEMDEV_CreateAuto ()

Creates an auto device object.

GUI_MEMDEV_DeleteAuto()

Deletes an auto device object.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

293

Routine Description

GUI_MEMDEV_DrawAuto () Uses a GUI_AUTODEV object for drawing.
Measurement device object functions
GUI_MEASDEV_ClearRect () Clears the measurement rectangle.
GUI_MEASDEV_Create() Creates a measurement device.
GUI_MEASDEV_Delete() Deletes a measurement device.
GUI_MEASDEV_GetRect () Retrieves the measurement result.
GUI_MEASDEV Select () Cs)sleergttsioisr?easurement device as target for drawing
Animation functions

GUI_MEMDEV_FadeDevices () Performs fading from one to another Memory Device.

Sets a user defined function to be called while anima-

GUI_MEMDEV_SetAnimationCallback() | ..
tions are processed.

Animation functions (Window Manager required)

GUI_MEMDEV_FadeInWindow () Fades in a window by decreasing the alpha value.

GUI_MEMDEV_FadeOutWindow () Fades out a window by increasing the alpha value.

Moves in a Window from a specified to its actual posi-
tion by magnification (optionally with rotation).
Moves out a Window from its actual to a specified
position by demagnification (optionally with rotation).

GUI_MEMDEV_MoveInWindow ()

GUI_MEMDEV_MoveOutWindow ()

Shifts a Window in a specified direction into the screen

GUI_MEMDEV_ShiftInWindow () to its actual position

Shifts a Window in a specified direction from its actual
position out of the screen.

Swaps a window with the old content of the target
area.

GUI_MEMDEV_ShiftOutWindow ()

GUI_MEMDEV_SwapWindow ()

13.12 Basic functions
GUI_MEMDEV_Clear()

Description
Marks the entire contents of a Memory Device as "unchanged".
Prototype
void GUI_MEMDEV_Clear (GUI_MEMDEV_Handle hMem) ;
Parameter Description
hMem Handle to a Memory Device.

Additional information

The next drawing operation with GUI_MEMDEV_CopyToLCD () will then write only the
bytes modified between GUI_MEMDEV_Clear () and GUI_MEMDEV_CopyToLCD().

GUI_MEMDEV_CopyFromLCD()

Description

Copies the contents of a Memory Device from LCD data (video memory) to the Mem-
ory Device. In other words: Read back the contents of the LCD to the Memory
Device.

Prototype

void GUI_MEMDEV_CopyFromLCD (GUI_MEMDEV_Handle hMem) ;
Parameter Description

hMem Handle to a Memory Device.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

294 CHAPTER Memory Devices

GUI_MEMDEV_CopyToLCD()

Description
Copies the contents of a Memory Device from memory to the LCD.

Prototype

void GUI_MEMDEV_CopyToLCD (GUI_MEMDEV_Handle hMem);
Parameter Description

hMem Handle to a Memory Device.

Additional information

Do not use this function within a paint callback function called by the Window Man-
ager, because it deactivates the clipping area of the Window Manager. The function
GUI_MEMDEV_WriteAt should be used instead.

GUI_MEMDEV_CopyToLCDAA()

Description
Copies the contents of a Memory Device (antialiased) to the LCD.

Prototype

void GUI_MEMDEV_CopyToLCDAA (GUI_MEMDEV_Handle MemDevV) ;
Parameter Description

hMem Handle to a Memory Device.

Additional information

The device data is handled as antialiased data. A matrix of 2x2 pixels is converted to
1 pixel. The intensity of the resulting pixel depends on how many pixels are set in the
matrix.

Example

Creates a Memory Device and selects it for output. A large font is then set and a text
is written to the Memory Device:

GUI_MEMDEV_Handle hMem = GUI_MEMDEV_Create(0,0,60,32);
GUI_MEMDEV_Select (hMem) ;

GUI_SetFont (&GUI_Font32B_ASCII) ;
GUI_DispString("Text");

GUI_MEMDEV_CopyToLCDAA (hMem) ;

Screen shot of above example

GUI_MEMDEV_CopyToLCDAt()

Description
Copies the contents of a Memory Device to the LCD at the given position.

Prototype

void GUI_MEMDEV_CopyToLCDAt (GUI_MEMDEV_Handle hMem, int x, int vy);
Parameter Description

hMem Handle to a Memory Device.

X Position in X

v Position in Y

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

295

GUI_MEMDEV_Create()

Description

Creates a Memory Device.

Prototype

GUI_MEMDEV_Handle GUI_MEMDEV_Create(int x0, int y0, int xSize, int ySize);

Parameter Description
x0 X-position of the Memory Device.
v0 Y-position of the Memory Device.
xSize X-size of the Memory Device.
ySize Y-size of the Memory Device.

Return value

Handle of the created Memory Device. If the routine fails the return value is 0.

GUI_MEMDEV_CreateEXx()

Description

Creates a Memory Device.

Prototype

GUI_MEMDEV_Handle GUI_MEMDEV_CreateEx(int xO0, int yoO,
int xSize, int xSize
int Flags);

Parameter Description

x0 x-position of the Memory Device.

vO0 y-position of the Memory Device.

xsize x-size of the Memory Device.

ysize y-size of the Memory Device.

Flags See table below.

Return value

Permitted values for parameter Flags

Default: The Memory Device is created with a

GUI_MEMDEV_HASTRANS transparency flag which ensures that the back-

(recommended) ground will be drawn correctly.
Creates a Memory Device without transparency. The
user must make sure that the background is drawn
correctly.

GUI_MEMDEV_NOTRANS This way the Memory Device can be used for non-

rectangular areas. An other advantage is the higher
speed: Using this flag accelerates the Memory
Device app. 30 - 50%.

Handle of the created Memory Device. If the routine fails the return value is 0.

GUI_MEMDEV_CreateFixed()

Description

Creates a Memory Device of fixed size, color depth (bpp) and specified color conver-

sion.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

296

Prototype

CHAPTER Memory Devices

GUI_MEMDEV_Handle GUI_MEMDEV_CreateFixed (

int x0, int y0, int xSize, int ySize,

int Flags,

const tLCDDEV_APIList * pMemDevAPT,
const LCD_API_COLOR_CONV * pColorConvAPI) ;

Parameter Description

%0 X-position of Memory Device.

vO0 Y-position of Memory Device.

xsize X-size of Memory Device.

ysize Y-size of Memory Device.

Flags See table below.

pMemDevAPT See table below.

pColorConvAPI See table below.

Permitted values for parameter Flags

Default: The Memory Device is created with a
transparency flag which ensures that the back-
ground will be drawn correctly.

GUI_MEMDEV_HASTRANS
(recommended)

Creates a Memory Device without transparency.
The user must make sure that the background is
drawn correctly.

GUI_MEMDEV_NOTRANS This way the Memory Device can be used for
non-rectangular areas. An other advantage is
the higher speed: Using this flag accelerates the
Memory Device app. 30 - 50%.

Parameter pMemDevAPI

Defines the color depth of the Memory Device in bpp. The color depth of the Mem-
ory Device should be equal or greater than the required bits for the color conver-
sion routines.

A Memory Device with a 1bpp color conversion (GUI_COLOR_CONV_1) for
example requires at least a Memory Device with 1bpp color depth. The available
Memory Devices are 1bpp, 8bpp, 16bpp and 32bpp Memory Devices. So an 1bpp
Memory Device should be used.

If using a 4 bit per pixel color conversion (GUI_COLOR_CONV_4) at least 4bpp
are needed for the Memory Device. In this case an 8bpp Memory Device should be
used.

Permitted values

Create Memory Device with 1bpp color depth
(1 byte per 8 pixels)

Use if the specified color conversion requires
1bpp.

GUI_MEMDEV_APILIST_1

Create Memory Device with 8bpp color depth
(1 byte per pixel)

Use if the specified color conversion requires
8bpp or less.

GUI_MEMDEV_APILIST_S8

Create Memory Device with 16bpp color depth
(1 U16 per pixel)

Use if the specified color conversion requires
more than 8 bpp. (High color modes)

GUI_MEMDEV_APILIST_16

Create Memory Device with 32bpp color depth
(1 U32 per pixel)

Use if the specified color conversion requires
more than 16 bpp. (True color modes)

GUI_MEMDEV_APILIST_ 32

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

297

Parameter pColorConvAPI
This parameter defines the desired color conversion. For more details about the
used bits per pixel and the color conversion, refer to the chapter “"Colors” on
page 265.

Permitted values

GUICC_1 Fixed palette mode 1. (black/white)
GUICC_2 Fixed palette mode 2. (4 gray scales)
GUICC_4 Fixed palette mode 4. (16 gray scales)
GUICC_565 Fixed palette mode 565.
GUICC_M565 Fixed palette mode M565.
GUICC_8666 Fixed palette mode 8666.
GUICC_888 Fixed palette mode 888.
GUICC_8888 Fixed palette mode 8888.

Return value
Handle for created Memory Device. If the routine fails the return value is 0.

Additional information

This function can be used if a Memory Device with a specified color conversion should
be created. This could make sense if for example some items should be printed on a
printer device. The sample folder contains the code example MEMDEV_Printing.c
which shows how to use the function to print something in 1bpp color conversion
mode.

Example
The following example shows how to create a Memory Device with 1bpp color depth:
GUI_MEMDEV_Handle hMem;
hMem = GUI_MEMDEV_CreateFixed (0, 0, 128, 128, 0,
GUI_MEMDEV_APILIST 1, /* Used API list */

GUI_COLOR_CONV_1) ; /* Black/white color conversion */
GUI_MEMDEV_Select (hMem) ;

GUI_MEMDEV_Delete()

Description
Deletes a Memory Device.

Prototype

void GUI_MEMDEV_Delete (GUI_MEMDEV_Handle MemDev) ;
Parameter Description

hMem Handle to Memory Device.

Return value
Handle for deleted Memory Device.

GUI_MEMDEV_DrawPerspectiveX()

Description

Draws the given Memory Device perspectively distorted into the currently selected
device.

Prototype

void GUI_MEMDEV_DrawPerspectiveX (GUI_MEMDEV_Handle hMem, int x, int v,
int hO0, int hl, int dx, int dy);

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

298 CHAPTER Memory Devices

Parameter Description
hMem Handle to source Memory Device with the image to be drawn.
x Horizontal start position in pixels.
v Vertical start position in pixels.
ho Height of the leftmost edge of the image to be drawn.
hl Height of the rightmost edge of the image to be drawn.
dx Width of the image to be drawn.
dy Position in y from the topmost pixel at the right relative to the topmost pixel at the left.

The picture below explains the parameters more detailed:
X dx

A

»ld

dy

».d

ho

h1

Image to be drawn

Destination device

Additional information

The function draws the contents of the given Memory Device into the currently
selected device. The origin of the source device should be (0, 0). Size and distortion
of the new image is defined by the parameters dx, dy, ho and hi.

Note that the function currently only works with Memory Devices with 32-bpp color
depth and a system color depth of 32 bpp.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

299

Example

The following example shows how to use the function:

GUI_MEMDEV_Handle hMemO, hMeml, hMem2;
hMem0 = GUI_MEMDEV_CreateFixed (0, 0, 150, 150, GUI_MEMDEV_NOTRANS,
GUI_MEMDEV_APILIST_ 32,
GUI_COLOR_CONV_888) ;
hMeml = GUI_MEMDEV_CreateFixed (0, O, 75, 150, GUI_MEMDEV_HASTRANS,
GUI_MEMDEV_APILIST 32,
GUI_COLOR_CONV_888) ;
GUI_MEMDEV_CreateFixed (0, 0, 75, 150, GUI_MEMDEV_HASTRANS,
GUI_MEMDEV_APILIST_ 32,
GUI_COLOR_CONV_888) ;

hMem2

GUI_MEMDEV_Select (hMemO) ;

GUI_JPEG_Draw(_aJPEG, sizeof(_aJPEG), 0, 0);
GUI_MEMDEV_Select (hMeml) ;

GUI_MEMDEV_DrawPerspectiveX (hMem0O, O, 0, 150, 110, 75, 20) ;
GUI_MEMDEV_Select (hMem2) ;

GUI_MEMDEV_DrawPerspectiveX (hMemO, 0, 20, 110, 150, 75, -20);
GUI_MEMDEV_CopyToLCDAt (hMemO, 0, 10);
GUI_MEMDEV_CopyToLCDAt (hMeml, 160, 10);
GUI_MEMDEV_CopyToLCDAt (hMem2, 245, 10);

Screenshot of the above example

GUI_MEMDEV_GetDataPtr()

Description

Returns a pointer to the data area (image area) of a Memory Device. This data area
can then be manipulated without the use of GUI functions; it can for example be used
as output buffer for a JPEG or video decompression routine.

Prototype
void * GUI_MEMDEV_GetDataPtr (GUI_MEMDEV_Handle hMem) ;
Parameter Description
hMem Handle to Memory Device.

Additional information

The device data is stored from the returned address onwards. An application modify-
ing this data has to take extreme caution that it does not overwrite memory outside
of this data area. If this data area is used with emWins default memory manage-
ment, the memory area must remain locked as long as the pointer is in use.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

300

CHAPTER Memory Devices

Organization of the data area:

The pixels are stored in the mode "native" to the display (or layer) for which they are
intended. For layers with 8 bpp or less, 8 bits (1 byte) are used per pixel; for layers
with more than 8 and less or equal 16 bpp, a 16 bit value (U16) is used for one pixel.
The memory is organized in reading order which means: First byte (or U16), stored
at the start address, represents the color index of the pixel in the upper left corner
(y=0, x=0); the next pixel, stored right after the first one, is the one to the left at
(y=0, x=1). (Unless the Memory Device area is only 1 pixel wide). The next line is
stored right after the first line in memory, without any kind of padding. Endian mode
is irrelevant, it is assumed that 16 bit units are accessed as 16 bit units and not as 2
separate bytes. The data area is comprised of (xSize * ySize) pixels, so

xSize * ySize bytes for 8bpp or lower Memory Devices,

2 * xSize * ySize bytes (accessed as xSize * ySize units of 16 bits) for 16 bpp Mem-
ory Devices.

GUI_MEMDEV_GetXSize()

Description
Returns the X-size (width) of a Memory Device.

Prototype
int GUI_MEMDEV_GetXSize (GUI_MEMDEV_Handle hMem) ;

Parameter Description

hMem Handle to Memory Device.

GUI_MEMDEV_GetYSize()

Description
Returns the Y-size (height) of a Memory Device in pixels.

Prototype
int GUI_MEMDEV_GetYSize (GUI_MEMDEV_Handle hMem) ;

Parameter Description

hMem Handle to Memory Device.

GUI_MEMDEV_MarkDirty()

Description
Marks a rectangle area as dirty.

Prototype

void GUI_MEMDEV_MarkDirty (GUI_MEMDEV_Handle hMem,
int x0, int y0, int x1, int y1);

Parameter Description
hMem Handle to the Memory Device.
x0 x-coordinate of the upper left corner.
vO0 y-coordinate of the upper left corner.
x1 x-coordinate of the lower right corner.
vl y-coordinate of the lower right corner.

GUI_MEMDEV_ReduceYSize()

Description
Reduces the Y-size of a Memory Device.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

301

Prototype

void GUI_MEMDEV_ReduceYSize (GUI_MEMDEV_Handle hMem, int YSize);
Parameter Description

hMem Handle to Memory Device.

YSize New Y-size of the Memory Device.

Additional information

Changing the size of the Memory Device is more efficient than deleting and then rec-
reating it.

GUI_MEMDEV_Rotate(), GUI_MEMDEV_RotateHQ(),
GUI_MEMDEV_RotateHQT()

Description

The functions rotate and scale the given source Memory Device. The source device
will be rotated and scaled around its center and then shifted by the given amount of
pixels. The result is saved into the given destination Memory Device.

The difference between the functions GUI_MEMDEV_Rotate () and
GUI_MEMDEV_RotateHQ () both functions is the algorithm for calculating the destina-
tion pixel data. GUI_MEMDEV_Rotate () uses the ‘nearest neighbor’ method which is
fast but less accurate. GUI_MEMDEV_RotateHQ () uses a more complex method which
is quite accurate but not as fast as the 'nearest neighbor’ method.

For a more detailed impression of the difference between the functions there are two
screenshots at the end of this function description.

The performance of the function GUI_MEMDEV_RotateHQT () has been optimized for
images with a large amount of completely transparent pixels. It could get a better
performance result if the image has more than 10% completely transparent pixels.

Prototypes

void GUI_MEMDEV_Rotate (GUI_MEMDEV_Handle hSrc, GUI_MEMDEV_Handle hDst,
int dx, int dy, int a, int Mag);

void GUI_MEMDEV_RotateHQ (GUI_MEMDEV_Handle hSrc, GUI_MEMDEV_Handle hDst,
int dx, int dy, int a, int Mag);

void GUI_MEMDEV_RotateHQT (GUI_MEMDEV_Handle hSrc, GUI_MEMDEV_Handle hDst,
int dx, int dy, int a, int Mag);

Parameter Description
hSrc Handle of Memory Device to be rotated and scaled.
hDst Handle of destination device.

dx Distance in pixels for shifting the image in X.
dy Distance in pixels for shifting the image in Y.

a Angle to be used for rotation in degrees * 1000.
Mag Magnification factor * 1000

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

302 CHAPTER Memory Devices

The following picture gives a more detailed impression of the parameters:

Image to be drawn

dx

Destination device

dy
|
|
|
T
|
|

Additional information

Both Memory Devices, source and destination, need to be created using a color depth
of 32bpp. Further cUI_MEMDEV_NOTRANS should be used as Flags parameter when
creating the devices.

The sample folder also contains the example MEMDEV_ZoomAndRotate.c which shows
how the function can be used in detail.

Performance advantage of GUI_MEMDEV_RotateHQT()
The following table shows an approximation of the performance in comparison to
GUI_MEMDEV_RotateHQ () in dependence of the percentage of transparent pixels:

Percentage of transparent pixels Performance advantage
0% - 3%
10% 0%
50% +21%
90% +74%

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

Example

GUI_MEMDEV_Handle hMemSource;
GUI_MEMDEV_Handle hMemDest;
GUI_RECT RectSource = {0, 0, 69, 39};

GUI_RECT RectDest = {0, 0, 79, 79};

hMemSource = GUI_MEMDEV_CreateFixed (RectSource.
RectSource.
RectSource.

GUI_MEMDEV.

x0, RectSource.yo0,

x1 - RectSource.x0 + 1,
vyl - RectSource.y0 + 1,
NOTRANS,

303

GUI_MEMDEV:APILIST_32, GUI_COLOR_CONV_888) ;

hMemDest = GUI_MEMDEV_CreateFixed (RectDest.x0, RectDest.y0,
RectDest.x1 - RectDest.x0 + 1,
RectDest.yl - RectDest.y0 + 1,

GUI_MEMDEV_NOTRANS,

GUI_MEMDEV_APILIST 32, GUI_COLOR_CONV_888) ;

GUI_MEMDEV_Select (hMemSource) ;

GUI_DrawGradientV (RectSource.x0, RectSource.y0,
RectSource.x1l, RectSource.vyl,
GUI_WHITE, GUI_DARKGREEN) ;

GUI_SetColor (GUI_BLUE) ;

GUI_SetFont (&GUI_Font20B_ASCII) ;

GUI_SetTextMode (GUI_TM_TRANS) ;

GUI_DispStringInRect ("emWin", &RectSource, GUI_TA_HCENTER | GUI_TA_VCENTER) ;

GUI_DrawRect (0, 0, RectSource.xl, RectSource.yl);
GUI_MEMDEV_RotateHQ (hMemSource, hMemDest,
(RectDest.x1 - RectSource.xl) / 2,
(RectDest.yl - RectSource.vyl) / 2,
30 * 1000,
1000) ;

GUI_MEMDEV_CopyToLCDAt (hMemSource, 10, (RectDest.yl - RectSource.yl) / 2);

GUI_MEMDEV_CopyToLCDAt (hMemDest, 100, 0);

Screenshot of the above example using GUI_MEMDEV_RotateHQ()

i g

Screenshot of the above example using GUI_MEMDEV_Rotate()

g

GUI_MEMDEV_Select()

Description

Activates a Memory Device (or activates LCD if handle is 0)

Prototype

void GUI_MEMDEV_Select (GUI_MEMDEV_Handle hMem)

Parameter Description

hMem Handle to Memory Device.
GUI_MEMDEV_SerializeBMP()

Description

Creates a BMP file from the given Memory Device.

UMO03001 User & Reference Guide for emWin V5.20

© 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

304

CHAPTER Memory Devices

Prototype
void GUI_MEMDEV_SerializeBMP (GUI_MEMDEV_Handle hDev,
GUI_CALLBACK_VOID_U8_P * pfSerialize,
void * p)i
Parameter Description
hDev Handle to Memory Device.

pfSerialize Pointer to a user defined serialization function. See prototype below.

P Pointer to user defined data passed to the serialization function.

Prototype of GUI_CALLBACK_VOID_U8_P
void GUI_CALLBACK_VOID_U8_P (U8 Data, void * p);

Additional information
To create a BMP file the color depth of the given Memory Device is used. In case it is
32bpp the resulting BMP file will consist of valid alpha data which is recognized by

the Bitmap Converter.
An example for serialization can be found in the description of "GUI_BMP_Serialize()"”

on page 152.

GUI_MEMDEV_SetOrg()

Description

Changes the origin of the Memory Device on the LCD.

Prototype
void GUI_MEMDEV_SetOrg (GUI_MEMDEV_Handle hMem, int x0, int vyO0);

Parameter Description

hMem Handle to Memory Device.

x0 Horizontal position (of the upper left pixel).

v0 Vertical position (of the upper left pixel).

Additional information
This routine can be helpful when the same device is used for different areas of the
screen or when the contents of the Memory Device are to be copied into different

areas.
Changing the origin of the Memory Device is more efficient than deleting and then

recreating it.

GUI_MEMDEV_Write()

Description
Writes the contents of the given Memory Device into the currently selected device.
Prototype
void GUI_MEMDEV_Write (GUI_MEMDEV_Handle hMem) ;
Parameter Description
hMem Handle to Memory Device.

GUI_MEMDEV_WriteAlpha()

Description

Writes the contents of the given Memory Device into the currently selected device
using alpha blending.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

305

Prototype

void GUI_MEMDEV_WriteAlpha (GUI_MEMDEV_Handle hMem, int Alpha);
Parameter Description

hMem Handle to Memory Device.

Alpha Alpha blending factor, 0 - 255

Additional information

Alpha blending means mixing 2 colors with a given intensity. This function makes it
possible to write semi-transparent from one Memory Device into an other Memory
Device. The alpha-parameter specifies the intensity used when writing to the cur-
rently selected Memory Device.

GUI_MEMDEV_WriteAlphaAt()

Description

Writes the contents of the given Memory Device into the currently selected device at
the specified position using alpha blending.

Prototype
void GUI_MEMDEV_WriteAlphaAt (GUI_MEMDEV_Handle hMem,
int Alpha, int x, int vy);
Parameter Description

hMem Handle to Memory Device.

Alpha Alpha blending factor, 0 - 255

X Position in X

v Position in Y

Additional information
(See GUI_MEMDEV_WriteAlpha)

GUI_MEMDEV_WriteAt()

Description

Writes the contents of the given Memory Device into the currently selected device at
the specified position.

Prototype
void GUI_MEMDEV_WriteAt (GUI_MEMDEV_Handle hMem, int x, int vy);
Parameter Description
hMem Handle to Memory Device.
X Position in X
2% Position in Y

GUI_MEMDEV_WriteEx()

Description

Writes the contents of the given Memory Device into the currently selected device at
position (0, 0) using alpha blending and scaling.

Prototype

void GUI_MEMDEV_WriteEx (GUI_MEMDEV_Handle hMem,

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

306

CHAPTER Memory Devices

int xMag, int yMag, int Alpha);

Parameter Description
hMem Handle to Memory Device.
xMag Scaling factor for X-axis * 1000.
vyMag Scaling factor for Y-axis * 1000.
Alpha Alpha blending factor, 0 - 255.

Additional information

A negative scaling factor mirrors the output. Also Refer to
"GUI_MEMDEV_WriteExAt()" below.

GUI_MEMDEV_WriteExAt()

Description

Writes the contents of the given Memory Device into the currently selected device at
the specified position using alpha blending and scaling.

Prototype

void GUI_MEMDEV_WriteExAt (GUI_MEMDEV_Handle hMem,
int x, int y, int xMag, int yMag, int Alpha);

Parameter Description
hMem Handle to Memory Device.
X Position in X.
Y Position in Y.
xMag Scaling factor for X-axis * 1000.
vMag Scaling factor for Y-axis * 1000.
Alpha Alpha blending factor, 0 - 255.

Additional information
A negative scaling factor mirrors the output.

Example

The following example creates 2 Memory Devices: hMemO (40x10) and hMeml
(80x20). A small white text is drawn at the upper left position of hMem0O and hMem1.
Then the function GUI_MEMDEV_WriteEx() writes the contents of hMemO to hMem1
using mirroring and magnifying:

GUI_MEMDEV_Handle hMemO, hMeml;
GUI_Init();

hMemO = GUI_MEMDEV_Create(0, 0, 40, 10);
hMeml = GUI_MEMDEV_Create(0, 0, 80, 20);
GUI_MEMDEV_Select (hMemO) ;
GUI_SetTextMode (GUI_TM_TRANS) ;
GUI_DispString("Text") ;
GUI_MEMDEV_Select (hMeml) ;

GUI_SetBkColor (GUI_RED) ;

GUI_Clear () ;

GUI_DispStringAt ("Text", 0, 0);
GUI_MEMDEV_WriteExAt (hMemO, 0, 0, -2000, -2000, 160);
GUI_MEMDEV_CopyToLCD (hMeml) ;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

307

Screenshot of the above example

GUI_SelectLCD()

Description
Selects the LCD as target for drawing operations.

Prototype
void GUI_SelectLCD(void))

Example for using a Memory Device

The sample folder contains the following example which shows how Memory Devices
can be used:

. MEMDEV_MemDev.c

This example demonstrates the use of a Memory Device. Some items are written to a
Memory Device and then copied to the display. Note that several other examples also
make use of Memory Devices and may also be helpful to get familiar with them.

Screenshot of the above example:

MEMDEVY MemDev - Sample

shows the advantage of using a
memorydevice

13.13 Banding Memory Device

A Memory Device is first filled by executing the specified drawing functions. After fill-
ing the device, the contents are drawn to the LCD. There may be note enough mem-
ory available to store the complete output area at once, depending on vyour
configuration. A banding Memory Device divides the drawing area into bands, in
which each band covers as many lines as possible with the currently available mem-
ory.

GUI_MEMDEV_Draw()

Description
Drawing function to avoid flickering.

Prototype
int GUI_MEMDEV_Draw (GUI_RECT * pRect, GUI_CALLBACK_VOID_P * pfDraw,

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

308

CHAPTER Memory Devices

void * pData, int NumLines,
int Flags)
Parameter Description

pRect Pointer to a GUI_RECT structure for the used LCD area.

pfDraw Pointer to a callback function for executing the drawing.

pData Pointer to a data structure used as parameter for the callback function.

NumLines 0 (recommended) or nhumber of lines for the Memory Device.

Flags See table below.

Permitted values for parameter Flags

Default: The Memory Device is created with a
GUI_MEMDEV_HASTRANS transparency flag which ensures that the back-
ground will be drawn correctly.

Creates a Memory Device without transparency. The

GUI_MEMDEV_NOTRANS user must make sure that the background is drawn
(recommended) correctly. Should be used for optimization purposes
only.

Return value
0 if successful, 1 if the routine fails.

Additional information

If the parameter NumLines is 0, the number of lines in each band is calculated auto-
matically by the function. The function then iterates over the output area band by
band by moving the origin of the Memory Device.

Example for using a banding Memory Device

The sample folder contains the following example which shows how the function can
be used:
. MEMDEV_Banding.c

Screen shot of above example

Banding memnory device
without Flickering

13.14 Auto device object

Memory Devices are useful when the display must be updated to reflect the move-
ment or changing of items, since it is important in such applications to prevent the
LCD from flickering. An auto device object is based on the banding Memory Device,
and may be more efficient for applications such as moving indicators, in which only a
small part of the display is updated at a time.

The device automatically distinguishes which areas of the display consist of fixed
objects and which areas consist of moving or changing objects that must be updated.
When the drawing function is called for the first time, all items are drawn. Each fur-
ther call updates only the space used by the moving or changing objects. The actual

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

309

drawing operation uses the banding Memory Device, but only within the necessary
space. The main advantage of using an auto device object (versus direct usage of a
banding Memory Device) is that it saves computation time, since it does not keep
updating the entire display.

GUI_MEMDEYV_CreateAuto()

Description
Creates an auto device object.

Prototype

int GUI_MEMDEV_CreateAuto (GUI_AUTODEV * pAutoDev) ;
Parameter Description

pAutoDev Pointer to a GUI_AUTODEV object.

Return value
Currently 0, reserved for later use.

GUI_MEMDEV_DeleteAuto()

Description
Deletes an auto device object.

Prototype

void GUI_MEMDEV_DeleteAuto (GUI_AUTODEV * pAutoDev) ;
Parameter Description

pAutoDev Pointer to a GUI_AUTODEV object.

GUI_MEMDEV_DrawAuto()

Description
Executes a specified drawing routine using a banding Memory Device.

Prototype

int GUI_MEMDEV_DrawAuto (GUI_AUTODEV * pAutoDev,
GUI_AUTODEV_INFO * pAutoDevInfo,
GUI_CALLBACK_VOID_P * pfDraw,
void * pbata) ;

Parameter Description

pAutoDev Pointer to a GUI_AUTODEV object.

pAutoDevInfo | Pointer to a GUI_AUTODEV_INFO object.

pfDraw Pointer to the user-defined drawing function which is to be executed.

pData Pointer to a data structure passed to the drawing function.

Return value
0 if successful, 1 if the routine fails.

Additional information

The GUI_AUTODEV_INFO structure contains the information about what items must be
drawn by the user function:

typedef struct {
char DrawFixed;
} GUI_AUTODEV_INFO;

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

310

CHAPTER Memory Devices

DrawFixed is set to 1 if all items have to be drawn. It is set to 0 when only the mov-
ing or changing objects have to be drawn. We recommend the following procedure
when using this feature:

typedef struct {
GUI_AUTODEV_INFO AutoDevInfo; /* Information about what has to be drawn */
/* Additional data used by the user function */

} PARAM;
static void Draw(void * p) {
PARAM * pParam = (PARAM *)p;

if (pParam->AutoDevInfo.DrawFixed) ({
/* Draw fixed background */

}

/* Draw moving objects */

if (pParam->AutoDevInfo.DrawFixed) {
/* Draw fixed foreground (if needed) */

}
}

void main (void) {
PARAM Param; /* Parameters for drawing routine */
GUI_AUTODEV AutoDev; /* Object for banding Memory Device */
/* Set/modify informations for drawing routine */

GUI_MEMDEV_CreateAuto (&AutoDev); /* Create GUI_AUTODEV-object */

GUI_MEMDEV_DrawAuto (&AutoDev, /* Use GUI_AUTODEV-object for drawing */
&Param.AutoDevInfo,
&Draw,
&Param) ;

GUI_MEMDEV_DeleteAuto (&AutoDev); /* Delete GUI_AUTODEV-object */
}

Example for using an auto device object

The example MEMDEV_AutoDev.c demonstrates the use of an auto device object. It
can be found as MEMDEV_AutoDev.c. A scale with a moving needle is drawn in the
background and a small text is written in the foreground. The needle is drawn with
the antialiasing feature of emWin. High-resolution antialiasing is used here to
improve the appearance of the moving needle. For more information, see the chapter
“Antialiasing” on page 889.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

311

Screen shot of above example
scale using GUI_AUTODEV-ob ject

Milliseconds ~ picture:
1.35

13.15 Measurement device object

Measurement devices are useful when you need to know the area used to draw
something. Creating and selecting a measurement device as target for drawing oper-
ations makes it possible to retrieve the rectangle used for drawing operations.

GUI_MEASDEV_ClearRect()

Description
Call this function to clear the measurement rectangle of the given measurement
device.
Prototype
void GUI_MEASDEV_ClearRect (GUI_MEASDEV_Handle hMem) ;
Parameter Description
hMem Handle to measurement device.
GUI_MEASDEV_Create()
Description

Creates a measurement device.

Prototype
GUI_MEASDEV_Handle GUI_MEASDEV_Create(void) ;

Return value
The handle of the measurement device.

GUI_MEASDEV_Delete()

Description
Deletes a measurement device.

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

312 CHAPTER Memory Devices

Prototype

void GUI_MEASDEV_Delete (GUI_MEASDEV_Handle hMem) ;
Parameter Description

hMem Handle to measurement device.

GUI_MEASDEV_GetRect()

Description

Retrieves the result of the drawing operations.

Prototype

void GUI_MEASDEV_GetRect (GUI_MEASDEV_Handle hMem, GUI_RECT *pRect) ;
Parameter Description

hMem Handle to measurement device.

pRect Pointer to GUI_RECT-structure to store result.

GUI_MEASDEV_Select()

Description

Selects a measurement device as target for drawing operations.

Prototype

void GUI_MEASDEV_Select (GUI_MEASDEV_Handle hMem) ;
Parameter Description

hMem Handle to measurement device.

Example

The following example shows the use of a measurement device. It creates a mea-
surement device, draws a line and displays the result of the measurement device:

void MainTask (void) {
GUI_MEASDEV_Handle hMeasdev;
GUI_RECT Rect;
GUI_Init();
hMeasdev = GUI_MEASDEV_Create() ;
GUI_MEASDEV_Select (hMeasdev) ;
GUI_DrawLine (10, 20, 30, 40);
GUI_SelectLCD() ;
GUI_MEASDEV_GetRect (hMeasdev, &Rect);
GUI_MEASDEV_Delete (hMeasdev) ;
GUI_DispString("X0:");
GUI_DispDec (Rect.x0, 3);
GUI_DispString(" Y0:");
GUI_DispDec (Rect.y0, 3)
GUI_DispString (" X1:");
GUI_DispDec (Rect.x1l, 3);
GUI_DispString(" Y1:");
GUI_DispDec (Rect.yl, 3)

UMO03001 User & Reference Guide for emWin V5.20 © 1997 - 2013 SEGGER Microcontroller GmbH & Co. KG

313

Screenshot of the above example:

REIOLA NVAarazE w1:a30 Y1048

13.16 Animation functions

Animations can be used to inject some life into the application. They will always help
to let the user’s eye smoothly capture what happens. All animation functions require

32-bit devices.

GUI_MEMDEV_FadeDevices()

Description

Performs fading from one to another Memory Device.

Prototype

int GUI_MEMDEV_FadeDevices (GUI_MEMDEV_Handle hMemO,

GUI_MEMDEV_Handle hMeml,
int Period) ;

Parameter Description
hMem0 Handle to the Memory Device which has to be faded out.
hMeml Handle to the Memory Device which has to be faded in.
Period Time period in which the fading is processed.

Return value

0 if successful, 1 if the function fails.

Additional Information

Please note that this function only processes if hMem0 and hMem1 are of the same
size and are located at the same position on the screen.

Example

For an example on using the fading functions, please refer to
"MEMDEV_FadingPerformance.c" which can be found in "emWin\Sample\Tutorial".

Screenshots