

RoHS

COMPLIANT

HALOGEN

FREE

Fast Soft Recovery Rectifier Diode, 30 A

VS-30EPF1...

PRODUCT SUMMARY TO-247AC, TO-247AC modified (2 pins) Package 30 A I_{F(AV)} 1000 V, 1200 V V_R V_F at I_F 1.41 V 350 A I_{FSM} 95 ns t_{rr} 150 °C T_J max. Diode variation Single die Snap factor 0.6

FEATURES

- 150 °C max. operating junction temperature
- · Low forward voltage drop and short reverse recovery time
- Designed and according qualified to JEDEC-JESD47
- Compliant to RoHS Directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition (-M3 only)

APPLICATIONS

These devices are intended for use in output rectification and freewheeling in inverters, choppers and converters as well as in input rectification where severe restrictions on conducted EMI should be met.

DESCRIPTION

The VS-30EPF1... and VS-30APF1... soft recovery rectifier series has been optimized for combined short reverse recovery time and low forward voltage drop.

The glass passivation ensures stable reliable operation in the most severe temperature and power cycling conditions.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _{F(AV)}	Sinusoidal waveform	30	A	
V _{RRM}		1000 to 1200	V	
I _{FSM}		350	A	
V _F	30 A, T _J = 25 °C	1.41	V	
t _{rr}	1 A, 100 A/µs	95	ns	
TJ		- 40 to 150	°C	

VOLTAGE RATINGS					
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} AT 150 °C mA		
VS-30EPF10PbF, VS-30APF10PbF VS-30EPF10-M3, VS-30APF10-M3	1000	1100	6		
VS-30EPF12PbF, VS-30APF12PbF VS-30EPF12-M3, VS-30APF12-M3	1200	1300	O		

Revision: 20-Oct-11

Document Number: 93705

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum average forward current	I _{F(AV)}	T_{C} = 95 °C, 180° conduction half sine wave	30	
Maximum peak one cycle	I _{FSM}	10 ms sine pulse, rated V_{RRM} applied	300	А
non-repetitive surge current		10 ms sine pulse, no voltage reapplied	350	
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V _{RRM} applied	450	A ² s
Maximum -t for fusing		10 ms sine pulse, no voltage reapplied	636	A-2
Maximum I ² \sqrt{t} for fusing I ² \sqrt{t}		t = 0.1 ms to 10 ms, no voltage reapplied	6360	A²√s

ELECTRICAL SPECIFICATIONS					
PARAMETER SYMBOL TEST CONDITIONS		VALUES	UNITS		
Maximum forward voltage drop	V _{FM}	30 A, T _J = 25 °C		1.41	V
Forward slope resistance	r _t	T 150 %C		10.09	mΩ
Threshold voltage	V _{F(TO)}	T _J = 150 °C		0.992	V
Maximum rayaraa laakaga aurrant	I _{RM}	T _J = 25 °C	V Deted V	0.1	mA
Maximum reverse leakage current		T _J = 150 °C	$V_{R} = Rated V_{RRM}$	6	

RECOVERY CHARACTERISTICS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Reverse recovery time	t _{rr}	In at 30 Anic	450	ns	I _{FM} t
Reverse recovery current	I _{rr}	I _F at 30 A _{pk} 25 A/μs	6.1	А	$t_a \mid t_b$
Reverse recovery charge	Q _{rr}	25 °C	2.16	μC	$\frac{\text{dir}}{\text{dt}}$
Snap factor	S	Typical	0.6		dt I _{RM(REC)}

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 150	°C	
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	0.8		
Maximum thermal resist junction to ambient	Maximum thermal resistance, junction to ambient			40	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2		
Approximate weight				6	g	
Approximate weight				0.21	oz.	
Mounting torque	minimum			6 (5)	kgf ⋅ cm	
Mounting torque	maximum			12 (10)	(lbf ⋅ in)	
			Case at the TO 247AC modified	30EPF10		
Marking device			Case style TO-247AC modified	30EPF12		
				30APF10		
			Case style TO-247AC	30APF12		

Revision: 20-Oct-11

2

Document Number: 93705

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-30.PF1.PbF Series, VS-30.PF1.-M3 Series

180

120°

90

60°

309

10

20

RMS limit

Vishay Semiconductors

Conduction period

30.PF.. Series

40

50

T_{.1} = 150 °C

30

Average Forward Current (A)

DC

Ø

Conduction angle

30.PF.. Series

T_{.1} = 150 °C

25

30

35

30.PF.. Series

50

0.01

Fig. 6 - Maximum Non-Repetitive Surge Current

30

20

10

0

0

10

15

Average Forward Current (A)

Fig. 3 - Forward Power Loss Characteristics

20

3

Document Number: 93705

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Fig. 8 - Recovery Time Characteristics, $T_J = 25$ °C

Fig. 9 - Recovery Time Characteristics, $T_J = 150 \ ^\circ C$

Fig. 10 - Recovery Charge Characteristics, $T_J = 25 \ ^{\circ}C$

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Fig. 13 - Recovery Current Characteristics, T_J = 150 °C

Fig. 14 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

• -M3 = Halogen-free, RoHS compliant and terminations lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-30EPF10PbF	25	500	Antistatic plastic tubes			
VS-30EPF10-M3	25	500	Antistatic plastic tubes			
VS-30APF10PbF	25	500	Antistatic plastic tubes			
VS-30APF10-M3	25	500	Antistatic plastic tubes			
VS-30EPF12PbF	25	500	Antistatic plastic tubes			
VS-30EPF12-M3	25	500	Antistatic plastic tubes			
VS-30APF12PbF	25	500	Antistatic plastic tubes			
VS-30APF12-M3	25	500	Antistatic plastic tubes			

LINKS TO RELATED DOCUMENTS				
Dimensions	TO-247AC modified	www.vishay.com/doc?95253		
Dimensions	TO-247AC	www.vishay.com/doc?95223		
	TO-247AC modified PbF	www.vishay.com/doc?95255		
Port marking information	TO-247AC modified -M3	www.vishay.com/doc?95442		
Part marking information	TO-247AC PbF	www.vishay.com/doc?95226		
	TO-247AC -M3	www.vishay.com/doc?95007		
SPICE model		www.vishay.com/doc?95184		

Revision: 20-Oct-11 Document Number: 93705 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

6

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.