ECOSPARK® Ignition IGBT

300 mJ, 400 V, N-Channel Ignition IGBT

Features

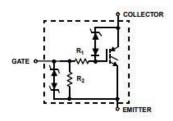
- SCIS Energy = 300 mJ at $T_J = 25$ °C
- Logic Level Gate Drive
- This Device is Pb-Free and is RoHS Compliant
- AEC-Q101 Qualified and PPAP Capable

Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Applications

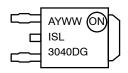
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ Unless Otherwise Stated)

Parameter	Symbol	Value	Units
Collector to Emitter Breakdown Voltage (I _C = 1 mA)	BV _{CER}	400	V
Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	BV _{ECS}	24	٧
ISCIS = 14.2 A, L = 3.0 mHz, R_{GE} = 1 KΩ (Note 1), T_{C} = 25°C	E _{SCIS25}	300	mJ
ISCIS = 10.6 A, L = 3.0 mHz, R_{GE} = 1 KΩ (Note 2), T_{C} = 150°C	E _{SCIS150}	170	mJ
Collector Current Continuous, at V _{GE} = 4.0 V, T _C = 25°C	IC25	21	Α
Collector Current Continuous, at V _{GE} = 4.0 V, T _C = 110°C	IC110	17	Α
Gate to Emitter Voltage Continuous	V_{GEM}	±10	V
Power Dissipation Total, T _C = 25°C	PD	150	W
Power Dissipation Derating, T _C > 25°C	PD	1	W/°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 175	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	300	°C
Reflow soldering according to JESD020C	T _{PKG}	260	°C
HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω	ESD	4	kV
CDM-Electrostatic Discharge Voltage at 1 Ω	ESD	2	kV


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Self Clamped inductive Switching Energy (ESCIS25) of 300 mJ is based on the test conditions that is starting T_J = 25°C, L = 3 mHz, ISCIS = 14.2 A, V_{CC} = 100 V during inductor charging and V_{CC} = 0 V during time in clamp.
- 2. Self Clamped inductive Switching Energy (ESCIS150) of 170 mJ is based on the test conditions that is starting $T_J = 150^{\circ}C$, L = 3 mHz, ISCIS = 10.6 A, $V_{CC} = 100$ V during inductor charging and $V_{CC} = 0$ V during time in clamp.

ON Semiconductor®


www.onsemi.com

DPAK (SINGLE GAUGE) CASE 369C

MARKING DIAGRAM

ISL3040DG = Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

1

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Max	Units
Junction-to-Case - Steady State (Drain) (Notes 1, 3 and 4)	$R_{ heta JC}$	1	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless Otherwise Specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Collector to Emitter Breakdown Voltage	BV _{CER}	I_{CE} = 2 mA, V_{GE} = 0 V, R_{GE} = 1 K Ω , T_{J} = -40 to 150°C		370	400	430	V
Collector to Emitter Breakdown Voltage	BV _{CES}	I_{CE} = 10 mA, V_{GE} = 0 V, R_{GE} = 0, T_{J} = -40 to 150°C		390	420	450	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	$I_{CE} = -75 \text{ mA}, V_{GE} = 0$ $T_{J} = 25^{\circ}\text{C}$	V,	30	-	-	V
Gate to Emitter Breakdown Voltage	BV _{GES}	I _{GES} = ±2 mA		±12	±14	-	V
Collector to Emitter Leakage Current	I _{CER}	V _{CE} = 175 V,	T _J = 25°C	-	-	25	μΑ
$R_{GE} = 1 \text{ K}\Omega$ $T_{J} = 150^{\circ}\text{C}$	T _J = 150°C	_	-	1	mA		
Emitter to Collector Leakage Current	I _{ECS}	V _{EC} = 24 V	T _J = 25°C	_	_	1	mA
			T _J = 150°C	_	-	40	
Series Gate Resistance	R ₁			_	70	-	Ω
Gate to Emitter Resistance	R ₂			10 K	-	26 K	Ω
ON CHARACTERISTICS							
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _{CE} = 6 A, V _{GE} = 4 V T _J = 25°C		-	1.25	1.65	V
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _{CE} = 10 A, V _{GE} = 4.5 V T _J = 150°C		_	1.58	1.80	V
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _{CE} = 15 A, V _{GE} = 4.5 V T _J = 150°C		-	1.90	2.20	V
OYNAMIC CHARACTERISTICS							
Gate Charge	Q _{G(ON)}	I _{CE} = 10 A, V _{CE} = 12 V	, V _{GE} = 5 V	-	17	-	nC
Gate to Emitter Threshold Voltage	V _{GE(TH)}	I _{CE} = 1 mA, V _{CE} = V _{GE}	T _J = 25°C	1.3	-	2.2	V
			T _J = 150°C	0.75	-	1.8	
Gate to Emitter Plateau Voltage	V_{GEP}	V _{CE} = 12 V, I _{CE} = 10 A		-	3.0	-	V
WITCHING CHARACTERISTICS							
Current Turn-On Delay Time-Resistive	td _{(ON)R}	$V_{CE} = 14 \text{ V}, R_{L} = 1 \Omega$ $V_{GE} = 5 \text{ V}, R_{G} = 470 \Omega$ $T_{J} = 25^{\circ}\text{C}$		-	0.7	4	μs
Current Rise Time-Resistive	t _{rR}			-	2.1	7	
Current Turn-Off Delay Time-Inductive	td _{(OFF)L}	V _{CE} = 300 V, L = 1 mH,		-	4.8	15	
Current Fall Time-Inductive	tfL	$V_{GE} = 5 \text{ V}, R_G = 470 \Omega$ $I_{CE} = 6.5 \text{ A}, T_J = 25^{\circ}\text{C}$		-	2.8	15	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Diameter	Tape Width	Qty
ISL9V3040G1	ISL9V3040D3STV	DPAK (Pb-Free)	330 mm	16 mm	2500

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

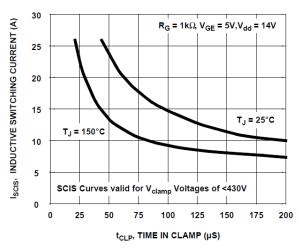


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

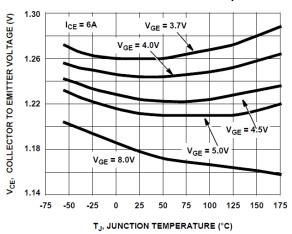


Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

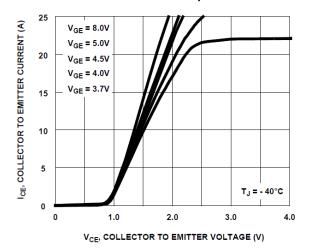


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

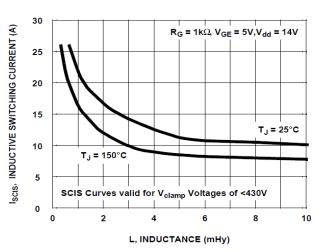


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

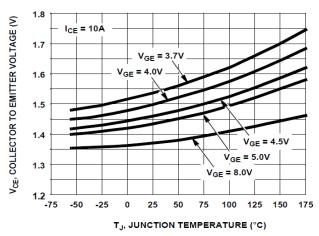


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

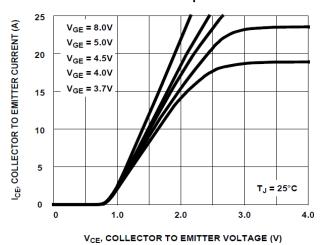


Figure 6. Collector to Emitter On- State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

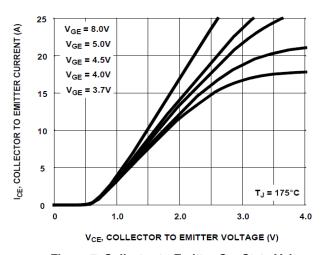


Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

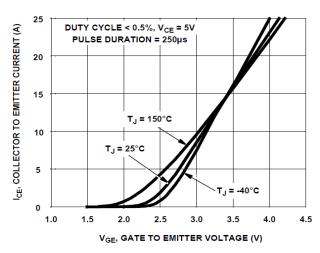


Figure 8. Transfer Characteristics

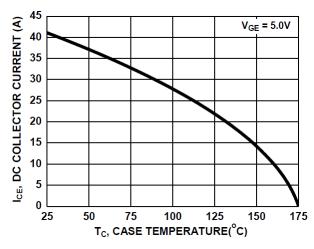


Figure 9. DC Collector Current vs. Case Temperature

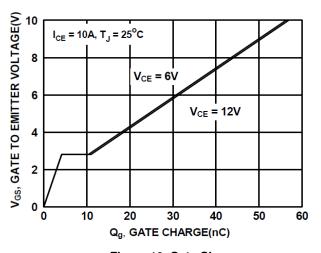


Figure 10. Gate Charge

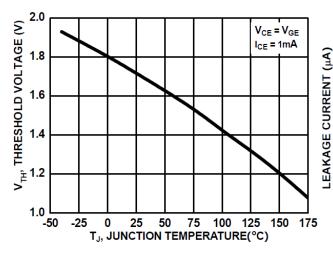


Figure 11. Threshold Voltage vs. Junction Temperature

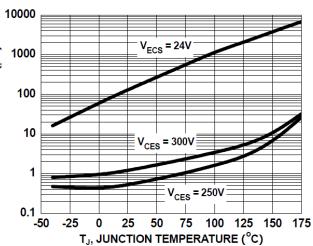


Figure 12. Leakage Current vs. Junction Temperature

TYPICAL CHARACTERISTICS (continued)

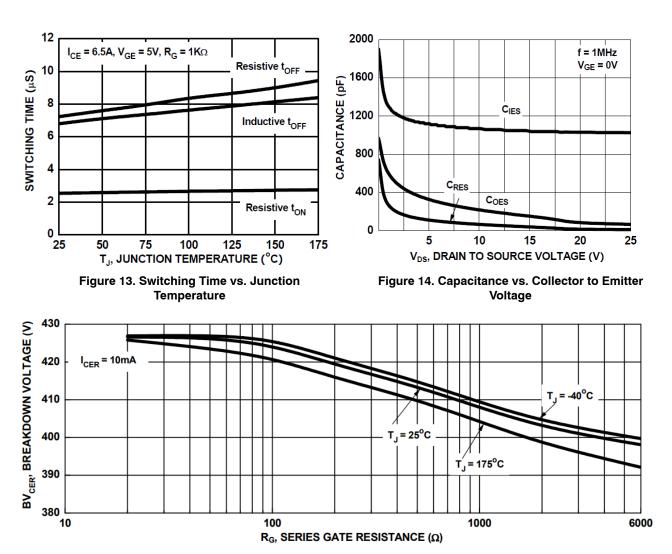
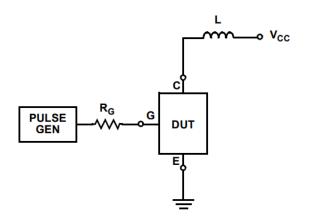



Figure 15. Break down Voltage vs. Series Resistance

Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

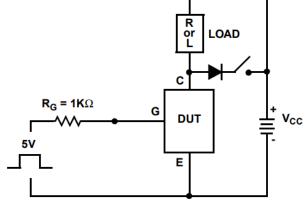


Figure 17. Inductive Switching Test Circuit

Figure 18. $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ Switching Test Circuit

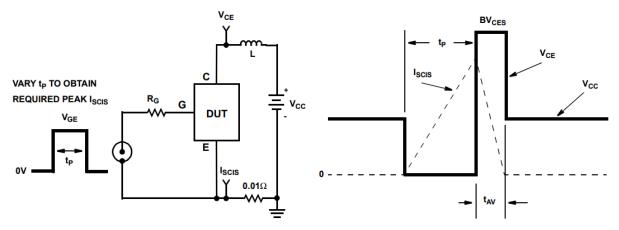
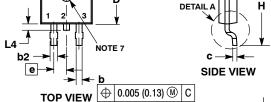


Figure 19. Energy Test Circuit

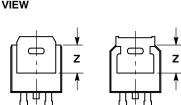
Figure 20. Energy Waveforms

SCALE 1:1

STYLE 1:


PIN 1. BASE 2. COLLECTOR 3. EMITTER

4. COLLECTOR


DPAK (SINGLE GAUGE) CASE 369C **ISSUE F**

DATE 21 JUL 2015

Α - h3 В L3 Ո

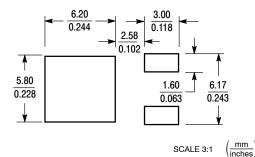
Ħ

BOTTOM VIEW ALTERNATE CONSTRUCTIONS

L2 GAUGE C SEATING Α1 **DETAIL A** ROTATED 90° CW

STYLE 2:

PIN 1. GATE 2. DRAIN


SOURCE

4. DRAIN

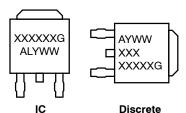
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	2. COLLECTOR	2. CATHODE	2. CATHODE	2. ANODE
3. GATE	EMITTER	ANODE	RESISTOR ADJUST	CATHODE
4. MT2	4. COLLECTOR	CATHODE	4. CATHODE	ANODE

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

z


BOTTOM VIEW

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	2.29 BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot

Υ = Year WW = Work Week G = Pb-Free Package

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON10527D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION: DPAK (SINGLE GAUGE) PAGE 1 OF 1**

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.