150 mA CMOS Low Iq Low-Dropout Voltage Regulator The NCP551 series of fixed output low dropout linear regulators are designed for handheld communication equipment and portable battery powered applications which require low quiescent. The NCP551 series features an ultra–low quiescent current of 4.0 μA . Each device contains a voltage reference unit, an error amplifier, a PMOS power transistor, resistors for setting output voltage, current limit, and temperature limit protection circuits. The NCP551 has been designed to be used with low cost ceramic capacitors and requires a minimum output capacitor of 0.1 μ F. The device is housed in the TSOP–5 surface mount package. Standard voltage versions are 1.4, 1.5, 1.8, 2.5, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, and 5.0 V. Other voltages are available in 100 mV steps. #### **Features** - Low Quiescent Current of 4.0 μA Typical - Maximum Operating Voltage of 12 V - Low Output Voltage Option - High Accuracy Output Voltage of 2.0% - Industrial Temperature Range of -40°C to 85°C (NCV551, T_A = -40°C to +125°C) - NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes - Pb-Free Packages are Available ## **Typical Applications** - Battery Powered Instruments - Hand-Held Instruments - Camcorders and Cameras Figure 1. Representative Block Diagram ## ON Semiconductor® http://onsemi.com TSOP-5 (SOT23-5, SC59-5) SN SUFFIX CASE 483 # PIN CONNECTIONS AND MARKING DIAGRAM xxx = Specific Device Code A = Assembly Location Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. #### **PIN FUNCTION DESCRIPTION** | Pin No. | Pin Name | Description | | |---------|------------------|---|--| | 1 | V _{in} | Positive power supply input voltage. | | | 2 | GND | Power supply ground. | | | 3 | Enable | This input is used to place the device into low–power standby. When this input is pulled low, the device is disabled. If this function is not used, Enable should be connected to V_{in} . | | | 4 | N/C | No Internal Connection. | | | 5 | V _{out} | Regulated output voltage. | | ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | | |--------------------------------|------------------|------------------|------------------------------|----| | Input Voltage | | V _{in} | 0 to 12 | V | | Enable Voltage | | V _{EN} | -0.3 to V _{in} +0.3 | V | | Output Voltage | | V _{out} | -0.3 to V _{in} +0.3 | V | | Power Dissipation | | P _D | Internally Limited | W | | Operating Junction Temperature | | T_J | +150 | °C | | - | NCP551
NCV551 | T _A | -40 to +85
-40 to +125 | °C | | Storage Temperature | | T _{stg} | −55 to +150 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL-STD-883, Method 3015 Machine Model Method 200 V Charge Device Model (CDM) tested C3B per EIA/JESD22-C101. 2. Latchup capability (85°C) ±100 mA DC with trigger voltage. #### THERMAL CHARACTERISTICS | Rating | Symbol | Test Conditions | Typical Value | Unit | |---------------------|----------------|--|---------------|------| | Junction-to-Ambient | $R_{ heta JA}$ | 1 oz Copper Thickness, 100 mm ² | 250 | °C/W | | PSIJ-Lead 2 | Ψ_{J-L2} | 1 oz Copper Thickness, 100 mm ² | 68 | °C/W | NOTE: Single component mounted on an 80 x 80 x 1.5 mm FR4 PCB with stated copper head spreading area. Using the following boundary conditions as stated in EIA/JESD 51-1, 2, 3, 7, 12. ## **ELECTRICAL CHARACTERISTICS** $(V_{in} = V_{out(nom.)} + 1.0 \text{ V}, V_{EN} = V_{in}, C_{in} = 1.0 \text{ } \mu\text{F}, C_{out} = 1.0 \text{ } \mu\text{F}, T_{A} = 25^{\circ}\text{C}, unless otherwise noted.)$ | Characteristic | Symbol | Min | Тур | Max | Unit | |--|-----------------------------------|----------------|------------|----------------|--------| | Output Voltage (T _A = 25°C, I _{out} = 10 mA) | V _{out} | | | | V | | 1.4 V | | 1.358 | 1.4 | 1.442 | | | 1.5 V | | 1.455 | 1.5 | 1.545 | | | 1.8 V | | 1.746 | 1.8 | 1.854 | | | 2.5 V | | 2.425 | 2.5 | 2.575 | | | 2.7 V | | 2.646 | 2.7 | 2.754 | | | 2.8 V | | 2.744 | 2.8 | 2.856 | | | 2.9 V | | 2.842 | 2.9 | 2.958 | | | 3.0 V | | 2.940 | 3.0 | 3.060 | | | 3.1 V | | 3.038 | 3.1 | 3.162 | | | 3.2 V | | 3.136 | 3.2 | 3.264 | | | 3.3 V | | 3.234 | 3.3 | 3.366 | | | 5.0 V | | 4.90 | 5.0 | 5.10 | | | Output Voltage (T _A = T _{low} to T _{high} , I _{out} = 10 mA) | V_{out} | 1 044 | 1.4 | 1 456 | V | | 1.4 V
1.5 V | | 1.344 | 1.4
1.5 | 1.456 | | | 1.5 V
1.8 V | | 1.440 | | 1.560 | | | 2.5 V | | 1.728
2.400 | 1.8
2.5 | 1.872
2.600 | | | 2.5 V
2.7 V | | 2.400 | 2.5 | 2.781 | | | 2.7 V
2.8 V | | 2.716 | 2.8 | 2.884 | | | 2.9 V | | 2.813 | 2.9 | 2.987 | | | 3.0 V | | 2.910 | 3.0 | 3.090 | | | 3.1 V | | 3.007 | 3.1 | 3.193 | | | 3.2 V | | 3.104 | 3.2 | 3.296 | | | 3.3 V | | 3.201 | 3.3 | 3.399 | | | 5.0 V | | 4.850 | 5.0 | 5.150 | | | Line Regulation (V _{in} = V _{out} + 1.0 V to 12 V, I _{out} = 10 mA) | Reg _{line} | _ | 10 | 30 | mV | | Load Regulation (I _{out} = 10 mA to 150 mA, V _{in} = V _{out} + 2.0 V) | Reg _{load} | - | 40 | 65 | mV | | Output Current (V _{out} = (V _{out} at I _{out} = 100 mA) -3%) | | | | | mA | | 1.4 V-2.0 V (V _{in} = 4.0 V) | I _{o(nom.)} | 150 | _ | _ | 1117 (| | 2.1 V-3.0 V (V _{in} = 5.0 V) | | 150 | _ | _ | | | 3.1 V-4.0 V (V _{in} = 6.0 V) | | 150 | _ | _ | | | $4.1 \text{ V} - 5.0 \text{ V} (V_{\text{in}} = 8.0 \text{ V})$ | | 150 | _ | _ | | | Dropout Voltage (I _{out} = 10 mA, Measured at V _{out} -3.0%) | V _{in} -V _{out} | | | | mV | | 1.4 V | vin vout | _ | 170 | 250 | 1* | | 1.5 V, 1.8 V, 2.5 V | | _ | 130 | 220 | | | 2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V, 3.2 V, 3.3 V, 5.0 V | | - | 40 | 150 | | | Quiescent Current | IQ | | | | μΑ | | (Enable Input = 0 V) | | - | 0.1 | 1.0 | ' | | (Enable Input = V _{in} , I _{out} = 1.0 mA to I _{o(nom.)}) | | - | 4.0 | 8.0 | | | Output Voltage Temperature Coefficient | T _c | - | ±100 | - | ppm/°C | | Enable Input Threshold Voltage | V _{th(en)} | | | | V | | (Voltage Increasing, Output Turns On, Logic High) | u1(611) | 1.3 | _ | _ | | | (Voltage Decreasing, Output Turns Off, Logic Low) | | - | - | 0.3 | | | Output Short Circuit Current (V _{out} = 0 V) | I _{out(max)} | | | | mA | | 1.4 V-2.0 V (V _{in} = 4.0 V) | ·out(max) | 160 | 350 | 600 | , | | 2.1 V-3.0 V (V _{in} = 5.0 V) | | 160 | 350 | 600 | | | 3.1 V-4.0 V (V _{in} = 6.0 V) | | 160 | 350 | 600 | | | $4.1 \text{ V} - 5.0 \text{ V} \left(\text{V}_{\text{in}} = 8.0 \text{ V} \right)$ | | 160 | 350 | 600 | | | V III / | I . | | | <u> </u> | | ^{3.} Maximum package power dissipation limits must be observed. $$PD = \frac{T_{J(max)} - T_{A}}{R_{A,IA}}$$ $PD = \frac{R_{\theta}JA}{R_{\theta}JA}$ 4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 5. NCP551 $T_{low} = -40^{\circ}\text{C}$ $T_{high} = +85^{\circ}\text{C}$ $T_{low} = -40^{\circ}C \qquad T_{high} = +85^{\circ}C$ $T_{low} = -40^{\circ}C \qquad T_{high} = +125^{\circ}C.$ NCV551 #### **DEFINITIONS** ## **Load Regulation** The change in output voltage for a change in output current at a constant temperature. ## **Dropout Voltage** The input/output differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 3% below its nominal. The junction temperature, load current, and minimum input supply requirements affect the dropout level. ## **Maximum Power Dissipation** The maximum total dissipation for which the regulator will operate within its specifications. #### **Quiescent Current** The quiescent current is the current which flows through the ground when the LDO operates without a load on its output: internal IC operation, bias, etc. When the LDO becomes loaded, this term is called the Ground current. It is actually the difference between the input current (measured through the LDO input pin) and the output current. ## **Line Regulation** The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse technique such that the average chip temperature is not significantly affected. #### **Line Transient Response** Typical over and undershoot response when input voltage is excited with a given slope. #### **Thermal Protection** Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated at typically 160°C, the regulator turns off. This feature is provided to prevent failures from accidental overheating. #### **Maximum Package Power Dissipation** The maximum power package dissipation is the power dissipation level at which the junction temperature reaches its maximum operating value, i.e. 125°C. Depending on the ambient power dissipation and thus the maximum available output current. 3.45 $V_{out} = 3.3 V$ 3.4 GROUND CURRENT (µA) 3.35 3.3 3.25 3.2 3.15 50 75 100 0 25 125 150 I_{out}, OUTPUT CURRENT (mA) Figure 2. Ground Pin Current versus Output Current Figure 3. Ground Pin Current versus Output Current Figure 4. Ground Pin Current versus Input Voltage Figure 5. Ground Pin Current versus Input Voltage Figure 6. Line Transient Response Figure 7. Line Transient Response Figure 8. Line Transient Response Figure 9. Line Transient Response Figure 10. Line Transient Response Figure 11. Line Transient Response Figure 12. Load Transient Response ON Figure 13. Load Transient Response OFF Figure 14. Load Transient Response OFF Figure 15. Load Transient Response ON Figure 16. Turn-On Response Figure 17. Turn-On Response Figure 18. Output Voltage versus Input Voltage Figure 19. Output Voltage versus Input Voltage #### **APPLICATIONS INFORMATION** A typical application circuit for the NCP551 series is shown in Figure 20. ## Input Decoupling (C1) A $0.1~\mu F$ capacitor either ceramic or tantalum is recommended and should be connected close to the NCP551 package. Higher values and lower ESR will improve the overall line transient response. ## **Output Decoupling (C2)** The NCP551 is a stable Regulator and does not require any specific Equivalent Series Resistance (ESR) or a minimum output current. Capacitors exhibiting ESRs ranging from a few $m\Omega$ up to 3.0 Ω can thus safely be used. The minimum decoupling value is 0.1 μF and can be augmented to fulfill stringent load transient requirements. The regulator accepts ceramic chip capacitors as well as tantalum devices. Larger values improve noise rejection and load regulation transient response. ## **Enable Operation** The enable pin will turn on or off the regulator. These limits of threshold are covered in the electrical specification section of this data sheet. If the enable is not used then the pin should be connected to $V_{\rm in}$. #### Hints Please be sure the V_{in} and GND lines are sufficiently wide. When the impedance of these lines is high, there is a chance to pick up noise or cause the regulator to malfunction. Set external components, especially the output capacitor, as close as possible to the circuit, and make leads as short as possible. #### **Thermal** As power across the NCP551 increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature effect the rate of temperature rise for the part. This is stating that when the NCP551 has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. The maximum dissipation the package can handle is given by: $$PD = \frac{TJ(max) - TA}{R\theta JA}$$ The power dissipated by the NCP551 can be calculated from the following equation: $$P_{tot} = [V_{in} * I_{gnd} (I_{out})] + [V_{in} - V_{out}] * I_{out}$$ or $$V_{inMAX} = \frac{P_{tot} + V_{out} * I_{out}}{I_{GND} + I_{out}}$$ If a 150 mA output current is needed then the ground current from the data sheet is 4.0 μ A. For an NCP551SN30T1 (3.0 V), the maximum input voltage will then be 5.6 V. Figure 20. Typical Application Circuit Input R1 Output Q2 R3 1.0 μF = 3 4 = 1.0 μF Figure 21. Current Boost Regulator The NCP551 series can be current boosted with a PNP transistor. Resistor R in conjunction with V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input/Output differential voltage minimum is increased by V_{BE} of the pass resistor. Figure 22. Current Boost Regulator with Short Circuit Limit Short circuit current limit is essentially set by the V_{BE} of Q2 and R1. $I_{SC} = ((V_{BEQ2} - ib * R2) / R1) + I_{O(max)}$ Regulator Figure 23. Delayed Turn-on If a delayed turn-on is needed during power up of several voltages then the above schematic can be used. Resistor R, and capacitor C, will delay the turn-on of the bottom regulator. Figure 24. Input Voltages Greater than 12 V A regulated output can be achieved with input voltages that exceed the 12 V maximum rating of the NCP551 series with the addition of a simple pre–regulator circuit. Care must be taken to prevent Q1 from overheating when the regulated output (V_{out}) is shorted to GND. ### **ORDERING INFORMATION** | Device | Nominal
Output Voltage | Marking | Package | Shipping [†] | |---------------|---------------------------|---------|---------------------|-----------------------| | NCP551SN15T1 | 1.5 | LAO | TSOP-5 | 3000 / Tape & Reel | | NCP551SN15T1G | 1.5 | LAO | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN18T1 | 1.8 | LAP | TSOP-5 | 3000 / Tape & Reel | | NCP551SN18T1G | 1.8 | LAP | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN25T1 | 2.5 | LAQ | TSOP-5 | 3000 / Tape & Reel | | NCP551SN25T1G | 2.5 | LAQ | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN27T1 | 2.7 | LAR | TSOP-5 | 3000 / Tape & Reel | | NCP551SN27T1G | 2.7 | LAR | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | NOTE: Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative. [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{6.} NCV551 is qualified for automotive use. ## **ORDERING INFORMATION** | Device | Nominal
Output Voltage | Marking | Package | Shipping [†] | |---------------|---------------------------|---------|---------------------|-----------------------| | NCP551SN28T1 | 2.8 | LAS | TSOP-5 | 3000 / Tape & Reel | | NCP551SN28T1G | 2.8 | LAS | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN29T1G | 2.9 | LJL | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN30T1 | 3.0 | LAT | TSOP-5 | 3000 / Tape & Reel | | NCP551SN30T1G | 3.0 | LAT | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN31T1G | 3.1 | LJM | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN32T1G | 3.2 | LIV | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN33T1 | 3.3 | LAU | TSOP-5 | 3000 / Tape & Reel | | NCP551SN33T1G | 3.3 | LAU | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCP551SN50T1 | 5.0 | LAV | TSOP-5 | 3000 / Tape & Reel | | NCP551SN50T1G | 5.0 | LAV | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN14T1G | 1.4 | AAT | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN15T1 | 1.5 | LFZ | TSOP-5 | 3000 / Tape & Reel | | NCV551SN15T1G | 1.5 | LFZ | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN18T1 | 1.8 | LGA | TSOP-5 | 3000 / Tape & Reel | | NCV551SN18T1G | 1.8 | LGA | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN25T1 | 2.5 | LGB | TSOP-5 | 3000 / Tape & Reel | | NCV551SN25T1G | 2.5 | LGB | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN27T1 | 2.7 | LGC | TSOP-5 | 3000 / Tape & Reel | | NCV551SN27T1G | 2.7 | LGC | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN28T1 | 2.8 | LGD | TSOP-5 | 3000 / Tape & Reel | | NCV551SN28T1G | 2.8 | LGD | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN30T1 | 3.0 | LGE | TSOP-5 | 3000 / Tape & Reel | | NCV551SN30T1G | 3.0 | LGE | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN31T1G | 3.1 | LJR | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN32T1 | 3.2 | LFR | TSOP-5 | 3000 / Tape & Reel | | NCV551SN32T1G | 3.2 | LFR | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN33T1 | 3.3 | LGG | TSOP-5 | 3000 / Tape & Reel | | NCV551SN33T1G | 3.3 | LGG | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | | NCV551SN50T1 | 5.0 | LGF | TSOP-5 | 3000 / Tape & Reel | | NCV551SN50T1G | 5.0 | LGF | TSOP-5
(Pb-Free) | 3000 / Tape & Reel | NOTE: Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative. [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{6.} NCV551 is qualified for automotive use. ## **PACKAGE DIMENSIONS** TSOP-5 CASE 483-02 ISSUE F #### NOTES: - AT LEG. 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - CONTHOLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS - 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. - OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN MAX | | | | | Α | 3.00 | BSC | | | | В | 1.50 | BSC | | | | С | 0.90 | 1.10 | | | | D | 0.25 | 0.50 | | | | G | 0.95 BSC | | | | | Н | 0.01 | 0.10 | | | | J | 0.10 | 0.26 | | | | K | 0.20 | 0.60 | | | | L | 1.25 1.55 | | | | | М | 0° 10° | | | | | S | 2 50 | 3.00 | | | OF BASE MATERIAL #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2175 or 800-344-3860 1011 Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.