256-Position $\mathrm{I}^{2} \mathrm{C}^{\circledR}$-Compatible Digital Potentiometer

FEATURES

256-position
End-to-end resistance $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$
Compact SOT-23-8 ($2.9 \mathrm{~mm} \times 3 \mathrm{~mm}$) package
Fast settling time: ts = 5μ s typ on power-up
Full read/write of wiper register
Power-on preset to midscale
Extra package address decode pin ADO
Computer software replaces $\mu \mathrm{C}$ in factory programming applications
Single supply: 2.7 V to 5.5 V
Low temperature coefficient 45 ppm/ ${ }^{\circ} \mathrm{C}$
Low power: lod $=\mathbf{8} \mu \mathrm{A}$
Wide operating temperature: $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Evaluation board available

APPLICATIONS

Mechanical potentiometer replacement in new designs LCD panel V сом adjustment
 LCD panel brightness and contrast control
 Transducer adjustment of pressure, temperature, position, chemical, and optical sensors
 RF amplifier biasing
 Automotive electronics adjustment
 Gain control and offset adjustment

GENERAL DESCRIPTION

The AD5245 provides a compact $2.9 \mathrm{~mm} \times 3 \mathrm{~mm}$ packaged solution for 256-position adjustment applications. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistors, with enhanced resolution, solid-state reliability, and superior low temperature coefficient performance.

The wiper settings are controllable through an $\mathrm{I}^{2} \mathrm{C}$-compatible digital interface, which can also be used to read back the wiper register content. AD0 can be used to place up to two devices on the same bus. Command bits are available to reset the wiper position to midscale or to shut down the device into a state of zero power consumption.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PIN CONFIGURATION

Figure 2.

Operating from a 2.7 V to 5.5 V power supply and consuming less than $8 \mu \mathrm{~A}$ allows usage in portable battery-operated applications.

Note that the terms digital potentiometer, VR, and RDAC are used interchangeably.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
Pin Configuration 1
General Description 1
Revision History 2
Electrical Characteristics 3
$5 \mathrm{k} \Omega$ Version. 3
$10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 4
Timing Characteristics 5
$5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 5
Absolute Maximum Ratings 6
ESD Caution6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
REVISION HISTORY
1/06-Rev. A to Rev. B
Changes to Table 3 5
Changes to Ordering Guide 19
3/04-Rev. 0 to Rev. A
Updated Format Universal
Changes to Features. 1
Changes to Applications 1
Changes to Figure 1 1
Changes to Electrical Characteristics- $5 \mathrm{k} \Omega$ Version 3
Changes to Electrical Characteristics- $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ Versions 4
Changes to Timing Characteristics 5
Changes to Absolute Maximum Ratings 6
Moved ESD Caution to Page 6
Changes to Pin Configuration and Function Descriptions 7
Changes to Figures 22 and 23 11
Moved Figure 25 to Figure 26 11
Moved Figure 26 to Figure 27 11
Moved Figure 27 to Figure 25 11
Deleted Figures 31 and 32 12
Changes to Figure 32, Figure 33 and Figure 34 12
Changes to Rheostat Operation Section 13
Added Figure 35. 13
Changes to Equation 1 and Equation 2 13
Changes to Table 6 and Table 7 13
Test Circuits 12
Theory of Operation 13
Programming the Variable Resistor. 13
Programming the Potentiometer Divider 14
ESD Protection 14
Terminal Voltage Operating Range 14
Power-Up Sequence 14
Layout and Power Supply Bypassing 14
Constant Bias to Retain Resistance Setting. 15
Evaluation Board 15
$I^{2} \mathrm{C}$ Interface 16
$I^{2} \mathrm{C}$-Compatible 2-Wire Serial Bus 16
Outline Dimensions 19
Ordering Guide 19
Added Figure 37 14
Changes to Equation 4 14
Deleted Readback RDAC Value Section 14
Deleted Level Shifting for Bidirectional Interface Section 14
Moved ESD Protection Section to Page 14
Changes to Figure 38 and Figure 39. 14
Moved Terminal Voltage Operating Range Section to Page 14
Changes to Figure 40 14
Moved Power-Up Sequence Section to Page 14
Moved Layout and Power Supply Bypassing Section to Page . 1 15
Added Constant Bias to Retain Resistance Setting Section 15
Added Figure 42 15
Added Evaluation Board Section 15
Added Figure 43 15
Moved I ${ }^{2} \mathrm{C}$ Interface Section to Page. 16
Changes to I2C Compatible 2-Wire Serial Bus Section 16
Moved Table 5 and Table 6 to Page 17
(Renumbered as Table 8 and Table 9)
Moved Figure 36, Figure 37, and Figure 38 to Page. 17
(Renumbered as Figure 44, Figure 45, and Figure 46) Moved Multiply Devices on One Bus Section to Page 18
Updated Ordering Guide 19
Updated Outline Dimensions 19
Moved I ${ }^{2} \mathrm{C}$ Disclaimer to Page 20
5/03-Revision 0: Initial Version

ELECTRICAL CHARACTERISTICS

5 k VERSION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS—RHEOSTAT MODE Resistor Differential Nonlinearity ${ }^{2}$ Resistor Integral Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance ${ }^{3}$ Resistance Temperature Coefficient Wiper Resistance	R-DNL R-INL $\Delta R_{A B}$ $\left(\Delta R_{A B} / R_{A B}\right) / \Delta T \times 10^{6}$ Rw	$\mathrm{R}_{\mathrm{wb}}, \mathrm{V}_{\mathrm{A}}=$ no connect $\mathrm{R}_{\mathrm{wB}}, \mathrm{V}_{\mathrm{A}}=$ no connect $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $V_{A B}=V_{D D}$, wiper $=$ no connect	$\begin{aligned} & -1.5 \\ & -4 \\ & -30 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.75 \\ & \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +4 \\ & +30 \\ & \\ & 120 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$
DC CHARACTERISTICS—POTENTIOMETER D Differential Nonlinearity ${ }^{4}$ Integral Nonlinearity ${ }^{4}$ Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	DER MODE (Specifica DNL INL $\left(\Delta \mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{w}}\right) / \Delta \mathrm{T} \times 10^{6}$ $V_{\text {WFSE }}$ VWZSE	ions Apply to All $\begin{aligned} & \text { Code }=0 \times 80 \\ & \text { Code }=0 \times F F \\ & \text { Code }=0 \times 00 \end{aligned}$	$\begin{aligned} & -1.5 \\ & -1.5 \\ & -6 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.6 \\ & 15 \\ & -2.5 \\ & 2 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +1.5 \\ & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
RESISTOR TERMINALS Voltage Range ${ }^{5}$ Capacitance A, B^{6} Capacitance W ${ }^{6}$ Shutdown Supply Current ${ }^{7}$ Common-Mode Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{A},} \mathrm{~V}_{\mathrm{B}}, \mathrm{~V}_{\mathrm{W}} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \\ & \mathrm{C}_{\mathrm{W}} \\ & \mathrm{I}_{\mathrm{A}^{2} \mathrm{SD}} \\ & \mathrm{I}_{\mathrm{CM}} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \text {, measured to GND, } \\ & \text { code }=0 \times 80 \\ & \mathrm{f}=1 \mathrm{MHz} \text {, measured to GND, } \\ & \text { code }=0 \times 80 \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	GND	90 95 0.01 1	VDD 1	V pF pF $\mu \mathrm{A}$ nA
DIGITAL INPUTS AND OUTPUTS Input Logic High Input Logic Low Input Logic High Input Logic Low Input Current Input Capacitance ${ }^{6}$	V_{IH} VIL V_{H} VII ILL CII	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	2.4 2.1	5	$\begin{aligned} & 0.8 \\ & \\ & 0.6 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Power Supply Range Supply Current Power Dissipation ${ }^{8}$ Power Supply Sensitivity	Vddrange IDD PDISS PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{HH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{code}=\text { midscale } \end{aligned}$	2.7	3 ± 0.02	$\begin{aligned} & 5.5 \\ & 8 \\ & 44 \\ & \pm 0.05 \end{aligned}$	V $\mu \mathrm{A}$ $\mu \mathrm{W}$ \%/\%
DYNAMIC CHARACTERISTICS ${ }^{6,9}$ Bandwidth -3 dB Total Harmonic Distortion V_{w} Settling Time Resistor Noise Voltage Density	BW_5K THDw ts en_wb	$\begin{aligned} & \mathrm{R}_{A B}=5 \mathrm{k} \Omega, \operatorname{code}=0 \times 80 \\ & \mathrm{~V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{~V}_{B}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \mathrm{LSB} \text { error band } \\ & \mathrm{R}_{\mathrm{wB}}=2.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=0 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 0.1 \\ & 1 \\ & 6 \end{aligned}$		MHz \% us $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

[^0]
AD5245

$\mathbf{1 0} \mathbf{k} \Omega, \mathbf{5 0} \mathbf{~ k} \Omega, 100 \mathbf{k} \Omega$ VERSIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS—RHEOSTAT MODE Resistor Differential Nonlinearity ${ }^{2}$ Resistor Integral Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance ${ }^{3}$ Resistance Temperature Coefficient Wiper Resistance	R-DNL R-INL $\Delta R_{\text {AB }}$ $\left(\Delta R_{A B} / R_{A B}\right) / \Delta T \times 10^{6}$ Rw	Rwb, $\mathrm{V}_{\mathrm{A}}=$ no connect $\mathrm{R}_{\text {wb }}, \mathrm{V}_{\mathrm{A}}=$ no connect $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, wiper $=$ no connect $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\begin{aligned} & -1 \\ & -2 \\ & -30 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & +1 \\ & +2 \\ & +30 \\ & \\ & 120 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \mathrm{LSB} \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$
DC CHARACTERISTICS—POTENTIOMETER Differential Nonlinearity ${ }^{4}$ Integral Nonlinearity ${ }^{4}$ Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	IDER MODE (Specific DNL INL $\left(\Delta \mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{w}}\right) / \Delta \mathrm{T} \times 10^{6}$ $V_{\text {wfSE }}$ V WZSE	Vations Apply to All VRs) $\begin{aligned} & \text { Code }=0 \times 80 \\ & \text { Code }=0 \times F F \\ & \text { Code }=0 \times 00 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & -3 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \\ & 15 \\ & -1 \\ & 1 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
RESISTOR TERMINALS Voltage Range ${ }^{5}$ Capacitance A, B6 Capacitance W ${ }^{6}$ Shutdown Supply Current Common-Mode Leakage	$\begin{aligned} & \mathrm{V}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{B},}, \mathrm{~V}_{\mathrm{W}} \\ & \mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{B}} \\ & \mathrm{C}_{\mathrm{W}} \\ & \mathrm{I}_{\mathrm{A} _\mathrm{SD}} \\ & \mathrm{I}_{\mathrm{CM}} \\ & \hline \end{aligned}$	$\begin{aligned} & f=1 \mathrm{MHz}, \text { measured to GND, } \\ & \text { code }=0 \times 80 \\ & f=1 \mathrm{MHz} \text {, measured to GND, } \\ & \text { code }=0 \times 80 \\ & V_{D D}=5.5 \mathrm{~V} \\ & V_{A}=V_{B}=V_{D D} / 2 \end{aligned}$	GND	$\begin{aligned} & 90 \\ & 95 \\ & \\ & 0.01 \\ & 1 \\ & \hline \end{aligned}$	VDD	V pF pF $\mu \mathrm{A}$ nA
DIGITAL INPUTS AND OUTPUTS Input Logic High Input Logic Low Input Logic High Input Logic Low Input Current Input Capacitance ${ }^{6}$	V_{IH} VII V_{H} VIL ILL CII	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{D D}=3 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 2.4 \\ 2.1 \end{gathered}$	5	$\begin{aligned} & 0.8 \\ & 0.6 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Power Supply Range Supply Current Power Dissipation ${ }^{7}$ Power Supply Sensitivity	Vddrange IdD PDISS PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{HH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \\ & \text { code }=\text { midscale } \end{aligned}$	2.7	3 ± 0.02	$\begin{aligned} & 5.5 \\ & 8 \\ & 44 \\ & \pm 0.05 \end{aligned}$	V $\mu \mathrm{A}$ $\mu \mathrm{W}$ \%/\%
DYNAMIC CHARACTERISTICS ${ }^{6,8}$ Bandwidth -3 dB Total Harmonic Distortion V_{w} Settling Time (10 k $\Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$) Resistor Noise Voltage Density	BW THDw ts $\mathrm{e}_{\text {N_WB }}$	$\begin{aligned} & \mathrm{R}_{A B}=10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega, \\ & \mathrm{code}=0 \times 80 \\ & \mathrm{~V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{A B}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \\ & \pm 1 \mathrm{LSB} \text { error band } \\ & \mathrm{R}_{\mathrm{WB}}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=0 \\ & \hline \end{aligned}$		$\begin{aligned} & 600 / 100 / 40 \\ & 0.1 \\ & 2 \\ & 9 \end{aligned}$		kHz \% $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

[^1]
TIMING CHARACTERISTICS

$5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$ VERSIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
$1^{2} \mathrm{C}$ INTERFACE TIMING CHARACTERISTICS ${ }^{2,3,4}$ (Specifications Apply to All Parts)						
SCL Clock Frequency	$\mathrm{f}_{\text {scl }}$				400	kHz
$\mathrm{t}_{\text {buF }}$ Bus Free Time Between STOP and START	t_{1}		1.3			$\mu \mathrm{s}$
$\mathrm{th}_{\text {H; STA }}$ Hold Time (Repeated START)	t_{2}	After this period, the first clock pulse is generated.	0.6			$\mu \mathrm{s}$
ttow Low Period of SCL Clock	t_{3}		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$ High Period of SCL Clock	t_{4}		0.6			μs
tsu;STA Setup Time for Repeated START Condition	t_{5}		0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {ho; }}$ dat Data Hold Time	t_{6}				0.9	$\mu \mathrm{s}$
$\mathrm{tsujPat}^{\text {Data Setup Time }}$	t_{7}		100			ns
t_{F} Fall Time of Both SDA and SCL Signals	t_{8}				300	ns
t_{R} Rise Time of Both SDA and SCL Signals	t_{9}				300	ns
$\mathrm{tsu}_{\text {suso }}$ Setup Time for STOP Condition	t_{10}		0.6			$\mu \mathrm{s}$

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Value
$V_{D D}$ to GND	-0.3 V to +7 V
$\mathrm{~V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, V_{\mathrm{W}}$ to GND	V_{DD}
Terminal Current, A to B, A to W, B to W^{1}	
\quad Pulsed	$\pm 20 \mathrm{~mA}$
\quad Continuous	$\pm 5 \mathrm{~mA}$
Digital Inputs and Output Voltage to GND	0 V to 7 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJMax)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$245^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{2} \theta_{\mathrm{JA}}$: SOT-23-8	$230^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Maximum terminal current is bound by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
${ }^{2}$ Package power dissipation $=\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	W	W Terminal. GND $\leq \mathrm{V}_{\mathrm{W}} \leq \mathrm{V}_{\mathrm{DD}}$.
2	VDD $_{\mathrm{DD}}$	Positive Power Supply.
3	GND	Digital Ground.
4	SCL	Serial Clock Input. Positive edge triggered. Pull-up resistor required.
5	SDA	Serial Data Input/Output. Pull-up resistor required.
6	ADO	Programmable Address Bit 0 for Two-Device Decoding.
7	B	B Terminal. GND $\leq \mathrm{V}_{\mathrm{B}} \leq \mathrm{V}_{\mathrm{DD}}$.
8	A	A Terminal. GND $\leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{DD}}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. R-INL vs. Code vs. Supply Voltages

Figure 5. R-DNL vs. Code vs. Supply Voltages

Figure 6. INL vs. Code vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 7. DNL vs. Code vs. Temperature, VDD $=5 \mathrm{~V}$

Figure 8. INL vs. Code vs. Supply Voltages

Figure 9. DNL vs. Code vs. Supply Voltages

Figure 10. R-INL vs. Code vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 11. R-DNL vs. Code vs. Temperature, $V_{D D}=5 \mathrm{~V}$

Figure 12. Full-Scale Error vs. Temperature

Figure 13. Zero-Scale Error vs. Temperature

Figure 14. Supply Current vs. Temperature

Figure 15. Shutdown Current vs. Temperature

AD5245

Figure 16. Rheostat Mode Tempco $\Delta R_{w B} / \Delta T$ vs. Code

Figure 17. Potentiometer Mode Tempco $\Delta V_{w B} / \Delta T$ vs. Code

Figure 18. Gain vs. Frequency vs. Code, $R_{A B}=5 \mathrm{k} \Omega$

Figure 19. Gain vs. Frequency vs. Code, $R_{A B}=10 \mathrm{k} \Omega$

Figure 20. Gain vs. Frequency vs. Code, $R_{A B}=50 \mathrm{k} \Omega$

Figure 21. Gain vs. Frequency vs. Code, $R_{A B}=100 \mathrm{k} \Omega$

Figure 22. -3 dB Bandwidth @ Code $=0 \times 80$

Figure 23. PSRR vs. Frequency

Figure 24. IDD vs. Frequency

Figure 25. Large Signal Settling Time, Code 0xFF $\geq 0 \times 00$

Figure 26. Digital Feedthrough

Figure 27. Midscale Glitch, Code $0 \times 80 \geq 0 \times 7 F$

AD5245

TEST CIRCUITS

Figure 28 to Figure 34 illustrate the test circuits that define the test conditions used in the product specification tables (Table 1 through Table 3).

Figure 28. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)

Figure 29. Test Circuit for Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 30. Test Circuit for Wiper Resistance

Figure 31. Test Circuit for Power Supply Sensitivity (PSS, PSSR)

THEORY OF OPERATION

The AD5245 is a 256-position digitally controlled variable resistor (VR) device.

An internal power-on preset places the wiper at midscale during power-on, which simplifies the fault condition recovery at power-up.

PROGRAMMING THE VARIABLE RESISTOR

Rheostat Operation

The nominal resistance of the RDAC between Terminals A and B is available in $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The nominal resistance $\left(\mathrm{R}_{A B}\right)$ of the VR has 256 contact points accessed by the wiper terminal, plus the B terminal contact. The 8 -bit data in the RDAC latch is decoded to select one of the 256 possible settings.

Figure 35. Rheostat Mode Configuration
Assuming that a $10 \mathrm{k} \Omega$ part is used, the wiper's first connection starts at the B terminal for Data 0x00. Because there is a 50Ω wiper contact resistance, such a connection yields a minimum of $100 \Omega(2 \times 50 \Omega)$ resistance between Terminals W and B. The second connection is the first tap point, which corresponds to $139 \Omega\left(\mathrm{R}_{\mathrm{WB}}=\mathrm{R}_{\mathrm{AB}} / 256+2 \times \mathrm{R}_{\mathrm{W}}=39 \Omega+2 \times 50 \Omega\right)$ for Data 0×01. The third connection is the next tap point, representing 178Ω $(2 \times 39 \Omega+2 \times 50 \Omega)$ for Data 0×02, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $10,100 \Omega\left(\mathrm{R}_{A B}+2 \times \mathrm{R}_{\mathrm{W}}\right)$.

Figure 36. AD5245 Equivalent RDAC Circuit

The general equation determining the digitally programmed output resistance between W and B is

$$
\begin{equation*}
R_{W B}(D)=\frac{D}{256} \times R_{A B}+2 \times R_{W} \tag{1}
\end{equation*}
$$

where:
D is the decimal equivalent of the binary code loaded in the 8 -bit RDAC register.
$R_{A B}$ is the end-to-end resistance.
R_{W} is the wiper resistance contributed by the on resistance of the internal switch.

In summary, if $R_{A B}=10 \mathrm{k} \Omega$ and the A terminal is open circuited, then the following output resistance $\mathrm{R}_{\text {wB }}$ is set for the indicated RDAC latch codes.

Table 6. Codes and Corresponding R_{wB} Resistance

\mathbf{D} (Dec.)	$\mathbf{R w B}_{\mathbf{w B}}(\mathbf{\Omega})$	Output State
255	9,961	Full Scale ($\mathrm{R}_{\text {AB }}-1$ LSB + Rw)
128	5,060	Midscale
1	139	1 LSB
0	100	Zero Scale (Wiper Contact Resistance)

Note that in the zero-scale condition, a finite wiper resistance of 100Ω is present. Care should be taken to limit the current flow between W and B in this state to a maximum pulse current of no more than 20 mA . Otherwise, degradation or possible destruction of the internal switch contact can occur.

Similar to the mechanical potentiometer, the resistance of the RDAC between the Wiper W and Terminal A also produces a digitally controlled complementary resistance, $\mathrm{R}_{\text {wA }}$. When these terminals are used, the B terminal can be opened. Setting the resistance value for R_{WA} starts at a maximum value of resistance and decreases as the data loaded in the latch increases in value. The general equation for this operation is

$$
\begin{equation*}
R_{W A}(D)=\frac{256-D}{256} \times R_{A B}+2 \times R_{W} \tag{2}
\end{equation*}
$$

For $\mathrm{R}_{A B}=10 \mathrm{k} \Omega$ and the B terminal open circuited, the following output resistance R_{wA} is set for the indicated RDAC latch codes.
Table 7. Codes and Corresponding Rwa Resistance

D (Dec.)	Rwa $(\boldsymbol{\Omega})$	Output State
255	139	Full Scale
128	5,060	Midscale
1	9,961	1 LSB
0	10,060	Zero Scale

Typical device-to-device matching is process lot dependent and can vary by up to $\pm 30 \%$. Because the resistance element is processed in thin film technology, the change in $\mathrm{R}_{A B}$ with temperature has a very low $45 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

PROGRAMMING THE POTENTIOMETER DIVIDER

Voltage Output Operation

The digital potentiometer easily generates a voltage divider at wiper-to- B and wiper-to-A proportional to the input voltage at A to B. Unlike the polarity of $V_{D D}$ to GND, which must be positive, voltage across A to B, W to A, and W to B can be at either polarity.

Figure 37. Potentiometer Mode Configuration
If ignoring the effect of the wiper resistance for approximation, then connecting the A terminal to 5 V and the B terminal to ground produces an output voltage at the wiper-to- B starting at 0 V up to 1 LSB less than 5 V . Each LSB of voltage is equal to the voltage applied across Terminal A and B divided by the 256 positions of the potentiometer divider. The general equation defining the output voltage at V_{w} with respect to ground for any valid input voltage applied to Terminals A and B is

$$
\begin{equation*}
V_{W}(D)=\frac{D}{256} V_{A}+\frac{256-D}{256} V_{B} \tag{3}
\end{equation*}
$$

A more accurate calculation, which includes the effect of wiper resistance, V_{W}, is

$$
\begin{equation*}
V_{W}(D)=\frac{R_{W B}(D)}{R_{A B}} V_{A}+\frac{R_{W A}(D)}{R_{A B}} V_{B} \tag{4}
\end{equation*}
$$

Operation of the digital potentiometer in the divider mode results in a more accurate operation over temperature. Unlike the rheostat mode, the output voltage is dependent mainly on the ratio of the internal resistors, R_{WA} and R_{WB}, not the absolute values. Therefore, the temperature drift reduces to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

ESD PROTECTION

All digital inputs are protected with a series of input resistors and parallel Zener ESD structures, shown in Figure 38 and Figure 39. This applies to the digital input pins SDA, SCL, and AD0.

Figure 38. ESD Protection of Digital Pins

Figure 39. ESD Protection of Resistor Terminals

TERMINAL VOLTAGE OPERATING RANGE

The AD5245 VDD and GND power supply defines the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on Terminals A, B, and W that exceed $V_{D D}$ or GND are clamped by the internal forward-biased diodes (see Figure 40).

Figure 40. Maximum Terminal Voltages Set by VDD and GND

POWER-UP SEQUENCE

Because the ESD protection diodes limit the voltage compliance at Terminals A, B, and W (see Figure 40), it is important to power V_{DD} and GND before applying any voltage to Terminals A, B, and W ; otherwise, the diode is forward biased such that $V_{D D}$ is powered unintentionally and can affect the rest of the user's circuit. The ideal power-up sequence is in the following order: GND, $V_{D D}$, digital inputs, and then V_{A}, V_{B}, and V_{w}. The relative order of powering $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$, and the digital inputs is not important as long as they are powered after VDD and GND.

LAYOUT AND POWER SUPPLY BYPASSING

It is good practice to employ compact, minimum lead length layout design. The leads to the inputs should be as direct as possible with a minimum conductor length. Ground paths should have low resistance and low inductance.

Similarly, it is also good practice to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with disk or chip ceramic capacitors of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize any transient disturbance and low frequency ripple (see Figure 41). Note that the digital ground should also be joined remotely to the analog ground at one point to minimize the ground bounce.

Figure 41. Power Supply Bypassing

CONSTANT BIAS TO RETAIN RESISTANCE SETTING

For users who desire nonvolatility but cannot justify the additional cost for the EEMEM, the AD5245 can be considered a low cost alternative by maintaining a constant bias to retain the wiper setting. The AD5245 is designed specifically with low power in mind, which allows low power consumption even in battery-operated systems. Figure 42 demonstrates the power consumption from a $3.4 \mathrm{~V}, 450 \mathrm{~mA}-\mathrm{hr} \mathrm{Li}$-Ion cell phone battery that is connected to the AD5245. The measurement over time shows that the device draws approximately $1.3 \mu \mathrm{~A}$ and consumes negligible power. Over a course of 30 days, the battery is depleted by less than 2%, the majority of which is due to the intrinsic leakage current of the battery itself.

Figure 42. Battery Operating Life Depletion
This demonstrates that constantly biasing the potentiometer can be a practical approach. Most portable devices do not require the removal of batteries for charging.

Although the resistance setting of the AD5245 is lost when the battery needs replacement, such events occur rather infrequently so that this inconvenience is justified by the lower cost and smaller size offered by the AD5245. If total power is lost, then the user should be provided with a means to adjust the setting accordingly.

EVALUATION BOARD

An evaluation board, along with all necessary software, is available to program the AD5245 from any PC running Windows ${ }^{\circledR} 98 / 2000 / X P$. The graphical user interface, as shown in Figure 43, is straightforward and easy to use. More detailed information is available in the user manual, which is provided with the board.

Figure 43. AD5245 Evaluation Board Software
The AD5245 starts at midscale upon power-up. To increment or decrement the resistance, the user can simply move the scrollbars on the left. To write a specific value, the user should use the bit pattern in the upper screen and click the Run button. The format of writing data to the device is shown in Table 8. To read the data from the device, the user can simply click the Read button. The format of the read bits is shown in Table 9.

AD5245

I 2 C INTERFACE

I^{2} C-COMPATIBLE 2-WIRE SERIAL BUS

The 2 -wire $\mathrm{I}^{2} \mathrm{C}$ serial bus protocol operates as follows:

1. The master initiates data transfer by establishing a START condition, which is when a high-to-low transition on the SDA line occurs while SCL is high (see Figure 45). The next byte is the slave address byte, which consists of the 7-bit slave address followed by an $\mathrm{R} / \overline{\mathrm{W}}$ bit (this bit determines whether data is read from or written to the slave device). The AD5245 has one configurable address bit, AD0 (see Table 8).

The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is termed the acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is high, the master reads from the slave device. On the other hand, if the $\mathrm{R} / \overline{\mathrm{W}}$ bit is low, the master writes to the slave device.
2. In write mode, the second byte is the instruction byte. The first bit (MSB) of the instruction byte is a don't care.

The second MSB, RS, is the midscale reset. A logic high on this bit moves the wiper to the center tap, where $R_{w A}=R_{w b}$. This feature effectively overwrites the contents of the register; therefore, when taken out of reset mode, the RDAC remains at midscale.

The third MSB, SD, is a shutdown bit. A logic high causes an open circuit at Terminal A while shorting the wiper to Terminal B. This operation yields almost 0Ω in rheostat mode or 0 V in potentiometer mode. It is important to note that the shutdown operation does not disturb the contents of the register. When brought out of shutdown, the previous setting is applied to the RDAC. Also during shutdown, new settings can be programmed. When the part is returned from shutdown, the corresponding VR setting is applied to the RDAC.

The remainder of the bits in the instruction byte are don't cares (see Table 8).
3. After acknowledging the instruction byte, the last byte in write mode is the data byte. Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an acknowledge bit). The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 45).
4. In read mode, the data byte follows immediately after the acknowledgment of the slave address byte. Data is transmitted over the serial bus in sequences of nine clock pulses (a slight difference with write mode, in which eight data bits are followed by an acknowledge bit). Similarly, the transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 46).
5. After all data bits have been read or written, a STOP condition is established by the master. A STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. In write mode, the master pulls the SDA line high during the $10^{\text {th }}$ clock pulse to establish a STOP condition (see Figure 45). In read mode, the master issues a no acknowledge for the ninth clock pulse (that is, the SDA line remains high). The master then brings the SDA line low before the $10^{\text {th }}$ clock pulse, which goes high to establish a STOP condition (see Figure 46).

A repeated write function gives the user flexibility to update the RDAC output a number of times after addressing and instructing the part only once. For example, after the RDAC has acknowledged its slave address and instruction bytes in the write mode, the RDAC output updates on each successive byte. If different instructions are needed, then the write/read mode has to start again with a new slave address, instruction, and data byte. Similarly, a repeated read function of the RDAC is also allowed.

Table 8. Write Mode

S	0	1	0	1	1	0	ADO	$\overline{\mathbf{W}}$	A	X	RS	SD	X		X	X	X	A	D7	D6	D5	D4	D3	D2	D1	D0	A	P
	Slave Address Byte											Instruction Byte							Data Byte									

Table 9. Read Mode

S	0	1	0	1	1	0	AD0	R	A	D7	D6	D5	D4	D3	D2	D1	D0	A	P
	Slave Address Byte									Data Byte									

$$
\begin{aligned}
& \mathrm{S}=\text { START condition } \\
& \mathrm{P}=\mathrm{STOP} \text { condition } \\
& \mathrm{A}=\text { Acknowledge } \\
& \mathrm{X}=\text { Don't care } \\
& \overline{\mathrm{W}}=\text { Write }
\end{aligned}
$$

$\mathrm{R}=$ Read
RS = Reset wiper to midscale 0x80
SD = Shutdown connects wiper to B terminal and open circuits
A terminal, but does not change contents of wiper register
D7, D6, D5, D4, D3, D2, D1, D0 = Data Bits

Figure 44. 1^{2} C Interface Detailed Timing Diagram

Figure 46. Reading Data from a Previously Selected RDAC Register in Write Mode

AD5245

Multiple Devices on One Bus

Figure 47 shows two AD5245 devices on the same serial bus. Each has a different slave address because the states of their AD0 pins are different. This allows the RDAC within each device to be written to or read from independently. The master device's output bus line drivers are open-drain pull-downs in a fully $\mathrm{I}^{2} \mathrm{C}$-compatible interface.

Figure 47. Multiple AD5245 Devices on One $I^{2} C$ Bus

OUTLINE DIMENSIONS

Figure 48. 8-Lead Small Outline Transistor Package [SOT-23] (RJ-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding	$\mathrm{R}_{\text {AB }}(\Omega)$	Ordering Quantity
AD5245BRJ5-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOG	5 k	250
AD5245BRJ5-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOG	5 k	3,000
AD5245BRJZ5-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOG	5 k	250
AD5245BRJZ5-RL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOG	5 k	3,000
AD5245BRJ10-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOH	10 k	250
AD5245BRJ10-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOH	10 k	3,000
AD5245BRJZ10-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOH	10 k	250
AD5245BRJZ10-RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOH	10 k	3,000
AD5245BRJ50-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOJ	50 k	250
AD5245BRJ50-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOJ	50 k	3,000
AD5245BRJZ50-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOJ	50 k	250
AD5245BRJZ50-RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOJ	50 k	3,000
AD5245BRJ100-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOK	100 k	250
AD5245BRJ100-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOK	100 k	3,000
AD5245BRJZ100-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23	RJ-8	DOK	100 k	250
AD5245BRJZ100-RL71 AD5245EVAL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOT-23 Evaluation Board	RJ-8	DOK	100 k	3,000

[^3]
AD5245

NOTES

Purchase of licensed $\mathrm{I}^{2} \mathrm{C}$ components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $I^{2} C$ Standard Specification as defined by Philips.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits,General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться
Телефон: 8 (812) 3095832 (многоканальный) Факс: 8 (812) 320-02-42
Электронная почта: org@eplast1.ru
Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2 , корпус 4 , литера A.

[^0]: ${ }^{1}$ Typical specifications represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5 \mathrm{~V}$.
 ${ }^{2}$ Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
 ${ }^{3} \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ no connect.
 ${ }^{4}$ INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V_{A}=V_{D D}$ and $V_{B}=0 V$.
 DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.
 ${ }^{5}$ Resistor Terminals A, B, and W have no limitations on polarity with respect to each other.
 ${ }^{6}$ Guaranteed by design and not subject to production test.
 ${ }^{7}$ Measured at the A terminal. The A terminal is open circuited in shutdown mode.
 ${ }^{8}$ PDIIs is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
 ${ }^{9}$ All dynamic characteristics use $V_{D D}=5 \mathrm{~V}$.

[^1]: Typical specifications represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5 \mathrm{~V}$.
 ${ }^{2}$ Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
 ${ }^{3} \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ no connect.
 ${ }^{4}$ INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V_{A}=V_{D D}$ and $V_{B}=0 V$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.
 ${ }^{5}$ Resistor Terminals A, B, W have no limitations on polarity with respect to each other.
 ${ }^{6}$ Guaranteed by design and not subject to production test.
 ${ }^{7}$ PDISS is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation.
 ${ }^{8}$ All dynamic characteristics use $V_{D D}=5 \mathrm{~V}$.

[^2]: ${ }^{1}$ Typical specifications represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.
 ${ }^{2}$ Guaranteed by design and not subject to production test.
 ${ }^{3}$ See timing diagram (Figure 44) for locations of measured values.
 ${ }^{4}$ Standard $I^{2} \mathrm{C}$ mode operation guaranteed by design.

[^3]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.
 ${ }^{2}$ The evaluation board is shipped with the $10 \mathrm{k} \Omega \mathrm{R}_{A B}$ resistor option; however, the board is compatible with all available resistor value options.

