TOSHIBA CMOS Linear Integrated Circuit Silicon Monolithic # **TCK321G, TCK322G** # 36 V, Dual Inputs – Single Output Power Multiplexer IC with Over Voltage Protection The TCK321G and TCK322G are 36 V high input voltage Dual Inputs-Single Output multiplexer load switch ICs. It has Over Voltage Protection featuring low switch ON resistance, high output current and wide input voltage operation. Switch ON resistance is only 98 m Ω at 4.5 V, - 1.0 A load conditions. And these feature a slew rate control driver, thermal shutdown and flag function. Also it can block reverse current if switch turned off. Output current is available up to 2.0 A per channel. Thus this is suitable for power management selector such as Battery Charge application. This device is available in 0.5 mm pitch small package WCSP16C (1.9 mm x 1.9 mm, t: 0.5 mm (typ.)). Thus this devices is ideal for portable applications that require high-density board assembly such as mobile phone. Weight: 3.9 mg (typ.) #### **Feature** - High output current: IOUT (DC) = 2 A, per channel - Low ON resistance : $R_{ON} = 98 \text{ m}\Omega$ (typ.) at $V_{IN} = 4.5 \text{ V}$, 1.0 A, per channel - Wide input voltage operation: V_{IN} = 2.3 to 36 V - Over Voltage Lockout: 12.0 V, 15.0 V (typ.) - Under Voltage Lockout: 2.9 V (typ.) - Reverse current blocking per channel(SW OFF state) - · Inrush current reducing circuit. - · Auto selection mode - · Manual selection mode - Break Before Make switch - Thermal Shutdown function - Small package: 0.5 mm pitch WCSP16C (1.9 mm x 1.9 mm, t: 0.5 mm (typ.)), PD = 1.65 W #### Top marking Start of commercial production 2015-10 #### Absolute Maximum Ratings (Ta = 25°C) | Characteristics | Symbol | Rating | | | Unit | | | | | |-----------------------------|-------------------------------------|------------|------------|------------|------------|---|------------|--|---| | Input voltage | V _{INA} , V _{INB} | -0.3 to 40 | | | -0.3 to 40 | | -0.3 to 40 | | V | | Control voltage | V _{CNT} , V _{SEL} | -0.3 to 6 | | | -0.3 to 6 | | V | | | | Output voltage | Vout | -0.3 to 18 | | -0.3 to 18 | | | | | | | FLAG voltage | VFLAG | -0.3 to 6 | | -0.3 to 6 | | V | | | | | Output current | lout | DC | 2.0 | | Δ. | | | | | | | | Pulse | 3.0 | (Note 1) | Α | | | | | | Power dissipation | PD | | 1.65 | (Note 2) | W | | | | | | Operating temperature range | T _{opr} | | -40 to 85 | | °C | | | | | | Junction temperature | Tj | | 150 | | °C | | | | | | Storage temperature | T _{stg} | | −55 to 150 | | °C | | | | | Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note1: 1 ms pulse, 1% duty cycle Note2: Rating at mounting on a board: FR4 board. ($40 \text{ mm} \times 40 \text{ mm} \times 1.6 \text{ mm}$, Cu 4 layer) ### Pin Assignment (Top view/Bottom bump) | | 1 | 2 | 3 | 4 | |---|------------------|------------------|------------------|------------------| | Α | FLAG | V _{SEL} | CNT | GND | | В | V _{INA} | V _{OUT} | V _{OUT} | V _{INB} | | С | V _{INA} | V _{OUT} | V _{out} | V _{INB} | | D | V _{INA} | V _{OUT} | V _{OUT} | V _{INB} | #### **Product list** | Part number | Over voltage lockout | Over voltage lockout | FLAG monitored in | | | |-------------|----------------------|----------------------|---------------------|--|--| | | VINA | VINB | auto selection mode | | | | TCK321G | 12.0 V (typ.) | 12.0 V (typ.) | Q1 | | | | TCK322G | 15.0 V (typ.) | 15.0 V (typ.) | Q1 | | | Please ask your local retailer about the devices with other OVLO, logic and functions. ### **Block Diagram** ## **PIN Description** | PIN | Name | Description | |----------------------|------------------------------------|--| | A1 | FLAG | Open drain acknowledge signal output. | | A2 | V _{SEL} | Input selector function. It is internally connected to VOP(Pull up). | | А3 | CNT | Mode control function. It is internally connected to GND(Pull down) | | A4 | GND | Ground | | B1,C1,D1
B4,C4,D4 | V _{INA} ,V _{INB} | Input. Each has Over Voltage Lock Out (OVLO) and Under Voltage Lock Out function (UVLO). | | B2,C2,D2
B3,C3,D3 | V _{out} | Output. | ## **Operation Logic Table** | | | CNT Low | CNT High | | | |--------------------------|---------------------------------|---|--|--|--| | V _{SEL}
Low | V _{INA} Q ₁ | OFF | OFF | | | | | V _{INB} Q ₂ | OFF | ON | | | | | FLAG Q₃ | OFF | ON (When V _{INA} or V _{INB} is out of regular voltage) | | | | | Reverse current block | Q ₁ Active / Q ₂ Active | Q ₁ Active / Q ₂ Inactive | | | | V _{SEL}
High | V _{INA} Q ₁ | Auto selection mode | ON | | | | | V _{INB} Q ₂ | Supplied V _{INA} ; | OFF | | | | | FLAG Q₃ | Q ₁ and Q ₃ ON, Q ₂ OFF
Supplied V _{INB} ; | ON (When V _{INA} or V _{INB} is out of regular voltage) | | | | | Reverse current block | Q_2 ON, Q_1 and Q_3 OFF Supplied V_{INA} and V_{INB} ; Q_1 and Q_3 ON, Q_2 OFF | Q₁ Inactive / Q₂ Active | | | ## DC Characteristics (Ta = -40 to 85°C) | Characteristics | Cumb of | Test Condition | Ta = 25°C | | | Ta = -40 | Unit | | |---|---------------------|--|-----------|------------------|-----|----------|------|------| | Characteristics | Symbol | | Min | Тур. | Max | Min | Max | Unit | | Input voltage | VIN | _ | 2.3 | _ | 36 | 2.3 | 36 | V | | VSEL, CNT High-level input voltage | VIH | VINA, VINB = 2.3 to 36 V | 1.6 | _ | _ | 1.6 | _ | V | | VSEL, CNT Low-level input voltage | VIL | VINA, VINB = 2.3 to 36 V | 1 | _ | 0.4 | _ | 0.4 | V | | Over voltage lock out (OVLO) | \/o\#_BI | TCK321G | 1 | 12.0 | 1 | 10.5 | 13.5 | V | | rising threshold | Vovl_ri | TCK322G | _ | 15.0 | _ | 13.4 | 16.6 | | | Over voltage lock out (OVLO) falling threshold | Vovl_fa | _ | _ | VOVL_RI
- 0.5 | _ | _ | _ | ٧ | | Under voltage lock out (UVLO) rising threshold | Vuvl_ri | _ | _ | 2.9 | _ | 2.3 | 3.5 | ٧ | | Under voltage lock out (UVLO) falling threshold | Vuvl_fa | _ | _ | Vuvl_ri
- 0.3 | _ | _ | _ | V | | Quiescent current (Switch ON state) | IQ(ON) | Q1 or Q2 = ON mode,
I _{OUT} = 0 mA , VIN=5.0 V | _ | 140 | _ | _ | 200 | μА | | Quiescent current (Switch OFF state) | I _{Q(OFF)} | CNT and VSEL: Low,
VINA or VINB = 5.0 V,
VOUT = 0 V | _ | 60 | _ | _ | 90 | μΑ | | Switch OFF state current | loff | CNT and VSEL: Low,
VIN = Open, VOUT = 5 V | _ | 0.1 | _ | _ | 1 | μΑ | | Reverse blocking current | I _{RB} | CNT and VSEL: Low,
VIN = 0 V, VOUT = 5.0 V | _ | 0.1 | _ | _ | 10 | μΑ | | On resistance | Ron | I _{OUT} = -1.0 A, V _{IN} = 4.5 V | _ | 98 | _ | _ | 170 | mΩ | | FLAG Leak current | ILEAK | V _{IO} = 5.0 V | _ | _ | 2 | _ | 2 | μΑ | | FLAG Output low voltage | VoL | I _{SINK} = 1 mA, V _{IO} = 5.0 V | _ | _ | 0.4 | _ | 0.4 | V | | VSEL , CNT Pull up resistance | Rvc | _ | _ | 500 | _ | _ | _ | kΩ | ## AC Characteristics (Ta = 25°C) | Characteristics Symbol Test Condition (Figure 1, 2, 3, 4) | | Min | Тур. | Max | Unit | | |---|----------------|---|------|------|------|----| | Hold time | tHD | $V_{UVL} < V_{IN}(5 \text{ V}) < V_{OVL}, \text{ RL} = 50 \ \Omega$ Initial start up V_{OUT} off state to charge-pump on state | _ | 15 | _ | ms | | V _{OUT} OVP off time | tOVP | $\label{eq:VIN} \begin{split} &\text{VIN} > \text{VOVLO}_\text{RI} \;, \; \text{VIN} \; \text{rising} = 2 \; \text{V/}\mu\text{s}, \\ &\text{RL} = 50 \; \Omega \;, \; \text{V}_\text{OUT} \; \text{to} \; 80\% \; \text{of} \; \text{V}_\text{OVLO}_\text{RI} \end{split}$ | _ | 3 | - | μS | | Vout off time | tOFF | $\label{eq:VUVL} V_{\text{UVL}} < V_{\text{IN}} (5 \text{V}) < V_{\text{OVL}}, \text{RL} = 50 \Omega ,$ $\text{CNT low to high to } V_{\text{OUT}} \text{to } 80\% \text{of } V_{\text{IN}}$ | _ | 0.5 | _ | μS | | V _{OUT} rise time | t _r | V_{IN} = 5.0 V , R_{L} = 50 Ω , C_{L} = 1.0 uF | _ | 2 | _ | ms | | Vout fall time | tf | V_{IN} = 5.0 V , R_{L} = 50 Ω , C_{L} = 1.0 uF | _ | 0.12 | _ | ms | | V _{IN} selection delay time | tSEL | V_{IN} = 5.0 V , R_L = 50 Ω , | ı | 0.5 | _ | μS | | Break Before Make time | tBBM | V_{IN} = 5.0 V , R_L = 50 Ω , | | 15 | _ | ms | # Timing chart #### Manual selection mode Fig.1 thd, tovp, tsel Fig.2 tr, tf, tbbm # Timing chart Auto selection mode #### **Application Note** #### 1. Application circuit example (top view) #### 1) Input and Output capacitor An input capacitor (C_{IN}) and an output capacitor (C_{OUT}) are necessary for the stable operation of TCK321G and TCK322G. And it is effective to reduce voltage overshoot or undershoot due to sharp changes in output current and also for improved stability of the power supply. When used, place C_{IN} and C_{OUT} more than 1.0 μF as close to V_{IN} pin to improve stability of the power supply. #### 2) Control pin Control pins for TCK321G and TCK322G are operated by the control voltage and Schmitt trigger. V_{SEL} pin has a tolerant function such that it can be used even if the control voltage is higher than the input voltage. #### 2. Reverse current blocking Reverse current blocking(SW OFF state) function is designed in these products. This function is active at output n-ch MOSEFT turned off. However these does not assure for the suppression of uprising device operation. In use of these products, please read through and understand dissipation idea for absolute maximum ratings from the above mention or our 'Semiconductor Reliability Handbook'. Then use these products under absolute maximum ratings in any condition. Furthermore, Toshiba recommend inserting failsafe system into the design. #### 3. Thermal shut down function Thermal shutdown function is designed in these products, but these does not assure for the suppression of uprising device operation. In use of these products, please read through and understand dissipation idea for absolute maximum ratings from the above mention or our 'Semiconductor Reliability Handbook'. Then use these products under absolute maximum ratings in any condition. Furthermore, Toshiba recommend inserting failsafe system into the design. #### 4. Power Dissipation Board-mounted power dissipation ratings for TCK321G and TCK322G are available in the Absolute Maximum Ratings table. Power dissipation is measured on the board condition shown below. [The Board Condition] Board material: Glass epoxy (FR4) Board dimension: 40 mm x 40 mm (Cu 4 layer) Please allow sufficient margin when designing a board pattern to fit the expected power dissipation. Also take into consideration the ambient temperature, input voltage, output current etc and applying the appropriate derating for allowable power dissipation during operation. #### **Representative Typical Characteristics** #### 1) ON resistance #### 2) Quiescent current 10 ## **Package Dimensions** WCSP16C Unit: mm Weight: 3.9 mg (typ.) Land pattern dimensions (for reference only) Unit: mm #### **RESTRICTIONS ON PRODUCT USE** - Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice. - This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission. - Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS. - PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative. - Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. - Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations. - The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. - ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. - Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations. - Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS. # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Toshiba: TCK322G,LF Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.