

RoHS

MS5525DSO (Digital Small Outline)

SPECIFICATIONS

- Integrated Digital Pressure Sensor (24-bit ΔΣ ADC)
- Fast Conversion Down to 1 ms
- Low Power, 1 μA (standby < 0.15 μA)
- Supply Voltage: 1.8 to 3.6V
- Pressure Range: 1 to 30 PSI
- I²C and SPI Interface

The MS5525DSO is a new generation of Digital Small Outline pressure sensors from MEAS with SPI and I²C bus interface designed for high volume OEM users. The sensor module includes a pressure sensor and an ultra low power 24-bit $\Delta\Sigma$ ADC with internal factory calibrated coefficients. It provides a 24-bit digital pressure and temperature value and different operation modes that allow the user to optimize for conversion speed and current consumption. The MS5525DSO can be interfaced to virtually any microcontroller. The communication protocol is simple, without the need of programming internal registers in the device.

This new sensor module generation is based on leading MEMS technology and latest benefits from MEAS proven experience and know-how in high volume manufacturing of pressure modules, which have been widely used for over a decade.

The rugged engineered thermoplastic transducer is available in single and dual port configurations, and can measure absolute, gauge, compound, and differential pressure from 1 to 30psi.

FEATURES

- Small Outline IC Package
- Barbed Pressure Ports
- Low Power, High Resolution ADC
- Digital Pressure and Temperature Outputs

APPLICATIONS

- Factory Automation
- Altitude and Airspeed Measurements
- Medical Instruments
- Leak Detection

STANDARD RANGES (PSI)

FS Pressure	Absolute	Gauge	Differential
1		DB, SB, ST, DH,FT	DB, SB,ST, DH
2		DB, SB, ST, DH,FT	DB, SB,ST, DH
5		DB, SB, ST, DH,FT	DB, SB,ST ,DH
15	DB, DH,FT	DB, SB, ST, DH,FT	DB, DH
30	DB, DH,FT	DB, SB, ST, DH,FT	DB, DH

See Package Configurations: DB= Dual Barb, DH= Dual Hole, SB=Single Barb, ST=Single Tube, FT=Front Side Tube

ABSOLUTE MAXIMUM RATING

Parameter	Conditions	Min	Max	Unit	Symbol/Notes	
Supply Voltage	$T_A = 25^{\circ}C$	-0.3	3.6	V	V _{DD}	
Storage Temperature		-40	125	°C		
Overpressure	$T_A = 25 \ ^{\circ}C$, both Ports		60	psi		
Burst Pressure	T _A = 25 °C, Port 1			psi	See Table 1	
ESD	НВМ	-4	+4	kV	EN 61000-4-2	
Solder Temperature		250°C, 5 sec max.				

Table 1- BURST PRESSURE BY RANGE AND PORT DESIGNATION.

Range	Port 1	Port 2	Unit
001	10	10	psi
002	20	20	psi
005	50	15	psi
015	120	60	psi
030	120	120	psi

ENVIRONMENTAL SPECIFICATIONS

Parameter	Conditions
Mechanical Shock	Mil Spec 202F, Method 213B, Condition C, 3 Drops
Mechanical Vibration	Mil Spec 202F, Method 214A, Condition 1E, 1Hr Each Axis
Thermal Shock	100 Cycles over Storage Temperature, 30 minute dwell
Life	1 Million FS Cycles
MTTF	>10Yrs, 70 °C, 1 Million Pressure Cycles, 120%FS Pressure

PERFORMANCE SPECIFICATIONS

Supply Voltage¹ 3.0 Vdc

Reference Temperature: 25°C (unless otherwise specified)

PARAMETERS	MIN	ТҮР	МАХ	UNITS	NOTES
Operating Voltage	1.8		3.6		
ADC			24	bits	
Pressure Accuracy		See Table 2 Below		%FS	2,5
Total Error Band (TEB)	-2.5		2.5	%FS	3
Temperature Accuracy (Reference Temperature)		±1.5		°C	4,5
Temperature Accuracy		±2.5		°C	4,5
Supply Current	S	ee OSR Table Belov	/	mA	
Compensated Temperature	0		85	°C	
Operating Temperature	-40		+125	°C	
Conversion Time	See OSR Table Below mS				
Weight		3		grams	
Media	Non-Corrosive Dry Gases Compatible with Silicon, Glass, LCP, RTV, Gold, Thermo-Epoxy, Silicone Gel, Aluminum and Epoxy. See "Wetted Material by Port Designation" chart.				

Notes

1. Proper operation requires an external capacitor placed as shown in Application Circuit. Output is not ratiometric to supply voltage.

2. The maximum deviation from a best fit straight line(BFSL) fitted to the output measured over the pressure range at 25°C. Includes all errors due to pressure non linearity, hysteresis, and non repeatability.

3. The maximum deviation from ideal output with respect to input pressure and temperature over the compensated temperature range. Total error band (TEB) includes all accuracy errors, thermal errors over the compensated temperature range, span and offset calibration tolerances. TEB values are valid only at the calibrated supply voltage.

4. The deviation from a best fit straight line (BFSL) from 25°C. to 85°C.

5. Six coefficients must be read by microcontroller software and are used in a mathematical calculation for converting D1 and D2 into compensated pressure and temperature values.

Table 2- TYPICAL ACCURACY SPECIFICATION BY PRESSURE RANGE

Range	Port 1	Port 2	Unit
001	±0.25	±1.0	%FSS
002	±0.25	±0.5	%FSS
005	±0.50	±1.0	%FSS
015	±0.25	±0.25	%FSS
030	±0.25	±0.25	%FSS

OVERSAMPLNG RATIO (OSR) PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT CHARACTERISTICS

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Current automat		OSR 4096		12.5		
		2048		6.3		
Supply current	I _{DD}	1024		3.2		μA
(1 sample per sec.)		512		1.7		
		256		0.9		
Peak supply current		during conversion		1.4		mA
Standby supply current		at 25℃		0.02	0.14	μA

ANALOG DIGITAL CONVERTER (ADC)

Parameter	Symbol	Conditions		Min.	Тур.	Max	Unit
		OSR	4096	7.40	8.22	9.04	
			2048	3.72	4.13	4.54	
Conversion time	tc		1024	1.88	2.08	2.28	ms
			512	0.95	1.06	1.17	
			256	0.48	0.54	0.60	

INPUT/OUTPUT SPECIFICATIONS

DIGITAL INPUTS (CSB, I²C, DIN, SCLK)

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Serial data clock	SCLK	SPI protocol			20	MHz
Serial data clock	SCL	I2C protocol			400	kHz
Input high voltage	VIH	Pins CSB	80% V _{DD}		100% V _{DD}	V
Input low voltage	VIL		0% V _{DD}		20% V _{DD}	V
Input leakage current	I _{leak25} ℃ I _{leak85} ℃	at 25℃			0.15	μA
Input capacitance	CIN				6	pF

PRESSURE OUTPUTS (I²C, DOUT)

Parameter	Symbol	Conditions	Min.	Тур.	Max	Unit
Output high voltage	V _{OH}	I _{source} = 0.6 mA	80% V _{DD}		100% V _{DD}	V
Output low voltage	V _{OL}	$I_{sink} = 0.6 \text{ mA}$	0% V _{DD}		$20\% V_{DD}$	V
Load capacitance	C _{LOAD}				16	pF

FUNCTIONAL DESCRIPTION

BLOCK DIAGRAM

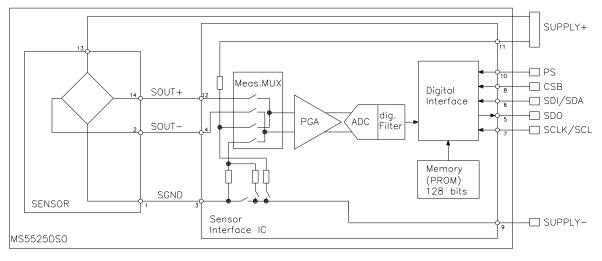


Figure 1: Block diagram of MS5525DSO

GENERAL

The MS5525DSO consists of a piezo-resistive sensor and a sensor interface IC. The main function of the MS5525DSO is to convert the uncompensated analog output voltage from the piezo-resistive pressure sensor to a 24-bit digital value, as well as providing a 24-bit digital value for the temperature of the sensor.

FACTORY CALIBRATION

Every module is individually factory calibrated at two temperatures and three pressures. As a result, six coefficients necessary to compensate for process variations and temperature variations are calculated and stored in the 128-bit PROM of each module. These bits, partitioned into six coefficients, C1 through C6, must be read by the microcontroller software and used in the program converting D1 and D2 into compensated pressure and temperature values.

The coefficients C0 and C7 are for factory calibration and CRC.

SERIAL INTERFACE

The MS5525DSO has built in two types of serial interfaces: SPI and I²C. Pulling the Protocol Select pin PS to low selects the SPI protocol, pulling PS to high activates the I²C bus protocol.

Pin PS	Mode	Pins used
High	I ² C	SDA, SCL CSB
Low	SPI	SDI, SDO, SCLK, CSB

SPI MODE

The external microcontroller clocks in the data through the input SCLK (Serial CLocK) and SDI (Serial Data In). In the SPI mode module can accept both mode 0 and mode 3 for the clock polarity and phase. The sensor responds on the output SDO (Serial Data Out). The pin CSB (Chip Select) is used to enable/disable the interface, so that other devices can talk on the same SPI bus. The CSB pin can be pulled high after the command is sent or after the end of the command execution (for example end of conversion). The best noise performance from the module is obtained when the SPI bus is idle and without communication to other devices during the ADC conversion.

I²C MODE & ADDRESSING

The external microcontroller clocks in the data through the input SCL (Serial CLock) and SDA (Serial DAta). The sensor responds on the same pin SDA which is bidirectional for the I²C bus interface. So this interface type uses only 2 signal lines and does not require a chip select, which can be favorable to reduce board space. In I²C -Mode the complement of the pin CSB (Chip Select) represents the LSB of the I²C address. It is possible to use two sensors with two different addresses on the I²C bus. The pin CSB must be connected to VDD or GND do not leave these pins unconnected.

Pin CSB	Address (7 bits)
High	0x76
Low	0x77

COMMANDS

The MS5525DSO has only five basic commands:

- 1. Reset
- 2. Read PROM (128 bit of calibration words)
- 3. D1 conversion
- 4. D2 conversion
- 5. Read ADC result (24 bit pressure / temperature)

Size of each command is 1 byte (8 bits) as described in the table below. After ADC read commands the device will return 24 bit result and after the PROM read 16bit result. The address of the PROM is embedded inside of the PROM read command using the Ad2, Ad1 and Ad0 bits.

	Comr	nand I	oyte						hex value
Bit number	0	1	2	3	4	5	6	7	
Bit name	PRM	COV	-	Тур	Ad2/ Os2	Ad1/ Os1	Ad0/ Os0	Stop	
Command									
Reset	0	0	0	1	1	1	1	0	0x1E
Convert D1 (OSR=256)	0	1	0	0	0	0	0	0	0x40
Convert D1 (OSR=512)	0	1	0	0	0	0	1	0	0x42
Convert D1 (OSR=1024)	0	1	0	0	0	1	0	0	0x44
Convert D1 (OSR=2048)	0	1	0	0	0	1	1	0	0x46
Convert D1 (OSR=4096)	0	1	0	0	1	0	0	0	0x48
Convert D2 (OSR=256)	0	1	0	1	0	0	0	0	0x50
Convert D2 (OSR=512)	0	1	0	1	0	0	1	0	0x52
Convert D2 (OSR=1024)	0	1	0	1	0	1	0	0	0x54
Convert D2 (OSR=2048)	0	1	0	1	0	1	1	0	0x56
Convert D2 (OSR=4096)	0	1	0	1	1	0	0	0	0x58
ADC Read	0	0	0	0	0	0	0	0	0x00
PROM Read	1	0	1	0	Ad2	Ad1	Ad0	0	0xA0 to
									0xAE

Figure 4: Command structure

Start 5525DSO-pp005GS Example Tmin=-40°C , Tmax=125°C

Variable	Coefficient Description	Recommended	Size [1]	Va	alue	Example/	
andbie	Coencient Description	Variable Type	[Bit]	Min	Max	Typical	
C1	Pressure Sensitivity, SENS _{T1}	unsigned int 16	16	0	65535	36402	
C2	Pressure Offset, OFF _{T1}	unsigned int 16	16	0	65535	39473	
C3	Temperature Coefficient, Pressure Sensitivity, TCS	unsigned int 16	16	0	65535	40393	
C4	Temperature Coefficient, Pressure Offset, TCO	unsigned int 16	16	0	65535	29523	
C5	Reference Temperature, T _{REF}	unsigned int 16	16	0	65535	29854	
C6	Temperature Coefficient Temperature, TEMPSENS	unsigned int 16	16	0	65535	21917	

ure and Temperature Data					
Digital Pressure Value	unsigned int 32	24	0	16777216	5990585
Digital Temperature Value	unsigned int 32	24	0	16777216	3871665
	Digital Pressure Value	Digital Pressure Value unsigned int 32	Digital Pressure Value unsigned int 32 24	Digital Pressure Value unsigned int 32 24 0	Digital Pressure Value unsigned int 32 24 0 16777216

L

Calcula	ate Temperature					
dΤ	Difference between actual and reference temperature dT = D2 - T_{RE F} = D2 - C5 * 2^{Q5}	signed int 32	25	-16776960	16777216	49112
TEMP	Measured temperature TEMP=20 °C+dT*TEMPSENS=2000+dT*C6/2 ^{Q6}	signed int 32	41	-4000	12500	2513 =25.13 °C

Calculate	Temperature Compensated Pressure	*		
OFF	Offset at actual temperature OFF=OFF _{T1} +TCO * dT=C2*2 ^{Q2} +(C4*dT)/2 ^{Q4}	signed int 64	41	2632212952
SENS	Sensitivity at actual temperature SENS=SENS _{T1} +TCS*dT=C1*2 ^{Q1} +(C3*dT)/2 ^{Q3}	signed int 64	41	1208319025
Р	Temperature Compensated Pressure P=D1*SENS-OFF=(D1*SENS/2 ²¹ -OFF)/2 ¹⁵	signed int 32	61	25005 =2.5005psi

Display Pressure and Temperature Value

Figure 1: Flow chart for pressure and temperature reading and software compensation.

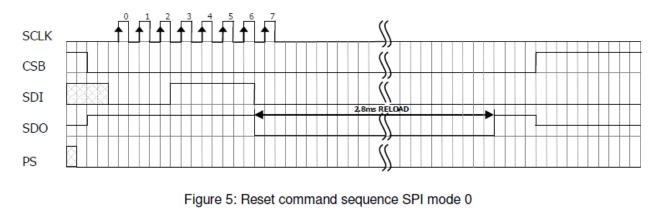
Qx Coefficients Matrix by Pressure Range

Part Number	Pmin	Pmax	Q1	Q2	Q3	Q4	Q5	Q6	T _{RES}	P _{RES}
									(°C)	(PSI)
5525DSO-pp001GS	0	1	14	16	7	5	7	21	0.01	0.0001
5525DSO-pp001DS	-1	1	15	17	7	5	7	21	0.01	0.0001
5525DSO-pp002GS	0	2	14	15	8	6	7	22	0.01	0.0001
5525DSO-pp002DS	-2	2	16	18	6	4	7	22	0.01	0.0001
5525DSO-pp005GS	0	5	16	17	6	5	7	21	0.01	0.0001
5525DSO-pp005DS	-5	5	17	19	5	3	7	22	0.01	0.0001
5525DSO-pp0015AS	0	15	16	17	6	5	7	22	0.01	0.0001
5525DSO-pp0015GS	0	15	16	17	6	5	7	22	0.01	0.0001
5525DSO-pp0015DS	-15	15	17	19	5	3	7	22	0.01	0.0001
5525DSO-pp0030AS	0	30	17	18	5	4	7	22	0.01	0.0001
5525DSO-pp0030GS	0	30	17	18	5	4	7	22	0.01	0.0001
5525DSO-pp0030DS	-30	30	18	20	4	1	7	22	0.01	0.0001

MEMORY MAPPING

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0		Reserved for Manufacturer														
1		Coefficient 1 (C1)														
2		Coefficient 2 (C2)														
3		Coefficient 3 (C3)														
4							C	Coefficie	ent 4 (C	4)						
5							C	Coefficie	ent 5 (C	5)						
6		Coefficient 6 (C6)														
7														С	RC	

Figure 2: Memory PROM Mapping


Notes

[1] Maximal size of intermediate result during evaluation of variable.

SPI INTERFACE

RESET SEQUENCE

The Reset sequence shall be sent once after power-on to make sure that the calibration PROM gets loaded into the internal register. It can be also used to reset the device ROM from an unknown condition

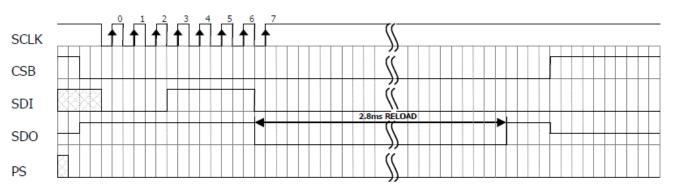


Figure 6: Reset command sequence SPI mode 3

CONVERSION SEQUENCE

The conversion command is used to initiate uncompensated pressure (D1) or uncompensated temperature (D2) conversion. The chip select can be disabled during this time to communicate with other devices.

After the conversion, using ADC read command the result is clocked out with the MSB first. If the conversion is not executed before the ADC read command, or the ADC read command is repeated, it will give 0 as the output result. If the ADC read command is sent during conversion the result will be 0, the conversion will not stop and the final result will be wrong. Conversion sequence sent during the already started conversion process will yield incorrect result as well.

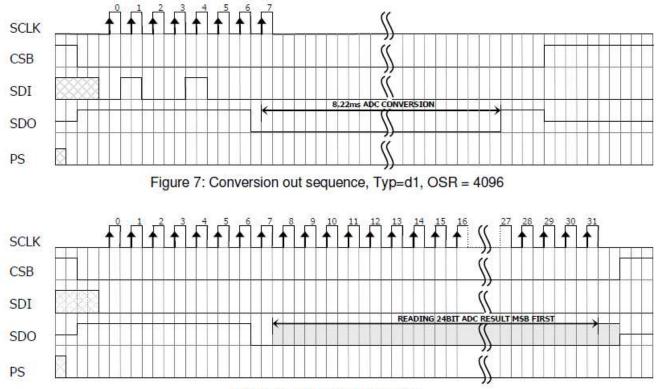
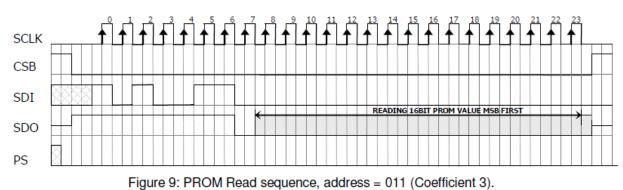



Figure 8: ADC Read sequence

PROM READ SEQUENCE

The read command for PROM shall be executed once after reset by the user to read the content of the calibration PROM and to calculate the calibration coefficients. There are in total 8 addresses resulting in a total memory of 128 bit. Address 0 contains factory data and the setup, addresses 1-6 calibration coefficients and address 7 contains the serial code and CRC. The command sequence is 8 bits long with a 16 bit result which is clocked with the MSB first.

I²C INTERFACE

COMMANDS

Each I²C communication message starts with the start condition and it is ended with the stop condition. The MS5525DSO address is 111011Cx, where C is the complementary value of the pin CSB. Since the IC does not have a microcontroller inside, the commands for I²C and SPI are quite similar.

RESET SEQUENCE

The reset can be sent at any time. In the event that there is not a successful power on reset this may be caused by the SDA being blocked by the module in the acknowledge state. The only way to get the MS5525DSO to function is to send several SCLKs followed by a reset sequence or to repeat power on reset.

1 1 1 0 1 Device Addres		1 0 1 0 0 1 command	1 0 0	
S Device Addres	ss W A	cmd byte	A P	
From Master From Slave	S = Start P = Stop (W = Write R = Read	A = Acknowledge N = Not Acknowledge

PROM READ SEQUENCE

The PROM Read command consists of two parts. First command sets up the system into PROM read mode. The second part gets the data from the system.

	1 0 1 /ice Add	1 CSB 0 ress	0	L 0		0 Iman		1	0	0		_			
S De	/ice Add	ress W	A		cmo	l byt	е			Α	Ρ	Ι			
From I From S		S = S P = S							= W Rei			-	A = Ack N = Not	5	ge

Figure 11: I2C Command to read memory address= 011 (Coefficient 3)

1 1 1 0 1 1 CSB Device Address	1 0 1 1 0 0 X X data	X X 0 X X X X X X X X X A X A data	0
S Device Address	R A Memory bit 15 -	- 8 A Memory bit 7 - 0	ΝP
		W = WriteA = AcknowledgeR = ReadN = Not Acknowledge	ge

Figure 12: I2C response from MS5525DSO

CONVERSION SEQUENCE

A conversion can be started by sending the command to MS5525DSO. When command is sent to the system it stays busy until conversion is done. When conversion is finished the data can be accessed by sending a Read command, when an acknowledge appears from the MS5525DSO, 24 SCLK cycles may be sent to receive all result bits. Every 8-bit the system waits for an acknowledge signal.

1 1 1 0 1 1 CSB Device Address	0 0 0 1 0 0 1 0 command	0 0 0	
S Device Address	W A cmd byte	A P	
	= Start Condition = Stop Condition	W = Write R = Read	A = Acknowledge N = Not Acknowledge

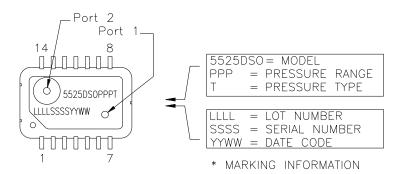
Figure 13: I²C Command to initiate a pressure conversion (OSR=4096, typ=D1)

1 1 1 1 CSB 0 0 0 0 0 0 0 Device Address O Command Command A P							
From MasterS = Start ConditionW = WriteA = AcknowledgeFrom SlaveP = Stop ConditionR = ReadN = Not Acknowledge							
Figure 14: I ² C ADC read sequence							
1 1 1 0 1 1 CSB 1 0 X	x x x x x x x x	0	X X 0 X X X X X X X X 0				
Device Address	data	data	data				
S Device Address R A	Data 23-16	A Data 8 - 15	A Data 7 - 0 N	Р			
From Master S = Start Condition W = Write A = Acknowledge							

Figure 15: I²C response from MS5525DSO

N = Not Acknowledge

R = Read


CYCLIC REDUNDANCY CHECK (CRC)

P = Stop Condition

From Slave

MS5525DSO contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented to check the data validity in memory. The application note AN520 describes in detail CRC-4 code used.

PINOUT, MARKING, AND PRESSURE TYPE CONFIGURATION

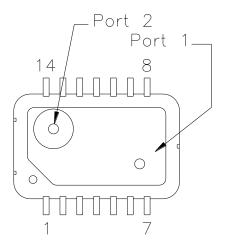
Pressure Type	Pmin	Pmax	Description
Absolute	0psiA	+Prange	Output is proportional to the difference between 0psiA (Pmin) and pressure applied to Port 1.
Differential/ Bidirectional	-Prange	+Prange	Output is proportional to the difference between Port 1 and Port 2. Output swings positive when Port 2> Port 1. Output is 50% of total counts when Port 1=Port 2.
Gauge	0psiG	+Prange	Output is proportional to the difference between 0psiG (Pmin) and Port 1. Output swings positive when Port 2> Port 1.

Pin Name	Pin	Function			
		12C	SPI		
SGND	1,3	Sensor Ground			
SOUT-	2,4	Sensor Outputs, Negative			
SDO	5		Serial Data Output		
SDA/SDI	6	I ² C Data Input and Output	SPI Serial Data Input		
SCL/SCLK	7	I ² C Clock	SPI Clock		
CSB	8	Defines I ² C Address	Chip Select (Active Low)		
GND	9	Ground			
PS	10	Protoco	Protocol Select		
		PS = (VDD)	PS = (GND)		
		I ² C Protocol Selected	SPI Protocol Selected		
		CSB= (VDD) I ² C Address =111011	CSB= (VDD) I ² C Address =1110110X (0xEC, 0xED)		
		CSB= (GND) I ² C Address=1110111X (0xEE, 0xEF)			
Supply+	11,13	Positive Supply Voltage			
SOUT+	12,14	Sensor Outputs, Positive			

WETTED MATERIAL BY PORT DESIGNATION

	Material							
Style	Port	LCP	Thermo-Epoxy Resin	Ероху	RTV	Glass	Silicon	Silicone Gel
All	Port 1	Х	Х	Х				Х
All	Port 2	Х	Х	Х	Х	Х	Х	

"X" Indicates Wetted Materials


RECOMMEND PCB LAYOUT

PAD NO.	FUNCTION	PAD NO.	FUNCTION
1	SGND	8	CSB
2	SOUT-	9	SUPPLY-
3	SGND	10	PS
4	SOUT-	11	SUPPLY+
5	SDO	12	SOUT+
6	SDI/SDA	13	SUPPLY+
7	SCLK/SCL	14	SOUT+

FUNCTION PINS THAT SHARE THE SAME NAME (SGND, SOUT+, SOUT-, SUPPLY+) MUST BE CONNECTED TOGETHER ON PCB FOR PROPER OPERATION.

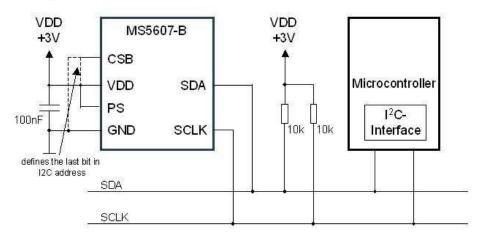
NEED TO PLACE 0.1uF DECOUPING CAPACITOR BETWEEN SUPPLY+ AND SUPPLY- ON PCB AND AS CLOSE AS POSSIBLE TO SENSOR

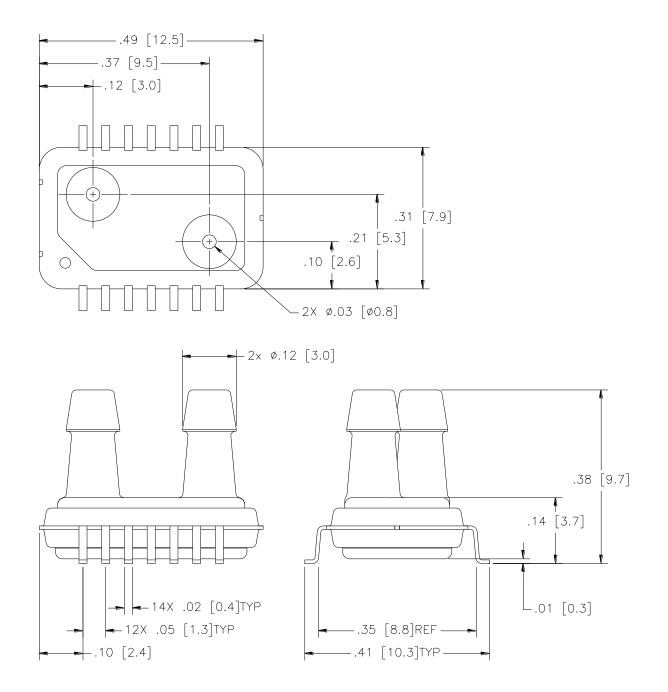
APPLICATION CIRCUIT

The MS5525DSO is a circuit that can be used in conjunction with a microcontroller. It is designed for low-voltage systems with a supply voltage of 3 V.

SPI protocol communication

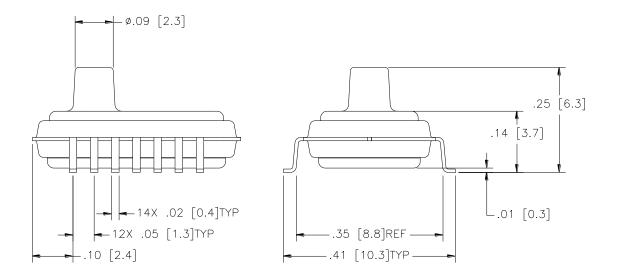
I²C protocol communication




Figure 17: Typical application circuit with SPI / I²C protocol communication

Note

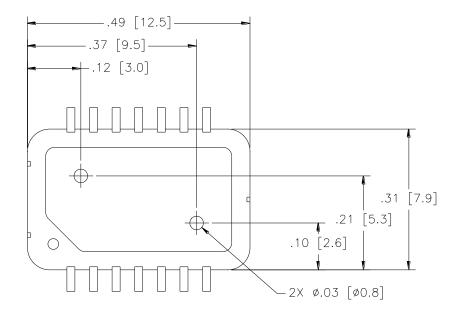
1. Place 100nF capacitor between Supply and GND to within 2 cm of sensor.

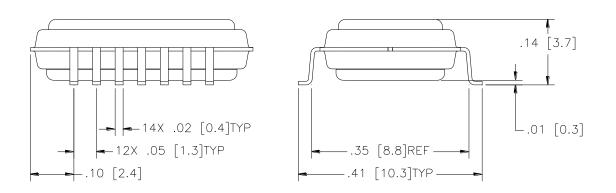

DIMENSIONS

MS5525DSO-DBxxxyS

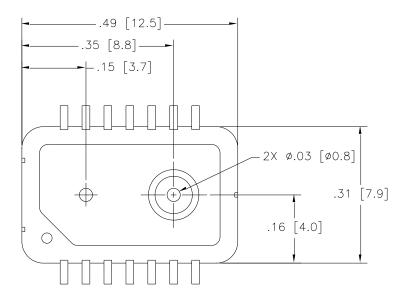


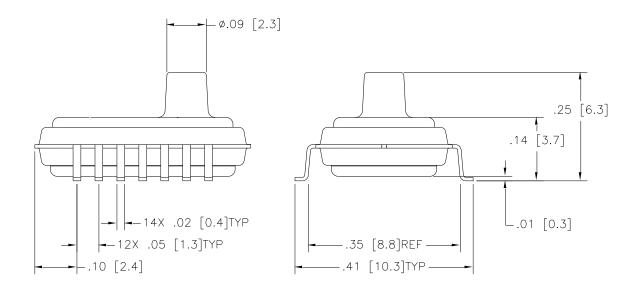
MS5525DSO-STxxxyS





MS5525DSO-SBxxxyS




MS5525DSO-DHxxxyS

MS5525DSO-FTxxxyS

ORDERING INFORMATION

5525DSO	-	DB	005	G	S
Model	-	Package Style	Pressure Range	Pressure Type	Pin Style
MS5525DSO	-	DB = Dual Barb SB = Single Barb ST = Single Tube DH = Dual Hole FT = Front Tube	001 002 005 015 030	 A = Absolute D = Differential G = Gauge 	S = Gull Wing

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company 45738 Northport Loop West Fremont, CA 94538 Tel: 1-800-767-1888 Fax: 1-510-498-1578 Sales: pfg.cs.amer@meas-spec.com

EUROPE

Measurement Specialties (Europe), Ltd., a TE Connectivity Company 26 Rue des Dames 78340 Les Clayes-sous-Bois, France Tel: +33 (0) 130 79 33 00 Fax: +33 (0) 134 81 03 59 Sales: pfg.cs.emea@meas-spec.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company No. 26 Langshan Road Shenzhen High-Tech Park (North) Nanshan District, Shenzhen 518057 China Tel: +86 755 3330 5088 Fax: +86 755 3330 5099 Sales: pfg.cs.asia@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.