

www.ti.com SLUSAX1 – DECEMBER 2012

Overvoltage Protection for 2-Series to 5-Series Cell Li-lon Batteries with Internal Delay Timer

Check for Samples: bq771800, bq771801, bq771802, bq771803

FEATURES

- 2-, 3-, 4-, and 5-Series Cell Overvoltage Protection
- Internal Delay Timer
- Fixed OVP Threshold
- High-Accuracy Overvoltage Protection: ± 10 mV
- Low Power Consumption I_{CC} ≈ 1 μA (V_{CELL(ALL)} < V_{PROTECT})
- Low Leakage Current Per Cell Input < 100 nA

- Small Package Footprint
 - 8-pin QFN (3 mm × 4 mm)

APPLICATIONS

- · Protection in Li-Ion Battery Packs in:
 - Power Tools
 - UPS Battery Backup
 - Light Electric Vehicles (eBike, eScooter, Pedal Assist Bicycles)

DESCRIPTION

The bq7718xy family of products is an overvoltage monitor and protector for Li-lon battery pack systems. Each cell is monitored independently for an overvoltage condition.

In the bq7718xy device, an internal delay timer is initiated upon detection of an overvoltage condition on any cell. Upon expiration of the delay timer, the output is triggered into its active state (either high or low depending on the configuration). For quicker production-line testing, the bq7718xy device provides a Customer Test Mode with greatly reduced delay time.

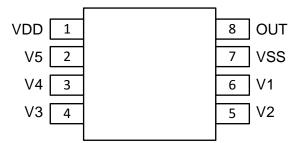


Figure 1. bq771800 Pinout

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

T _A	Part Number	Package	Package Designator	OVP (V)	OV Hysteresis (V)	Output Delay	Output Drive	Tape and Reel (Large)	Tape and Reel (Small)
	bq771800			4.300	0.300	4 s	CMOS Active High	bq771800DPJR	bq771800DPJT
	bq771801			4.275	0.050	3 s	NCH Active Low, Open Drain	bq771801DPJR	bq771801DPJT
-40°C to 110°C	bq771802	8-Pin QFN	DPJ	4.225	0.300	1 s	NCH Active Low, Open Drain	bq771802DPJR	bq771802DPJT
	bq771803			4.275	0.050	1 s	NCH Active Low, Open Drain	bq771803DPJR	bq771803DPJT
	bq7718xy ⁽¹⁾			3.850-4.650	0-0.300	1 s	NCH, Active Low, Open Drain	bq7718xyDPJR	bq7718xyDPJT

⁽¹⁾ Future option, contact TI.

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	bq7718xy	LINUTO
	I HERMAL METRIC	8 PINS	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	56.6	
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance	56.4	
θ_{JB}	Junction-to-board thermal resistance	30.6	°C/W
Ψлт	Junction-to-top characterization parameter	1.0	C/VV
ΨЈВ	Junction-to-board characterization parameter	37.8	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance	11.3	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

STRUMENTS

PIN FUNCTIONS

bq7718xy	Pin Name	Type I/O	Description
1	VDD	Р	Power supply
2	V5	I	Sense input for positive voltage of the fifth cell from the bottom of the stack
3	V4	1	Sense input for positive voltage of the fourth cell from the bottom of the stack
4	V3	1	Sense input for positive voltage of the third cell from the bottom of the stack
5	V2	1	Sense input for positive voltage of the second cell from the bottom of the stack
6	V1	I	Sense input for positive voltage of the lowest cell in the stack
7	VSS	Р	Electrically connected to IC ground and negative terminal of the lowest cell in the stack
8	OUT	0	Output drive for overvoltage fault signal

PIN DETAILS

In the bq7718xy device, each cell is monitored independently. Overvoltage is detected by comparing the actual cell voltage to a protection voltage reference, V_{OV} . If any cell voltage exceeds the programmed OV value, a timer circuit is activated. When the timer expires, the OUT terminal goes from inactive to active state.

For NCH Open Drain Active Low configurations, the OUT pin pulls down to VSS when active (OV present) and is high impedance when inactive (no OV).

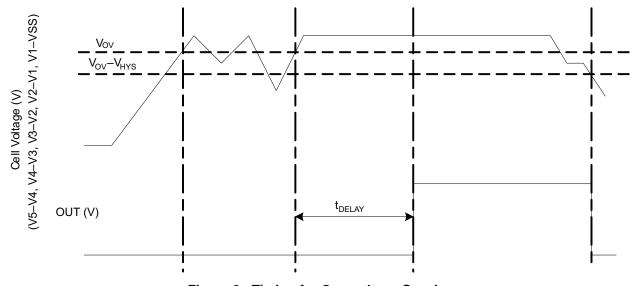
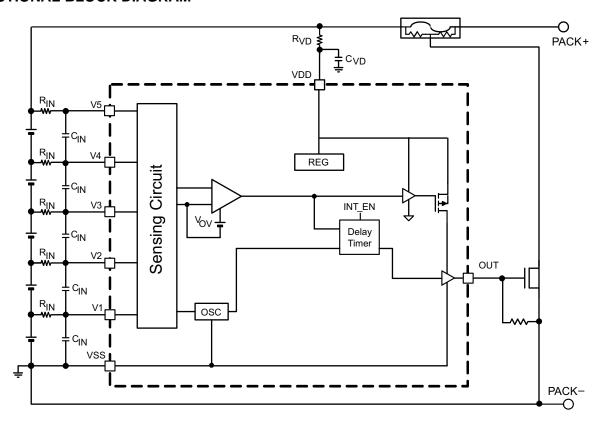


Figure 2. Timing for Overvoltage Sensing

Sense Positive Input for Vx

This is an input to sense each single battery cell voltage. A series resistor and a capacitor across the cell for each input is required for noise filtering and stable voltage monitoring.

Output Drive, OUT


This terminal serves as the fault signal output, and may be ordered in either active HIGH or LOW options.

Supply Input, VDD

This terminal is the unregulated input power source for the IC. A series resistor is connected to limit the current, and a capacitor is connected to ground for noise filtering.

TEXAS INSTRUMENTS

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted)(1)

PARAMETER	CONDITION	VALUE/UNIT
Supply voltage range	VDD-VSS	-0.3 to 30 V
Input voltage range	V5–VSS or V4–VSS or V3–VSS or V2–VSS or V1–VSS	-0.3 to 30 V
Output voltage range	OUT-VSS	-0.3 to 30 V
Continuous total power dissipation, P _{TOT}		See package dissipation rating.
Functional temperature		−40 to 110°C
Storage temperature range, T _{STG}		−65 to 150°C
Lead temperature (soldering, 10 s), T _{SOLDER}		300°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD} ⁽¹⁾		3		25	V
Input voltage range	V5–V4 or V4–V3 or V3–V2 or V2–V1 or V1–VSS	0		5	V
Operating ambient temperature rang	ge, T _A	-40		110	°C

(1) See APPLICATION SCHEMATIC.

www.ti.com SLUSAX1 - DECEMBER 2012

DC CHARACTERISTICS

Typical values stated where $T_A = 25^{\circ}C$ and VDD = 18 V, MIN/MAX values stated where $T_A = -40^{\circ}C$ to 110°C and $V_{DD} = 3$ V to 25 V (unless otherwise noted).

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT
Voltage Pro	tection Threshold VCx					
_		bq771800		4.300		V
V_{OV}	V _(PROTECT) Overvoltage Detection	bq771801, bq771803		4.275		V
	(bq771802		4.225		V
		bq771800	250	300	400	mV
V_{HYS}	OV Detection Hysteresis	bq771801, bq771803	0	50	100	V
		bq771802	250	300	400	mV
V _{OA}	OV Detection Accuracy	T _A = 25°C	-10		10	mV
		T _A = -40°C	-40		44	mV
	OV Detection Accuracy Across	T _A = 0°C	-20		20	mV
$V_{OADRIFT}$	Temperature	T _A = 60°C	-24		24	mV
		T _A = 110°C	-54		54	mV
Supply and	Leakage Current					
I _{CC}	Supply Current	(V5-V4) = (V4-V3) = (V3-V2) = (V2-V1) = (V1-VSS) = 4.0 V (See Figure 13.)		1	2	μA
I _{IN}	Input Current at Vx Pins	(V5-V4) = (V4-V3) = (V3-V2) = (V2-V1) = (V1-VSS) = 4.0 V (See Figure 13.)	-0.1		0.1	μA
Output Driv	e OUT, CMOS Active HIGH Version	ns Only				
		(V5–V4), (V4–V3), (V3–V2), (V2–V1), or (V1–VSS) > V _{OV} , VDD = 18 V, I _{OH} = 100 μA	6			٧
V_{OUT1}	Output Drive Voltage, Active High	If three of four cells are short circuited and only one cell remains powered and > V_{OV} , VDD = Vx (cell voltage), I_{OH} = 100 μA		VDD – 0.3		V
		(V5–V4), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS) < V_{OV} , VDD = 18 V, I_{OL} = 100 μA measured into pin		250	400	mV
I _{OUTH1}	OUT Source Current (during OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), or (V1–VSS) > V _{OV} , VDD = 18 V. OUT = 0 V. Measured out of OUT pin			4.5	mA
I _{OUTL1}	OUT Sink Current (no OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS) < V _{OV} , VDD = 18 V, OUT = VDD. Measured into OUT pin	0.5		14	mA
Output Driv	e OUT, NCH Open Drain Active LC	OW Versions Only				
V _{OUT2}	Output Drive Voltage, Active Low	(V5–V4), (V4–V3), (V3–V2), (V2–V1), or (V1–VSS) > V_{OV} , VDD = 18 V, I_{OL} = 100 μ A measured into OUT pin		250	400	mV
I _{OUTH2}	OUT Sink Current (during OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), or (V1–VSS) > V _{OV} , VDD = 18 V. OUT = VDD. Measured into OUT pin	0.5		14	mA
I _{OUTL2}	OUT Source Current (no OV)	(V5–V4), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS) < V _{OV} , VDD = 18 V. OUT = VDD. Measured out of OUT pin			100	nA
Delay Timer						
		bq771800	3.2	4	4.8	s
	OV Dolov Time	bq771801	2.4	3	3.6	S
t _{DELAY}	OV Delay Time	bq771802, bq771803	0.8	1	1.2	s
		Preview option only. Contact TI.	4.4	5.5	6.6	s
X _{CTMDELAY}	Fault Detection Delay Time during Customer Test Mode	See .		15		ms

1.8

TYPICAL CHARACTERISTICS

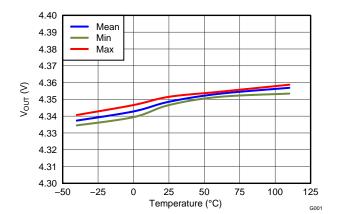
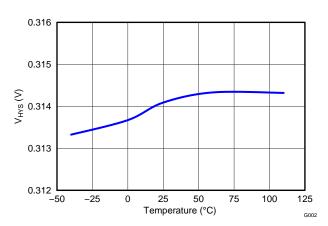



Figure 3. Overvoltage Threshold (OVT) vs. Temperature

NSTRUMENTS

Figure 4. Hysteresis V_{HYS} vs. Temperature

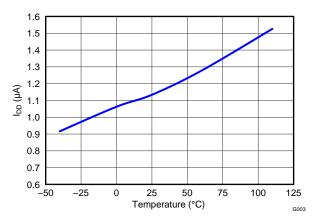
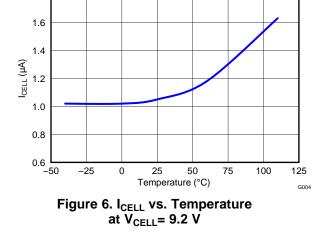
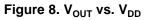




Figure 5. I_{DD} Current Consumption vs. Temperature at VDD = 16 V

8 7 6 5 5 4 3 2 2 25 30 VDD (V) G006

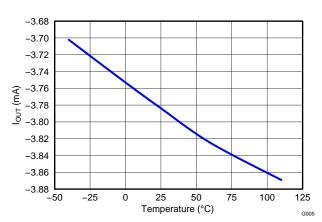


Figure 7. Output Current I_{OUT} vs. Temperature

APPLICATION INFORMATION

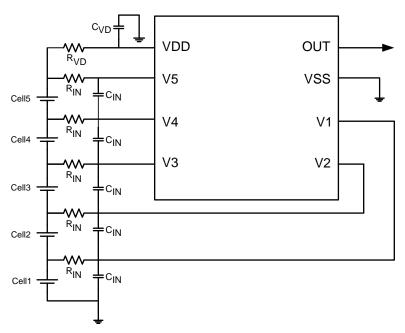


Figure 9. Application Configuration

NOTE

In the case of an Open Drain Active Low configuration, an external pull-up resistor is required on the OUT terminal.

Changes to the ranges stated in Table 1 will impact the accuracy of the cell measurements.

Changes to the ranges stated in Table 1 will impact the accuracy of the cell measurements. Figure 9 shows each external component.

Table 1. Parameters

PARAMETER	EXTERNAL COMPONENT	MIN	NOM	MAX	UNIT
Voltage monitor filter resistance	RIN	900	1000	1100	Ω
Voltage monitor filter capacitance	CIN	0.01		0.1	μF
Supply voltage filter resistance	RVD	100		1K	Ω
Supply voltage filter capacitance	CVD		0.1		μF
CD external delay capacitance			0.1	1	μF
OUT Open drain version pull-up resistance to PACK+			100		kΩ

NOTE

The device is calibrated using an R_{IN} value = 1 k Ω . Using a value other than this recommended value changes the accuracy of the cell voltage measurements and V_{OV} trigger level.

APPLICATION SCHEMATIC

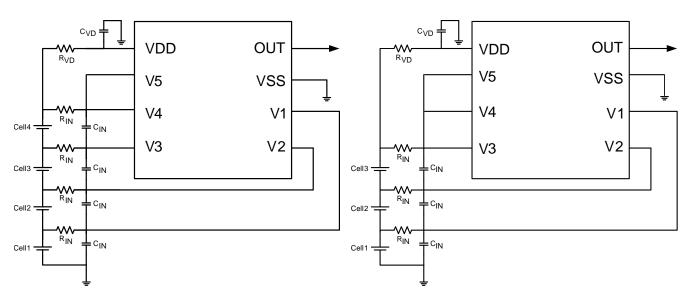


Figure 10. 4-Series Cell Configuration

Figure 11. 3-Series Cell Configuration with Fixed Delay

INSTRUMENTS

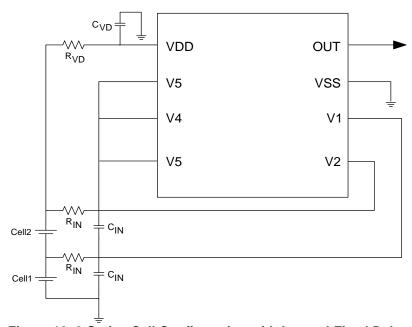


Figure 12. 2-Series Cell Configuration with Internal Fixed Delay

NOTE

In these application examples, an external pull-up resistor is required on the OUT terminal to configure for an Open Drain Active Low operation.

www.ti.com

CUSTOMER TEST MODE

Customer Test Mode (CTM) helps to reduce test time for checking the overvoltage delay timer parameter once the circuit is implemented in the battery pack. To enter CTM, VDD should be set to at least 10 V higher than V5 (see Figure 13). The delay timer is greater than 10 ms, but considerably shorter than the timer delay in normal operation. To exit Customer Test Mode, remove the VDD to V5 voltage differential of 10 V so that the decrease in this value automatically causes an exit.

CAUTION

Avoid exceeding any Absolute Maximum Voltages on any pins when placing the part into Customer Test Mode. Also avoid exceeding Absolute Maximum Voltages for the individual cell voltages (V5–V4), (V4–V3), (V4–V3), (V3–V2), (V2–V1), and (V1–VSS). Stressing the pins beyond the rated limits may cause permanent damage to the device.

Figure 13 shows the timing for the Customer Test Mode.

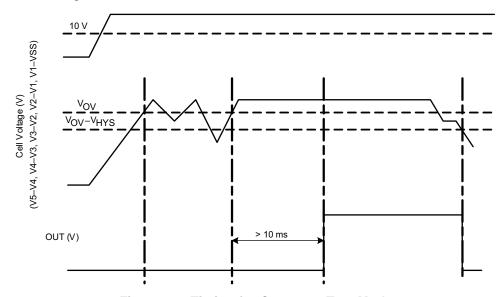


Figure 13. Timing for Customer Test Mode

Figure 14 shows the measurement for current consumption for the product for both VDD and Vx.

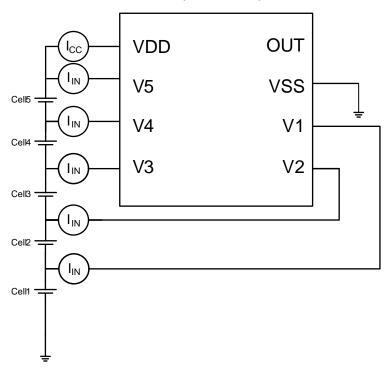
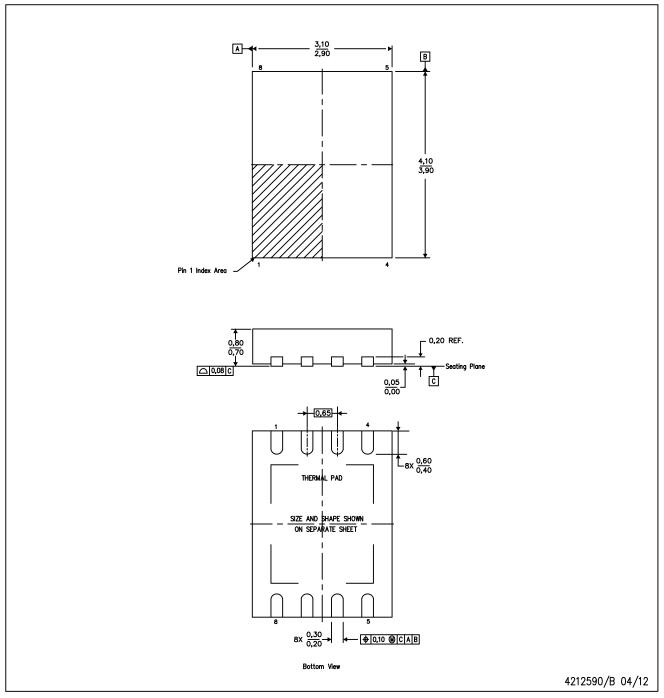



Figure 14. Configuration for IC Current Consumption Test

DPJ (R-PWSON-N8)

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

11-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples (Requires Login)
BQ771800DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	(110441100 20311)
BQ771800DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771801DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771801DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771802DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771802DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771803DPJR	ACTIVE	WSON	DPJ	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
BQ771803DPJT	ACTIVE	WSON	DPJ	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

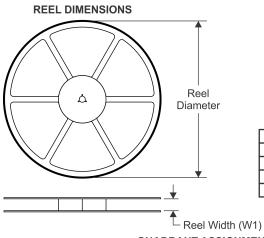
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

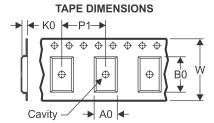
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

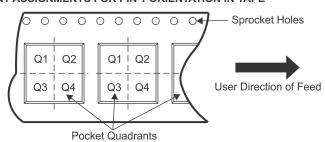
11-Jan-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

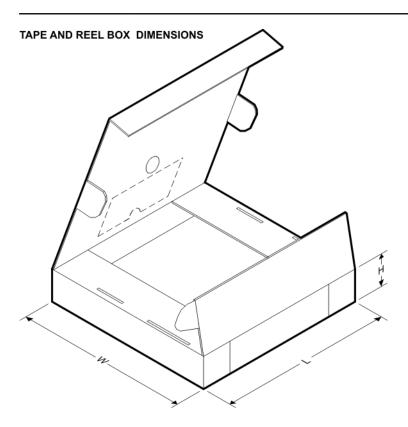

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Jan-2013


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ771800DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771800DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771801DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771801DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771802DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771802DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771803DPJR	WSON	DPJ	8	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
BQ771803DPJT	WSON	DPJ	8	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2

www.ti.com 11-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ771800DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771800DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771801DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771801DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771802DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771802DPJT	WSON	DPJ	8	250	210.0	185.0	35.0
BQ771803DPJR	WSON	DPJ	8	3000	367.0	367.0	35.0
BQ771803DPJT	WSON	DPJ	8	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.