Single D-type flip-flop; positive-edge trigger Rev. 1 — 13 May 2015

Product data sheet

General description 1.

The 74LVC1G79-Q100 provides a single positive-edge triggered D-type flip-flop.

Information on the data input is transferred to the Q-output on the LOW-to-HIGH transition of the clock pulse. The D-input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

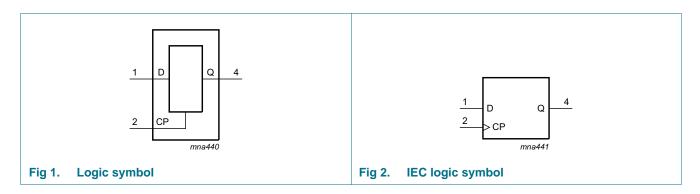
Features and benefits 2.

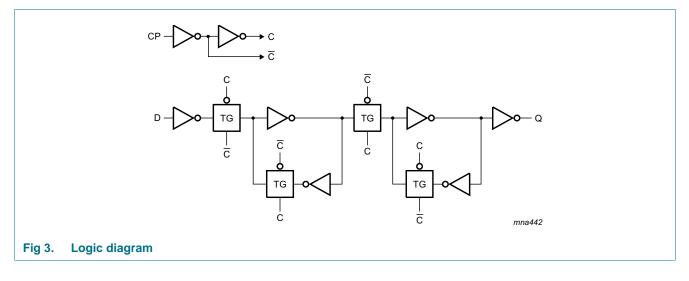
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V

Single D-type flip-flop; positive-edge trigger

Ordering information 3.

Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
74LVC1G79GW-Q100	−40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1			
74LVC1G79GV-Q100	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753			

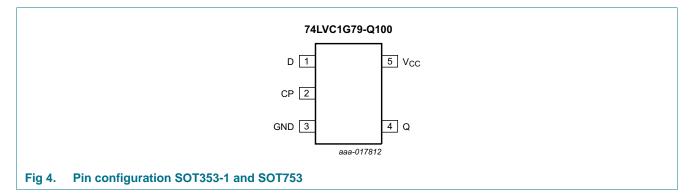

Marking 4.


Table 2.	Marking codes
----------	---------------

Type number	Marking ^[1]
74LVC1G79GW-Q100	VP
74LVC1G79GV-Q100	V79

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Functional diagram 5.



Single D-type flip-flop; positive-edge trigger

Pinning information 6.

6.1 Pinning

6.2 Pin description

Table 3. Pin description		
Symbol	Pin	Description
D	1	data input
СР	2	clock pulse input
GND	3	ground (0 V)
Q	4	data output
V _{cc}	5	supply voltage

Functional description 7.

Function table^[1] Table 4.

Input CP D		Output
СР	D	Q
\uparrow	L	L
\uparrow	Н	Н
L	X	q

[1] H = HIGH voltage level;

L = LOW voltage level;

 \uparrow = LOW-to-HIGH CP transition;

X = don't care;

q = lower case letter indicates the state of referenced input, one set-up time prior to the LOW-to-HIGH CP transition.

Single D-type flip-flop; positive-edge trigger

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
Vo	output voltage	Active mode	<u>[1][2]</u>	-0.5	V _{CC} + 0.5	V
		Power-down mode	<u>[1][2]</u>	-0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[3]</u>	-	250	mW
T _{stg}	storage temperature			-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

[3] For TSSOP5 and SC-74A packages: above 87.5 °C, the value of P_{tot} derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		V _{CC} = 0 V; Power-down mode	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	-	20	ns/V
		V_{CC} = 2.7 V to 5.5 V	-	-	10	ns/V

Single D-type flip-flop; positive-edge trigger

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = –	40 °C to +85 °C					
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	$0.7\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	$0.3\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_0 = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 μ A; V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.3	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
l _l	input leakage current	$V_I = 5.5$ V or GND; $V_{CC} = 0$ V to 5.5 V	-	±0.1	±5	μA
I _{OFF}	power-off leakage current	$V_{CC} = 0$ V; V _I or V _O = 5.5 V	-	±0.1	±10	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	0.1	10	μA
Δl _{CC}	additional supply current	per pin; $V_{CC} = 2.3 \text{ V to } 5.5 \text{ V};$ $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A}$	-	5	500	μA
Cı	input capacitance	V_{CC} = 3.3 V; V_I = GND to V_{CC}	-	5	-	pF
T _{amb} = –	40 °C to +125 °C					_
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	$0.3 \times V_{CC}$	V

74LVC1G79_Q100
Product data sheet

© NXP Semiconductors N.V. 2015. All rights reserved.

Single D-type flip-flop; positive-edge trigger

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32$ mA; $V_{CC} = 4.5$ V	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu\text{A};$ V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.70	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.60	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.80	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.80	V
l _l	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	-	±100	μA
I _{OFF}	power-off leakage current	V_{CC} = 0 V; V _I or V _O = 5.5 V	-	-	±200	μA
I _{CC}	supply current	$V_{I} = 5.5 \text{ V or GND};$ $V_{CC} = 1.65 \text{ V to 5.5 V; }I_{O} = 0 \text{ A}$	-	-	200	μA
Δl _{CC}	additional supply current	per pin; V_{CC} = 2.3 V to 5.5 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	-	5000	μA

Table 7. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit, see Figure 7.

Symbol	Parameter	Conditions	-40	°C to +85	°C	–40 °C to	• +125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	CP to Q; see Figure 5 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	3.6	9.9	1.0	12.5	ns
		V_{CC} = 2.3 V to 2.7 V	0.5	2.3	7.0	0.5	9.0	ns
		V _{CC} = 2.7 V	0.5	2.6	6.0	0.5	8.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.5	2.2	5.0	0.5	6.5	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	0.5	1.7	3.8	0.5	5.0	ns
t _{su}	set-up time	D to CP; see Figure 6						
		V _{CC} = 1.65 V to 1.95 V	2.5	1.4	-	2.5	-	ns
		V_{CC} = 2.3 V to 2.7 V	1.7	0.9	-	1.7	-	ns
		V _{CC} = 2.7 V	1.7	0.9	-	1.7	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.3	0.6	-	1.2	-	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	1.2	0.6	-	1.2	-	ns

Single D-type flip-flop; positive-edge trigger

Symbol	Parameter	Conditions	-40	–40 °C to +85 °C			o +125 ℃	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _h	hold time	D to CP; see Figure 6						
		V_{CC} = 1.65 V to 1.95 V	0	-0.7	-	0	-	ns
		V_{CC} = 2.3 V to 2.7 V	0	-0.4	-	0	-	ns
		V _{CC} = 2.7 V	+0.5	-0.3	-	0.5	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	+0.5	-0.3	-	0.5	-	ns
		V_{CC} = 4.5 V to 5.5 V	+0.5	-0.2	-	0.5	-	ns
w	pulse width	CP HIGH or LOW; see <u>Figure 6</u>						
		V_{CC} = 1.65 V to 1.95 V	3.0	1.1	-	3.0	-	ns
		V_{CC} = 2.3 V to 2.7 V	2.5	0.7	-	2.5	-	ns
		$V_{CC} = 2.7 V$	2.5	0.6	-	2.5	-	ns
		V_{CC} = 3.0 V to 3.6 V	2.5	0.6	-	2.5	-	ns
		V_{CC} = 4.5 V to 5.5 V	2.0	0.5	-	2.0	-	ns
max	maximum	CP; see Figure 6						
	frequency	V_{CC} = 1.65 V to 1.95 V	160	250	-	160	-	MHz
		V_{CC} = 2.3 V to 2.7 V	160	300	-	160	-	MHz
		$V_{CC} = 2.7 V$	160	350	-	160	-	MHz
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	160	450	-	160	-	MHz
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	200	500	-	200	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC}; \qquad [3] \\ V_{CC} = 3.3 \text{ V}$	-	17	-	-	-	pF

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit, see <u>Figure 7</u>.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

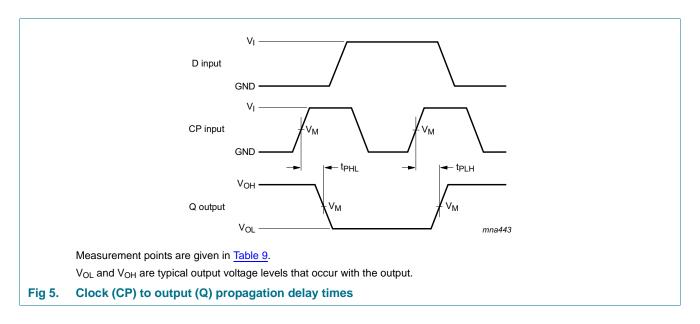
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

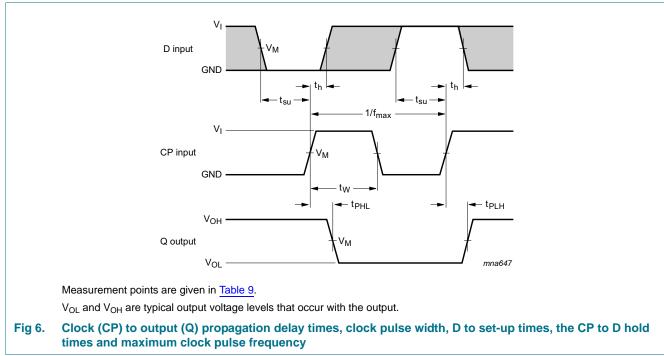
 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

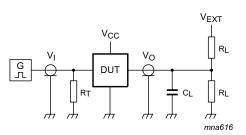

 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

Single D-type flip-flop; positive-edge trigger

12. Waveforms


NXP Semiconductors

74LVC1G79-Q100

Single D-type flip-flop; positive-edge trigger

Supply voltage	Input	Output	
V _{CC}	V _M	V _M	
1.65 V to 1.95 V	$0.5 \times V_{CC}$	$0.5 imes V_{CC}$	
2.3 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	
2.7 V	1.5 V	1.5 V	
3.0 V to 3.6 V	1.5 V	1.5 V	
4.5 V to 5.5 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	

Table 9.Measurement points

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance.

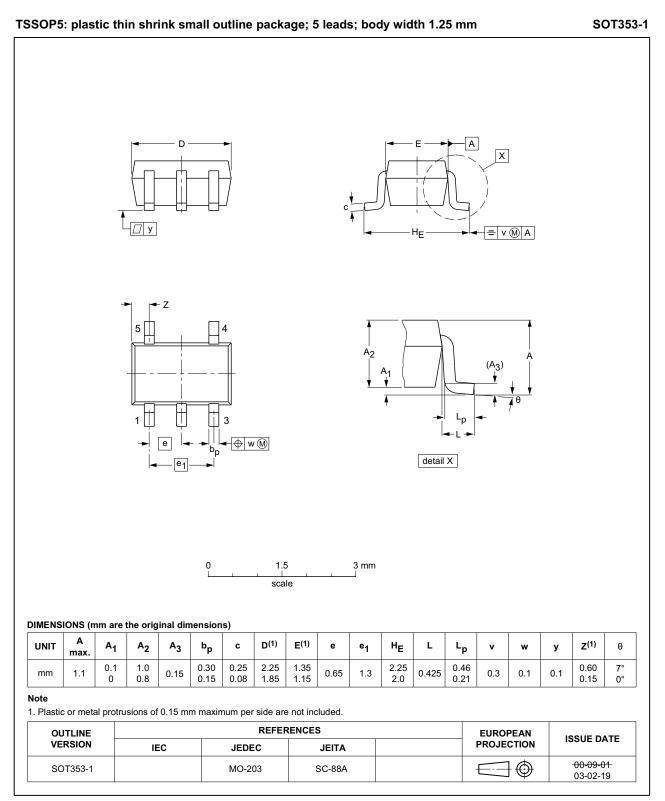
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 7. Test circuit for measuring switching times

Table 10. Test data


Supply voltage	Input	Input		Load	
V _{cc}	VI	$t_r = t_f$	C∟	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

NXP Semiconductors

74LVC1G79-Q100

Single D-type flip-flop; positive-edge trigger

13. Package outline

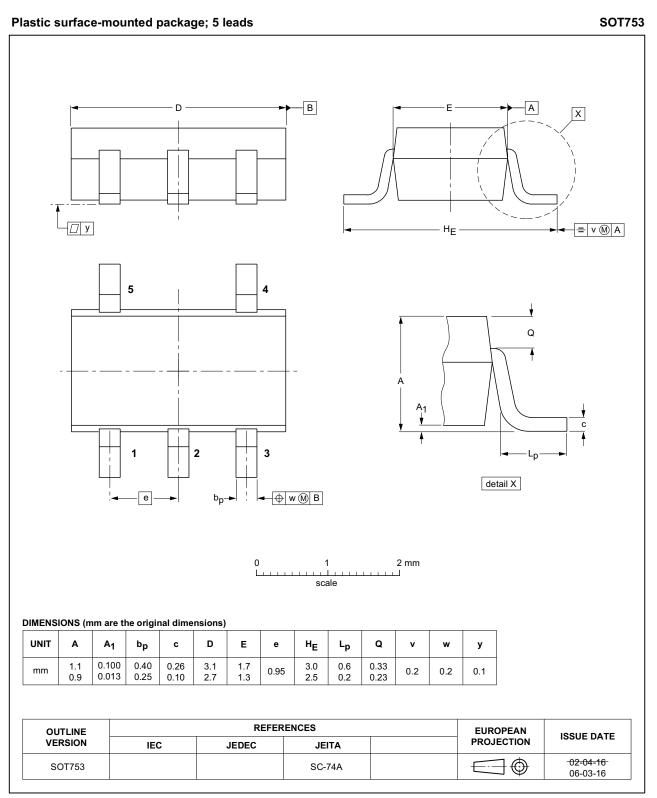


Fig 8. Package outline SOT353-1 (TSSOP5)

74LVC1G79_Q100

Product data sheet

Single D-type flip-flop; positive-edge trigger

Fig 9. Package outline SOT753 (SC-74A)

74LVC1G79_Q100
Product data sheet

Single D-type flip-flop; positive-edge trigger

14. Abbreviations

Table 11. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MIL	Military	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

15. Revision history

Table 12.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G79_Q100 v.1	20150512	Product data sheet	-	-

12 of 15

Single D-type flip-flop; positive-edge trigger

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74LVC1G79 Q100

Single D-type flip-flop; positive-edge trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Single D-type flip-flop; positive-edge trigger

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms 8
13	Package outline 10
14	Abbreviations 12
15	Revision history 12
16	Legal information 13
16.1	Data sheet status 13
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 14
17	Contact information 14
18	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2015.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 May 2015 Document identifier: 74LVC1G79_Q100

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.