IrDA Infrared Communication Module RPM882-H14

RPM882-H14 is an infrared communication module for IrDA Ver. 1.2 (Low Power). The infrared LED, PIN photo diode, LSI are all integrated into a single package. This module is designed with power down function and low current consumption at stand-by mode. The ultra small package makes it a perfect fit for mobile devices.

Features

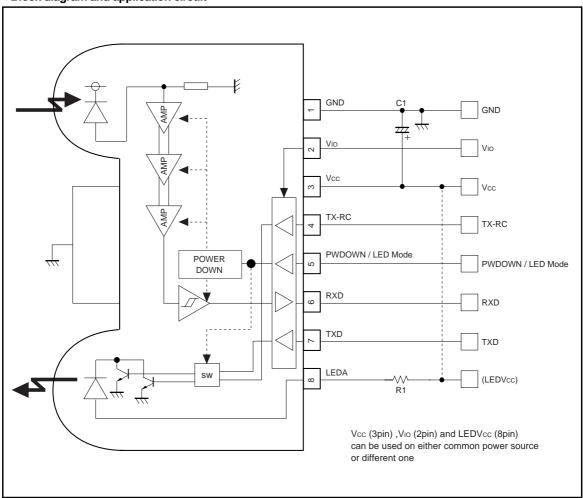
- 1) Infrared LED, PIN photo diode, LED driver & Receiver frequency formation circuit built in. Improvement of EMI noise protection because of Shield Case.
- 2) Applied to SIR (2.4 to 115.2kbps)
- 3) Surface mount type.
- 4) Power down function built in.
- 5) Low voltage operation as 1.5V of interface terminals to controller (TXD, RXD, PWDOWN, TX-RC).
- 6) Infrared remote control transmission driver built-in.

Applications

Mobile phone, PDA, DVC, Digital Still Camera, Printer, Handy Terminal etc.

●Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Supply voltage	V _{max}	7.0*1	V
Input voltage	Vin (4, 5, 6, 7pin)	-0.3 to Vio+0.3	V
Operation temperature	Topr	-25 to +85	°C
Storage temperature	Tstg	-30 to +100	°C
LED peak current	IFP	300* ²	mA
Power dissipation	Pd	300* ³	mW


^{*1} This applies to all pins basis ground pins (1pin) *2 LED Peak Current< 90μs, On duty≤50%

● Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	2.4	3.0	3.6	V
Interface supply voltage	Vio	1.5	3.0	Vcc	V
LED supply voltage	VLEDVcc	2.6	3.0	5.5	V

^{*3} When glass-epoxy board (70 × 70 × 1.6mm) mounted. In case operating environment is over 25°C, 4mW would be reduced per each 1°C stepping up.

•Block diagram and application circuit

Terminal description

Pin No	Terminal	Circuit	Function
1	GND		Ground
2	Vio		Supply voltage for I/O pins. (TX-RC, PWDOWN, RXD, TXD)
3	Vcc		Power Supply Terminal For preventing from infection, connect a capacitor between Vcc (3pin) and GND (1pin).
4	TX-RC	V ₁₀ ≥ 200k	RC Transmitting Data Input Terminal H: LED Emitting CMOS Logic Level Input Holding TX-RC='H' status, LED will be turn off approximately 48μs.
5	PWDOWN / LED Mode	VIO W	Power-down Control and LED Intensity switching Terminal H: POWERDOWN (RC transmitting Mode) L: OPERATION CMOS Logic Level Input When input is 'H', it will stop the receiving circuit and Pin-PD current.
6	RXD	PWDOWN VIO	Receiving Data Output Terminal CMOS Logic Level Output When PWDOWN (5pin)= 'H', the RXD output will be pulled up to Vio at approximately 300kΩ.
7	TXD	Vio	Transmitting Data Input Terminal IrDA TXD input at PWDOWN=L (Remote control transmitting input at PWDOWN=H). H: LED Emitting CMOS Logic Level Input Holding TXD="H" status, LED will be turn off approximately 48μs.
8	LEDA	LED	LED ANODE Terminal Other power source can be used difference between LEDVcc and Vcc. LED current depends on LED load resistance value at RC mode.
	Shield Case		Connect to Ground.

●Electrical characteristics (Unless otherwise noted, Vcc= Vio=3.0V, VLEDVcc=3.0V, Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Consumption current1	Icc1	-	80	104	μΑ	PWDOWN=0V At no input light
Consumption current2	Icc2	_	0.01	0.2	μΑ	PWDOWN=Vio At no input light
Data rate		2.4	_	115.2	kbps	
DWDOWN input high voltage	VPDH	2/3*Vio		Vio	V	Vio=1.8 to 3.6V
PWDOWN input high voltage	VPDH	1.2	-	VIO	V	Vio=1.5 to 1.8V
PWDOWN input low voltage	VPDL	0		1/3*Vio	V	Vio=1.8 to 3.6V
F WDOWN Input low voltage	VFDL	0		Vio-1.2	V	Vio=1.5 to 1.8V
PWDOWN input high current	IPDH	-1.0	0	1.0	μΑ	PWDOWN=V _{IO}
PWDOWN input low current	IPDL	-1.0	0	1.0	μΑ	PWDOWN=0V
:Transmitter>	•					
TXD/TX-RC input high voltage	VTXH	2/3*Vio		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	V _{IO} =1.8 to 3.6V
		1.2	_	Vio		Vio=1.5 to 1.8V
TXD/TX-RC input low voltage	VTXL	0	_	1/3*Vio	V	Vio=1.8 to 3.6V
TAD/TA-INC Input low voltage		0		Vio-1.2	V	Vio=1.5 to 1.8V
TXD/TX-RC input high current	ITXH	7.5	15	30	μΑ	TXD=V _{IO} or TX-RC=V _{IO}
TXD/TX-RC input low current	ITXL	-1.0	0	1.0	μΑ	TXD=0V or TX-RC=0V
LED anode current (IrDA Mode)	ILEDA1	28	40	52	mA	TXD=V _{IO} , R1=4.7Ω, PWDOWN=0V
LED anode current (RC Mode)	ILEDA2	150	200	245	mA	TX-RC=V _{IO} , R1=4.7Ω, PWDOWN=V _{IO}
Receiver>						
RXD output high voltage	VRXH	Vcc-0.4	-	Vio	٧	IRXH=-200μA
RXD output low voltage	VRXL	0	-	0.4	V	IRXL=200μA
RXD output rise Time	tRR	_	35	-	ns	C _L =15pF
RXD output fall Time	tFR	-	35	-	ns	C _L =15pF
RXD output pulse width	twRXD	1.5	2.3	4.2	μs	C _L =15pF, 2.4 to 115.2kbps
Receiver latency time	tRT	_	100	200	μs	

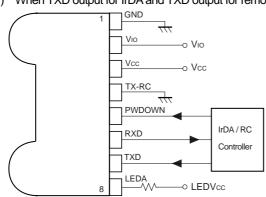
● Optical characteristics (Unless otherwise noted, Vcc= Vio=3.0V, VLEDVcc=3.0V, Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Deal constant to eath 4 (InDA Marks)	λP1	880	890	892	nm	ILED=50mA, Duty20%
Peak wave length1 (IrDA Mode)	٨٢١	850	-	900	nm	ILED=50mA, Duty20%, -20 to 60°C
Peak wave length2 (RC Mode)	λP2	880	890	920	nm	ILED=200mA, Duty20%
Intensity1 (IrDA Mode)	IE1	4	13	28	mW/sr	-15°≤θL≤15° R₁=4.7Ω
Intensity2 (RC Mode)	IE2	30	65	130	mW/sr	-15°≤θ∟≤15° R₁=4.7Ω
Half-angle	θL/2	±15	±22	_	deg	
Optical pulse width1 (IrDA Mode)	TWLED1	1.42	1.63	2.02	μs	TXD=1.63μs pulse input R ₁ =4.7Ω
Optical pulse width2 (RC Mode)	TWLED2	9.5	10	10.5	μѕ	TX-RC=10μs pulse input R ₁ =4.7Ω
Rise time / Fall time	Tr/Tf	-	60	120	ns	10% to 90%
Optical over shoot		-	-	25	%	
Edge jitter	Tj	-40	-	40	ns	
Minimum Irradiance in angular	Eemin	-	3.6	6.8	μW/cm ²	-15°≤θ∟≤+15°
Maximum Irradiance in angular	Eemax	500		_	mW/cm ²	-15°≤θ∟≤+15°
Input half-angle	θD/2	±15	_	_	deg	
Maximum emitting time	TLEDmax	20.5	48	120	μs	TXD=0→Vio or TX-RC=0→Vio

This product is not designed for protection against radioactive rays.
 This product dose not include laser transmitter.
 This product includes one PIN photo diode.
 This product dose not include optical load.

●LED Operation Mode Table

PWDOWN (5pin)	TX-RC (4pin)	TXD (7pin)	LED Emitting Mode	IrDA Receiver Operation Condition
L	L	L	OFF	ON
L	L	Л	IrDA	ON
L	Л	L	RC	ON
Н	L	L	OFF	OFF
Н	L	Л	RC	OFF
Н	JL	L	RC	OFF

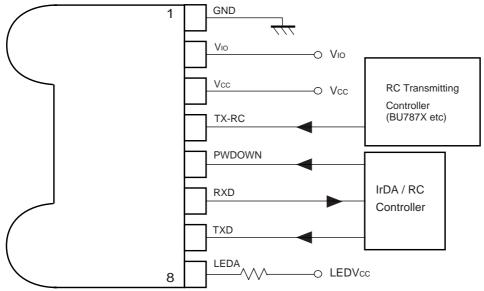

Notes) •Please be sure to set up the TX-RC (4pin) and the TXD (7pin) input to be "L" (under 0.3V) except transmitting data (for < 90μs. ON Duty ≤ 50%).

- √ of TX-RC (4pin) and TXD (7pin) in the table above is supposed to be the pulse input.
- *When either TX-RC (4pin) input TXD (7pin) input keeps the state of "H" (more than appproximately 48µs), LED will be turned off due to LED pulse width limiting circuit if the pulse is input from the other terminal.
- Therefore, don't use as the normal transmitting is impossible.
- •Please input the pulse when both TX-RC (4pin) and TXD (7pin) are "L".

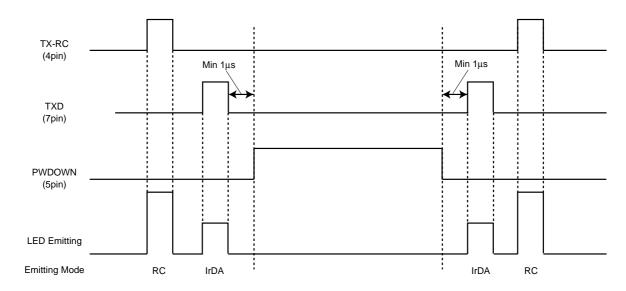
●Interface operating timing

(Emitting side)

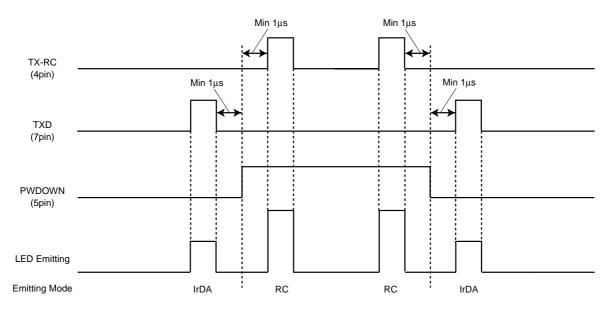
(1) When TXD output for IrDA and TXD output for remote controller is 1 line.

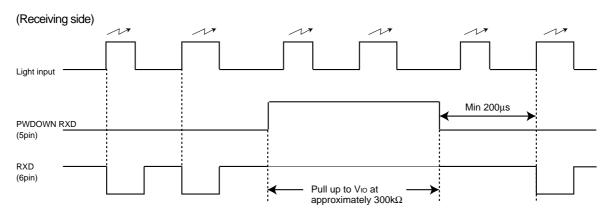

Inp	out	Cond	dition
PWDOWN	TXD	LED Mode	Recriver circuit
L	L	OFF	ON
L	Л	IrDA	ON
Н	L	OFF	OFF
Н	Л	RC	OFF

*If TX-RC or TXD input pulse width is wider than 48µs, output LED emitting pulse will be turn off approximately 48µs.



(2-a) RC transmitting mode at IrDA receiver active condition.


	Input	Co	ndition	
PWDOWN	TX-RC	TXD	LED Mode	Recriver circuit
L	L	L	OFF	ON
L	L	Л	IrDA	ON
L	Л	L	RC	ON
Н	L	L	OFF	OFF


 $* If TX-RC \ or \ TXD \ input \ pulse \ width \ is \ wider \ than \ 48\mu s, \ output \ LED \ emitting \ pulse \ will \ be \ turn \ off \ approximately \ 48\mu s.$

(2-b) RC transmit mode at IrDA receiver power down condition.

	Input	Cond	dition	
PWDOWN	TX-RC	TXD	LED Mode	Recriver circuit
L	L	L	OFF	ON
L	L	Л	IrDA	ON
Н	Л	L	RC	OFF
Н	L	L	OFF	OFF

*If TX-RC or TXD input pulse width is wider than 48µs, output LED emitting pulse will be turn off approximately 48µs.

 $*\mbox{RXD}$ output width is fixed approximately 2.3 $\mu\mbox{s}.$

Note RXD output become stable after 200 μ s since PWDOWN is changed from H to L. RXD output could be unstable at H to L within 200 μ s.

Attached components

Recommended values

Part	symbol	Recommended value	Notice
(C1	1μF, tantalum or ceramic Ex.) TCFGA1A105M8R (ROHM)	Bigger capacitance is recommended with much noise from power supply
F	₹1	4.7Ω±5%, 1/8W (VLEDVcc=3V)	At LED Emitting Duty=20%

[LED current set-up method for Remote control mode]

In case of using R1 with different condition from the above, formula is as follows:

 $LED \ resistance \ value: R1[\Omega], LED \ average \ consumption \ current: ILED[mA], Supply \ voltage: VLEDVcc[V],$

minimum necessary of irradiant intensity le1 [mW/sr]

(Including LED's distribution within ±15deg)

R1=166 × (VLEDVcc-1.28) / le1-5.0 ILED=Duty × (VLEDVCC-1.28) / (R1+3.5) Duty : LED duty at emitting

- * Please set up to be ILED / Duty < 250[mA] (Duty $\le 50\%$)
- * At IrDA Mode, LED current is constantly approximately 40mA.

(Reference) In case of using R1, typical intensity (le1typ) and maximum intensity (le1max) on axis are described as below.

 $le1typ=300 \times (VLEDVcc-1.28) / (R1+3.5)$ $le1max=600 \times (VLEDVcc-1.28) / (R1+3.5)$

Notes

- 1) LEDVcc (8pin), Vcc (3pin) and Vio (2pin)
 - \cdot Other power source can be used difference between LEDVcc and Vcc and Vio. (Vio < Vcc + 0.3V)
- 2) Caution in designing board lay-out

To get maximum potential from RPM882-H14, please keep in mind following instruction.

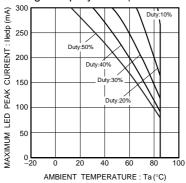
- The line of RXD (6pin) should be connected at backside via through hole close to RPM882-H14 pin lead. Better not to be close to photo diode side (1pin).
- ⇒This is to minimize feedback supplied to photo diode from RXD.
- · As for C1 between 1-3 pin should be placed close to RPM882-H14.
- Better to be placed more than 1.0cm in radius from photo diode (pin1 side) and also away from the parts which generates noise, such as DC/DC converter.

3) Notes

- Please be sure to set up the TX-RC (4pin) and the TXD (7pin) input to be "L" (under 0.3V) except transmitting data (for $< 90\mu s$, ON duty $\le 50\%$).
- · Power down current might increase if exposed by strong light (ex. direct sunlight) at powerdown mode.
- Please use by the signal format at IrDA operating mode which is specified by IrDA Ver1.2 (2.4k to 115.2kbps). There might be on error if used by different signal format.
- · Please pay attention to the lens carefully.

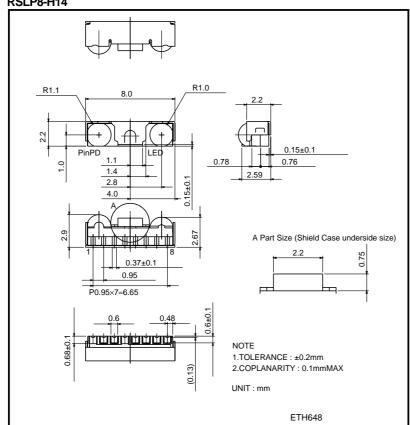
Dusts of scratch on the lens may effect the characteristics of product. Please handle it with care.

4) Eye safe


· IEC60825-1 (IEC60825-1 amendment2), Class 1 Eye Safe.

5) LED current derating and amdient temperature

The relation between LED peak current and maximum ambient temperature is shown below.


We recommend you to use within the range as indicated in below.

When glass-epoxy board (70×70×1.6mm) mounted.

●External dimensions (Unit:mm)

RSLP8-H14

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

RPM882-H14E2 RPM882-H14E2A

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов:
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.