

Three Phase Rectifier Bridge

 $I_{dAV} = 85 A$ $V_{RRM} = 800-1600 V$

Preliminary data

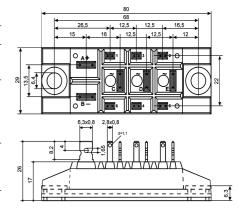
V _{RSM}	V _{RRM}	Types
V	V	
900	800	VUO 85-08NO7
1300	1200	VUO 85-12NO7
1500	1400	VUO 85-14NO7
1700	1600	VUO 85-16NO7

Symbol	Test Conditions	Maximum R	Maximum Ratings	
l _{dAV} ①	$T_{\rm C} = 100^{\circ}$ C, mod	85	Α	
I _{FSM}	$T_{VJ} = 45^{\circ}C;$	t = 10 ms (50 Hz), sine	750	Α
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	820	A
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), sine	600	Α
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	700	A
l²t	$T_{VI} = 45^{\circ}C$	t = 10 ms (50 Hz), sine	2800	A^2s
	$V_R^{vs} = 0$	t = 8.3 ms (60 Hz), sine	2820	A^2s
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), sine	2200	A ² s
	$V_R^{VS} = 0$	t = 8.3 ms (60 Hz), sine	2250	A ² s
T _{vJ}			-40+150	°C
T _{VIM}			150	°C
T _{stg}			-40+125	°C
V _{ISOL}	50/60 Hz, RMS	t = 1 min	2500	V~
	$I_{ISOL} \le 1 \text{ mA}$	t = 1 s	3000	V~
M _d	Mounting torque	(M5)	5 ± 15 %	Nm
u		(10-32 UNF)	44 ± 15 %	lb.in.
Weight	typ.		110	g

Features

- Package with copper base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- · Low forward voltage drop
- 1/4" fast-on power terminals

Applications


- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Advantages

- Easy to mount with two screws
- · Space and weight savings
- Improved temperature and power cycling capability
- · Small and light weight

Symbol	Test Conditions	Characteristic V	Characteristic Values	
I _R	$V_R = V_{RRM}$; $T_{VJ} = 25$ °C	≤ 0.5	mΑ	
	$V_{R} = V_{RRM};$ $T_{VJ} = T_{VJM}$	≤ 10	mΑ	
V _F	$I_F = 150 \text{ A}; \qquad T_{VJ} = 25^{\circ}\text{C}$	≤ 1.6	V	
V_{T0}	For power-loss calculations only	0.8	V	
r _T		6	$m\Omega$	
R _{thJC}	per diode; DC current	1.3	K/W	
	per module	0.22	K/W	
R_{thJH}	per diode, DC current	1.6	K/W	
ulon	per module	0.27	K/W	
$\overline{d_s}$	Creeping distance on surface	16.1	mm	
d _A	Creepage distance in air	7.5	mm	
a	Max. allowable acceleration	50	m/s ²	

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747 refer to a single diode unless otherwise stated

① for resistive load at bridge output. IXYS reserves the right to change limits, test conditions and dimensions.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.