

TLE9104SH

Smart Quad Channel Powertrain Switch

1 Overview

Features

- Configurable overcurrent protection
- Overtemperature protection
- Open load detection
- Short circuit to GND detection
- Electrostatic Discharge (ESD) protection
- 16-Bit SPI (for diagnostic and control)
- Soldering: Automated Optical Inspection capability (AOI)
- Green product (completely lead free)
- AEC qualified

Potential applications

The TLE9104SH is best suited for Automotive Powertrain applications. It can be used as driver IC for inductive and ohmic actuators such as injectors, solenoids and relays.

Product validation

Qualified for Automotive Applications. Product Validation according to AEC-Q100/101.

Description

Quad Low-Side Switch in Smart Power Technology (SPT) with four open drain DMOS output stages. The TLE9104SH is protected by embedded protection functions and designed for automotive powertrain applications. The output stages can be controlled directly by parallel inputs for PWM applications (for example gasoline multiport injection) or by SPI.

Туре	Package	Marking
TLE9104SH	PG-DSO-20-88	TLE9104SH

Overview

Table 1 Product summary

Parameter	Symbol	Value, Unit
Signal supply voltage	V _{IO}	3.05.5 V
Analog supply voltage	V _{DD}	4.55.5 V
Output clamping voltage	V _{DS(AZ)}	5060 V
Typical On-state resistance CH 1-4 at $T_i = 25^{\circ}$ C	R _{DS(ON)}	150 mΩ
Typical On-state resistance CH 1-4 at $T_j = 150^{\circ}$ C	R _{DS(ON)}	300 mΩ
Nominal load current CH 1-4 (continuous)	I _D	3 A
Short circuit to battery detection threshold CH 1-4	I _{SCB}	5 A

Table of contents

1	Overview	L
2	Block diagram	ł
3 3.1 3.2	Pin configuration 5 Pin assignment 5 Pin definitions and functions 5	5
4 4.1 4.2	General product characteristics 7 Absolute maximum ratings 7 Operating conditions 8	7
5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.5.1 5.6	Electrical and functional description of blocks9Power supply9Parallel inputs10Power stages10Protection functions12Overtemperature protection12Short circuit to battery protection12Overcurrent protections12Diagnostic functions12Output stage status15Communication watchdog16	
6 6.1 6.2 6.2.1	16 bit SPI interface 17 Electrical characteristics 16 bit SPI interface 17 SPI registers 19 Registers 22	7 9 2
7	Package outlines	2
8	Application information	
9	Revision history	ł

Block diagram

2 Block diagram

Figure 2-1 Block diagram

Pin configuration

3 Pin configuration

3.1 Pin assignment

	(top view)	
OUT1	1• 20	
GND I	2 19	□ GND
IN1 🞞	3 18	□ IN2
IN3 🎞	4 17	□ IN4
so 🎞	5 16	□ VDD
SI 🗖	6 15	□ VIO
CSN 🞞	7 14	□ EN
SCК 🞞	8 13	□ RESN
GND 🞞	9 12	□ GND
оитз 🎞	10 11	D OUT4

Figure 3-1 Pin configuration (top view)

3.2 Pin definitions and functions

Table 3-1Pin configuration

#	Pin Name	Function
1	OUT1	Power Output 1
2	GND	Ground
3	IN1	Input 1
4	IN3	Input 3
5	SO	Serial Data Output
6	SI	Serial Data Input
7	CSN	Serial Chip Select (active low)
8	SCK	Serial Clock
9	GND	Ground
10	OUT3	Power Output 3
11	OUT4	Power Output 4
12	GND	Ground
13	RESN	Reset (active low)
14	EN	Output Enable
15	VIO	Signal Supply Voltage
16	VDD	Analog Supply Voltage
17	IN4	Input 4
18	IN2	Input 2
19	GND	Ground
20	OUT2	Power Output 2

Pin configuration

Notes

- 1. The exposed pad of TLE9104SH is not connected to ground internally. It is highly recommended to connect the exposed pad to GND pins externally.
- 2. Pins 2 and 19 are the ground pins of outputs 1 and 2 and pins 9 and 12 are the ground pins of outputs 3 and 4. It is highly recommened to connect all GND pins externally.

General product characteristics

4 General product characteristics

4.1 Absolute maximum ratings

Table 4-1 Absolute maximum ratings

 T_j = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	l Values				t Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Signal supply voltage	V _{IO}	-0.3	-	5.5	V	-	P_4.1.1	
Analog supply voltage	V _{DD}	-0.3	-	5.5	V	-	P_4.1.2	
Continuous drain source voltage (OUT1 to OUT4)	V _{DS}	-0.3	-	50	V	-	P_4.1.3	
Input voltage, all inputs and data outputs, sense lines	V _{IN}	-0.3	-	V _{I0} + 0.3	V	-	P_4.1.4	
Output current per channel ¹⁾	I _D	0	-	5.5	А	Output ON	P_4.1.5	
Maximum voltage for short circuit protection (single event) ²⁾	$V_{\rm SC,single}$	-	-	30	V	-	P_4.1.6	
E lectro s tatic D ischarge voltage - HBM (human body model) ³⁾	V _{ESD1}	-2000	-	2000	V	-	P_4.1.7	
E lectro s tatic D ischarge voltage - CDM (charge device model) ⁴⁾	V _{ESD2}	-500	-	500	V	-	P_4.1.8	

 Output current rating as long as maximum junction temperature is not exceeded. The maximum output current in the application must be calculated using R_{thJA} depending on mounting conditions.

2) Short circuit is designed to be short circuit robust according to AEC-Q100-012.

3) According to ANSI/ESDA/JEDEC JS-001.

4) According to JESD22-C101.

Notes

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

General product characteristics

4.2 **Operating conditions**

Table 4-2Operating conditions

Parameter	Symbol		Value	S	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Maximum output clamping energy, linearly decreasing current ^{1) 2)}	E _{AR}	14	-	-	mJ	$I_{D(0)} = 1.4 \text{ A},$ $T_{J(0)} = 110^{\circ}\text{C},$ Cycles: 1 billion	P_4.2.6
Maximum output clamping energy, linearly decreasing current ³⁾	E _{AS}	35	-	-	mJ	$T_{\rm J} = 85^{\circ}$ C, Cycles: 10	P_4.2.13
Maximum output clamping energy, linearly decreasing current	E _{AS}	25	-	-	mJ	<i>T</i> _J = 145°C, Cycles: 10	P_4.2.14
Maximum output clamping energy in parallel mode	E _{AR,p}	$1.7 \times E_{AR}$	-	-	mJ	OUT1&2 or OUT3&4, $I_{D(0), P} = 1.8 \times I_{D(0)}$	P_4.2.2
Thermal resistance		1				1 · · · · ·	
Junction to case	R _{thJC}	_	1	1.25	K/W	PV = 3 W, homogenously distributed between all output stages	P_4.2.3
Temperature range	1	1					1
Operating temperature range	Ti	-40	_	150	°C	_	P_4.2.4

Operating temperature range	1 _j	-40	-	120	C	-	P_4.2.4
Storage temperature range	$T_{\rm stg}$	-55	-	150	°C	-	P_4.2.5
1) Dulco chono represente inductivo qui	tch offil /t	$1 - 1 (0) \times$	1 +/+	1.0-+	-+		

1) Pulse shape represents inductive switch off: $I_D(t) = I_D(0) \times (1 - t / t_{pulse}); 0 < t < t_{pulse}$

2) The given energy values are based on a cumulative scenario as specified in the Notes column.

3) The given energy values are based on a cumulative scenario as specified in the Notes column.

Note: Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given by the related electrical characteristics table.

5 Electrical and functional description of blocks

5.1 Power supply

The TLE9104SH is supplied by analog power supply line V_{DD} and signal power supply V_{IO} . A capacitor between pins V_{DD} to GND and V_{IO} to GND is recommended. After start-up of the power supply, the RESN pin should be kept low until the Reset Duration Time has expired. This will reset all SPI registers to their default values. In order to enable the output stages the EN pin has to be kept high and OUT_EN register has to be set.

Table 5-1 Electrical characteristics: power supply

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin

Parameter	Symbol		Val	ues	Unit	Note or	Number
	• • • • • • • • • • • • • • • • • • • •	Min. Typ. Max.			-	Test Condition	
Signal supply voltage	V _{IO}	3	-	5.5	V	_	P_5.1.1
Analog supply voltage	V _{DD}	4.5	-	5.5	V	-	P_5.1.2
Supply current	I _{DD(on)}	-	-	10	mA	-	P_5.1.3
Input low voltage of pin RESN	V _{RESN(L)}	-0.3	-	1	V	-	P_5.1.4
Input high voltage of pin RESN	V _{RESN(H)}	2	-	V _{IO} + 0.3	V	-	P_5.1.5
Hysteresis voltage of pin RESN	V _{RESN(Hys)}	100	300	500	mV	-	P_5.1.6
Input pull-up current through pin RESN	I _{RESN}	-100	-65	-30	μA	V _{RESET} = 0 V	P_5.1.7
Reset duration time ¹⁾	t _{RESN(L)}	10	-	-	μs	-	P_5.1.8
Input low voltage of pin EN	V _{EN(L)}	-0.3	-	1	V	-	P_5.1.9
Input high voltage of pin EN	V _{EN(H)}	2	-	V _{I0} + 0.3	V	-	P_5.1.10
Hysteresis voltage of pin EN	V _{EN(Hys)}	100	300	500	mV	-	P_5.1.11
Input pull-down current through pin EN	I _{EN}	30	65	100	μA	<i>V</i> _{EN} = 2 V	P_5.1.12

1) For proper startup, after the supply V_{DD} has reached its final voltage, the RESN pin should be held low until the reset duration time has expired.

Electrical and functional description of blocks

5.2 Parallel inputs

Each input signal controls the output stage of its related channel. For example, IN1 controls OUT1, IN2 controls OUT2 etc. Input signals are active low. Hence, applying a voltage less than $V_{IN(L)}$ to INx turns OUTx on. It is possible to connect OUT1-2 and OUT3-4 in parallel. For this purpose the right configuration has to be selected in the CFG register. In this case IN1 controls OUT1-2 and IN3 controls OUT3-4.

Table 5-2 Electrical characteristics: parallel inputs

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol	Symbol Values				Note or	Number
		Min.	Тур.	Max.		Test Condition	
Input low voltage of pin INx	V _{IN(L)}	-0.3	-	1	V	-	P_5.2.1
Input high voltage of pin INx	V _{IN(H)}	2	-	V _{IO} + 0.3	V	-	P_5.2.2
Input voltage hysteresis	V _{IN(Hys)}	100	300	500	mV	-	P_5.2.3
Input pull-up current through pin INx	I _{IN(L)}	-100	-65	-30	μA	$V_{\rm IN} = 0 \rm V$	P_5.2.4

5.3 Power stages

Table 5-3 Electrical characteristics: power outputs

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol	Values		Unit	t Note or	Number	
		Min.	Тур.	Max.		Test Condition	
ON resistance	R _{DS(ON)}	_	150		mΩ	$T_{\rm J} = 25^{\circ} {\rm C},$	P_5.3.1
ON resistance	R _{DS(ON)}	_	300	350	mΩ	$T_{\rm J} = 150^{\circ} {\rm C},$	P_5.3.2
ON resistance in parallel mode	R _{DS(ON)}	-	75	-	mΩ	$T_{\rm J}$ = 25°C, outputs 1&2 or 3&4 in parallel	P_5.3.3
ON resistance in parallel mode	R _{DS(ON)}	-	150	175	mΩ	T _J = 150°C, outputs 1&2 or 3&4 in parallel	P_5.3.4
Output clamping voltage	V _{DS(AZ)}	50	_	60	V	output OFF	P_5.3.5
Output leakage current	I _{D(lkg)}	-	_	10	μA	RESN=0	P_5.3.6
Output off-state current	I _{OUTX_OFF}	-	-	30	μΑ	RESN=1, OUTx_DIAG_EN =0, V _{OUTx} = 35 V	P_5.3.6
Turn-on time	t _{on}	-	15	-	μs	from 50% of INx to 20% of Vbat	P_5.3.7

Table 5-3 Electrical characteristics: power outputs (cont'd)

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Turn-off time	t _{off}	-	15	-	μs	from 50% of INx to 80% of Vbat	P_5.3.8
Overtemperature shutdown threshold	T _{j(OT)}	165	-	200	°C	-	P_5.3.9

5.4 **Protection functions**

The TLE9104SH provides embedded protection functions. Integrated protection functions are designed to prevent IC destruction under fault conditions. Fault conditions are considered "outside" the normal operating range. Protection functions are not designed for continuous repetitive operation. Following protection functions are implemented for TLE9104SH:

- Overtemperature protection (OT).
- Short circuit to battery protection (SCB).
- Overcurrent protection (OC).
- Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

5.4.1 Overtemperature protection

A dedicated temperature sensor for each channel detects if the temperature of its channel exceeds the overtemperature shutdown threshold. If the channel temperature exceeds the overtemperature shutdown threshold, the overheated channel is switched off immediately to prevent destruction. The channel can be turned on again after clearing the overtemperature error; however, if the sensed temperature is still higher than the overtemperature shutdown threshold the channel will switch off after the filter time t_{oT} .

5.4.2 Short circuit to battery protection

The TLE9104SH is protected in case of short circuit to battery. If the current of an output channel exceeds I_{SCB} , the respective channel is switched off immediately. The channel can be turned on again after the fault condition has been removed and the error has been cleared.

5.4.3 Overcurrent protections

The TLE9104SH is protected with configurable overcurrent protection. If the current of an output channel exceeds I_{OC} , the respective channel is switched off after the filter time $t_{d(OC)}$. The channel can be turned on again after the fault condition has been removed and the error has been cleared. Both current limit threshold I_{OC} and its filter time $t_{d(OC)}$ are configurable via SPI. The filter time, $t_{d(OC)}$, and the current limit threshold, I_{OC} , can only be configured while the output bit, OUT_EN, is low in the SPI register.

5.5 Diagnostic functions

Following diagnosis functions are implemented for all output stages of TLE9104SH:

- Short to battery detection (SCB) can be detected if stages are turned on.
- Overtemperature detection (OT) can be detected if stages are turned on.
- Time based overcurrent detection (OCF) can be detected if stages are turned on.
- Temperature based overcurrent detection (OCT) can be detected if stages are turned on.
- Short to GND detection (SCG) can be detected if stages are turned off.
- Open load detection (OL) can be detected if stages are turned off.

The diagnosis information of TLE9104SH can be accessed via SPI interface. OL and SCG diagnosis are recognized using two thresholds ($V_{OUTn-SCG}$ and $V_{OUTn-OL}$). It is also possible to turn off the internal diagnostic pull-down and pull-up current sources. In this case diagnosis of OL and SCG are deactivated.

Electrical and functional description of blocks

Figure 5-1 Overcurrent and short circuit to battery protection

The fault conditions SCG and OL will not be stored until an integrated filtering time, $t_{d(fault)}$, has expired. An additional blanking time, $t_{b(fault)}$, can be configured in addition to the filter time. The blanking time, $t_{b(fault)}$, can only be configured while output enable bit, OUT_EN, is low in the SPI register.

Figure 5-2 Diagnostic functions (overview only)

Figure 5-3 SCG and OL diagnostic function (overview only)

Table 5-4 Electrical characteristics: diagnostic functions

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_j = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol		Value	s	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Open load detection voltage	V _{OUTn-OL}	0.6 V _{DD} - 0.2	-	0.6 V _{DD} + 0.2	V	-	P_5.5.1
Diagnostic pull-down current	I _{PD}	300	380	450	μA	$V_{\rm OUTn} = 0.6 V_{\rm DD}$	P_5.5.2
Diagnostic pull-up current	I _{PU}	-180	-150	-120	μA	$V_{\rm OUTn} = 0.4 V_{\rm DD}$	P_5.5.3
Short circuit to ground detection voltage	V _{OUTn-SCG}	0.4 V _{DD} - 0.2	-	0.4 V _{DD} + 0.2	V	-	P_5.5.4
Short circuit to battery detection current	I _{SCB}	4.5	5	5.5	A	-	P_5.5.5
Short circuit to battery detection current in parallel mode	I _{SCB}	9	10	11	A	Outputs 1&2 or outputs 3&4 connected in parallel	P_5.5.6
Fault filtering time ¹⁾	<i>t</i> _{d(fault)}	0.015	0.02	0.025	ms		P_5.5.7
Fault blanking time ²⁾	t _{b(fault)}	0.16	0.2	0.24	ms	configurable via SPI	P_5.5.8
Fault blanking time	t _{b(fault)}	0.4	0.5	0.60	ms	default value	P_5.5.9
Fault blanking time	t _{b(fault)}	0.8	1	1.2	ms	configurable via SPI	P_5.5.10
Fault blanking time	t _{b(fault)}	1.6	2	2.4	ms	configurable via SPI	P_5.5.11
Overcurrent filtering time	t _{d(OC)}	0.04	0.06	0.08	ms	default value	P_5.5.12
Overcurrent filtering time	t _{d(OC)}	0.1	0.12	0.14	ms	configurable via SPI	P_5.5.13
Overcurrent filtering time	t _{d(OC)}	0.4	0.5	0.6	ms	configurable via SPI	P_5.5.14

Table 5-4 Electrical characteristics: diagnostic functions (cont'd)

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol		Value	s	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Overcurrent filtering time	$t_{\rm d(OC)}$	0.8	1	1.2	ms	configurable via SPI	P_5.5.15	
Overcurrent filtering time	t _{d(OC)}	4	5	6	ms	configurable via SPI	P_5.5.16	
Overcurrent filtering time	t _{d(OC)}	8	10	12	ms	configurable via SPI	P_5.5.17	
Overcurrent filtering time	t _{d(OC)}	16	20	24	ms	configurable via SPI	P_5.5.18	
Overcurrent filtering time	t _{d(OC)}	24	30	36	ms	configurable via SPI	P_5.5.19	
Overcurrent threshold	I _{oc}	0.75	1	1.25	А	configurable via SPI	P_5.5.20	
Overcurrent threshold	I _{oc}	1.75	2	2.25	А	default value	P_5.5.21	
Overcurrent threshold	I _{oc}	2.5	3	3.5	А	configurable via SPI	P_5.5.22	
Overcurrent threshold	I _{oc}	3.5	4	4.5	А	configurable via SPI	P_5.5.23	
Overcurrent threshold in parallel mode	I _{oc}	1.35	2	2.5	A	configurable via SPI, outputs 1&2 or outputs 3&4 connected in parallel	P_5.5.24	
Overcurrent threshold in parallel mode	I _{oc}	3.15	4	4.5	A	default value, outputs 1&2 or outputs 3&4 connected in parallel	P_5.5.25	
Overcurrent threshold in parallel mode	I _{oc}	4.5	6	7	A	configurable via SPI, outputs 1&2 or outputs 3&4 connected in parallel	P_5.5.26	
Overcurrent threshold in parallel mode	I _{oc}	6.3	8	9	A	configurable via SPI, outputs 1&2 or outputs 3&4 connected in parallel	P_5.5.27	
Overtemperature filter time	t _{ot}	2	3	4	μs	-	P_5.5.28	
Short circuit to battery filter time	t _{SCB}	1.2	-	2	μs	-	P_5.5.28	

1) $t_{d(fault)}$ is the filter time for open load and short to ground diagnostic functions.

2) $t_{d(fault)}$ is the blanking time for open load and short to ground diagnostic functions.

5.5.1 Output stage status

The output of open-load comparator of each channel is directly available via OUTx_STAT bit. This bit can be used to detect a failure condition in which the channel is turned on by INx or SPI but the power stage remains switched off. The delay between a turn on via INx or SPI and a change in status bit depends on the output voltage slew rates and hence on the load itself.

5.6 Communication watchdog

The TLE9104SH is using the watchdog principle to monitor the SPI communication. In case of no communication or continuous communication failures all outputs are disabled. In case of a faulty SPI frame the CWD timer does not retrigger and after the filter time the register CWD-TO is set and can be read as soon as the SPI is back to normal operation. The watchdog is active by default; however, it can be deactivated via a SPI command.

The watchdog starts to work as soon as the device has finished start-up and all blocks are released from reset. If these conditions are met, the watchdog timer t_{CWD} is started. Each correct SPI communication restarts the t_{CWD} timer. If no valid communication is received within timeout, the t_{CWD} timer will expire and disable all outputs. For re-enabling, one needs to clear the error and enable outputs via SPI. Outputs will not be enabled automatically by clearing the error.

The watchdog timer t_{CWD} is configurable via SPI. The watchdog timer t_{CWD} can only be configured while the output enable bit, OUT_EN, is low in the SPI register.

Following SPI communication issues are detected as failure by the watchdog:

- No communication
- Wrong commands
- Frames not equal to 16 clocks

Table 5-5 Communication watchdog timeout configuration

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, (unless otherwise specified) all voltages with respect to ground, positive current flowing into pin (unless for pin SO)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Communication watchdog timeout	t _{CWD0}	20	25	30	ms	configurable via SPI	P_5.6.1
Communication watchdog timeout	t _{CWD1}	40	50	60	ms	default value	P_5.6.2
Communication watchdog timeout	t _{CWD2}	60	75	90	ms	configurable via SPI	P_5.6.3

6 16 bit SPI interface

The diagnostic and control interface is based on a serial peripheral interface (SPI).

The SPI is a full duplex synchronous serial slave interface, which uses four lines: SO, SI, SCK, CSN. Data is transferred by the lines SI and SO at the data rate given by SCK. The falling edge of CSN indicated the beginning of a data access. Data is sampled in on line SI at the falling edge of SCK and shifted out on line SO at the rising edge of SCK. Each access shall be terminated by a rising edge of CSN. A modulo 16 counter ensures that data is taken only, when a multiple of 16 bits has been transferred.

Figure 6-1 SPI timing

6.1 Electrical characteristics 16 bit SPI interface

Table 6-1 Electrical characteristics: 16 bit SPI interface

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Input characteristics (CSN, SCK	, SI)						
L level of pin CSN, SCK, SI	V _{IO_CSNL} V _{IO_SCKL} V _{IO_SIL}	-0.3	-	1	V	-	P_6.1.1
H level of pin CSN, SCK, SI	V _{IO_CSNH} V _{IO_SCKH} V _{IO_SIH}	2	-	V _{IO} + 0.3	V	-	P_6.1.2
Hysteresis input pins	V _{IO_CSNHy} V _{IO_SCKHy} V _{IO_SIHy}	100	300	500	mV	-	P_6.1.3
Output characteristics (SO)							
L level output voltage	V _{IO_SOL}	0	_	1	V	<i>I</i> _{IO_SO} = -2 mA	P_6.1.4
H level output voltage	V _{IO_SOH}	V _{IO} - 0.5	_	V _{IO} + 0.3	_	-	P_6.1.5
Output tristate leakage current	I _{IO_SOoff}	-10	-	10	μA	-	P_6.1.6

Table 6-1 Electrical characteristics: 16 bit SPI interface

 V_{DD} = 4.5 V to 5.5 V, V_{IO} = 3 V to 5.5 V, T_{j} = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Input capacitance	1					1	1
For CSN, SCK, SI and SO	C _{in}	-	6	8	pF	-	P_6.1.13
Timings	•						
Serial clock frequency ¹⁾	f _{SCK}	0	-	8	MHz	C _L = 25 pF	P_6.1.7
Serial clock period	t _{SCK(P)}	125	-	-	ns	-	P_6.1.8
Serial clock high time	t _{SCK(h)}	50	-	-	ns	-	P_6.1.9
Serial clock low time	t _{SCK(l)}	50	-	-	ns	_	P_6.1.10
Enable lead time (falling CSN to rising SCK)	$t_{\rm CSN(lead)}$	250	-	-	ns	-	P_6.1.11
Enable lag time (falling SCK to rising CSN)	t _{CSN(lag)}	250	-	-	ns	-	P_6.1.12
Data setup time (required time SI to falling SCK)	t _{SI(su)}	20	-	-	ns	-	P_6.1.14
Data hold time (falling SCK to SI)	t _{SI(h)}	20	-	-	ns		P_6.1.15
Output enable time (falling CSN to SO valid)	t _{SO(en)}	-	-	200	ns	<i>C</i> _L = 25 pF	P_6.1.16
Output disable time (rising CSN to SO tri-state)	$t_{\rm SO(dis)}$	-	-	200	ns	C _L = 25 pF	P_6.1.17
Output data valid time with capacitive load	$t_{\rm SO(v)}$	-	-	100	ns	C _L = 25 pF	P_6.1.18
Transfer delay time (rising CSN to falling CSN)	<i>t</i> _{CSN(td)}	1	-	100	μs	<i>C</i> _L = 25 pF	P_6.1.19

1) Maximum SPI clock frequency in the application may be less depending on the load at the SO pin and the microcontroller SPI peripheral timing requirements.

16 bit SPI interface

6.2 SPI registers

The general SPI frame length is fixed at 16 bits. Bits 0 to 7 of each frame are used as data frame, bits 8 to 10 are used for address, bit 14 is the parity bit and bit 15 is used to specify a command as read or write. The parity bit is defined as:

$$b_{14} = (1 + b_{15} + \sum_{i=0}^{13} b_i) \mod 2$$
 (6.1)

MOSI

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R/W Parit	y 0	0		Addı	ress	1			1	Da	ita	1	1	

MISO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R/W	Parity	Fault Communi- cation	Fault Global		Add	ress			I	1	Da	ita	1	1	

IN MOSI and MISO a read is defined with a '0' and a write is defined with a '1'. Each MISO SPI frame reports the important system faults as Global or Communication faults in bit 12 and 13 as following:

- Global fault is asserted (not latching) when the general fault bit in Global_Status register is set.
- Communication fault is asserted (not latching) when one of the following faults are present:
 - Communication error (the same as COM_ERR in Global_Status register)
 - Communication watchdog timeout
 - Parity error

Besides, global status register stores the faults as following:

- General fault if at least one of the following faults are present:
 - Over-current
 - Over-temperature
 - Over-temperature during overcurrent
 - Short circuit to battery
 - Open load
 - Short circuit to ground
 - Communication error:
 - No communication
 - Wrong command
 - Frames not equal to 16 bits
- Parity error
- Communication watchdog

Data Sheet

16 bit SPI interface

Apart from the faults, global register also restores the enable latch signal (EN_Latch) and power on reset latch (POR_Latch) as following:

- EN_Latch: This bit has a reset value of '0'. After setting the OUT_EN bit this bit changes to '1'. This bit shows whether the output has been enabled (via SPI) at least once since the last clear.
- POR_Latch: This bit has a reset value of '1'. It can be changed to '0' via SPI. Any power on reset will set the bit back to 1. This can be used to check whether a power on reset has happened since the bit value was changed to '0'.

16 bit SPI interface

Table 6-2Register Address Space

Module	Base Address	End Address	Note
apb	0 _H	1F _H	-

Table 6-3 Register Overview

Register Short Name	Register Long Name	Offset Address	Page Number
CTRL	Output control register	00 _H	22
CFG	Configuration register	01 _H	24
OFF_DIAG_CFG	Off-state diagnostic configuration register	02 _H	25
ON_DIAG_CFG	On-state diagnostic configuration register	03 _H	26
DIAG_OUT_1_2_ON	On-state diagnostic result register OUT1 & OUT2	04 _H	27
DIAG_OUT_3_4_ON	On-state diagnostic result register OUT3 & OUT4	05 _H	28
DIAG_OFF	Off-state diagnostic result register	06 _H	29
GLOBAL_STATUS	Global device status register	07 _H	30
ICVID	IC Version ID	08 _H	31

The registers are addressed wordwise.

Table 6-4 Register Overview

Bit type short name	Bit type description	Note
r	read	-
rw	read/write	-
rwc	read and clear on write	clear on write 0

Note: All configurations can only be changed while the OUT_EN bit is cleared.

rw

6.2.1 Registers

Output control register

rw

С	TRL			Of	fset			Reset Valu	е
0	output contro	ol register		0	0 _H			00	н
	7	6	5	4	3	2	1	0	
	OUT4_ON	OUT4_ON	OUT3_ON	OUT3_ON	OUT2_ON	OUT2_ON	OUT1_ON	OUT1_ON	
	_S	_C	_S	_C	_S	_C	_S	_C	

rw

rw

rw

rw

Field	Bits	Туре	Description
OUT4_ON_S	7	rw	OUT4 SPI control bit (used if CFG.OUT4_DD = 0) 1 _D SET, Output 4 set 0 _D NO_ACTION, Output 4 no action Reset: 0 _B
OUT4_ON_C	6	rw	OUT4 SPI control bit (used if CFG.OUT4_DD = 0) 1 _D CLEAR, Output 4 clear 0 _D NO_ACTION, Output 4 no action Reset: 0 _B
OUT3_ON_S	5	rw	OUT3 SPI control bit (used if CFG.OUT3_DD = 0) 1 _D SET, Output 3 set 0 _D NO_ACTION, Output 3 no action Reset: 0 _B
OUT3_ON_C	4	rw	OUT3 SPI control bit (used if CFG.OUT3_DD = 0) 1 _D CLEAR, Output 3 clear 0 _D NO_ACTION, Output 3 no action Reset: 0 _B
OUT2_ON_S	3	rw	OUT2 SPI control bit (used if CFG.OUT2_DD = 0) 1 _D SET, Output 2 set 0 _D NO_ACTION, Output 2 no action Reset: 0 _B
OUT2_ON_C	2	rw	OUT2 SPI control bit (used if CFG.OUT2_DD = 0) 1 _D CLEAR, Output 2 clear 0 _D NO_ACTION, Output 2 no action Reset: 0 _B
OUT1_ON_S	1	rw	OUT1 SPI control bit (used if CFG.OUT1_DD = 0) 1 _D SET, Output 1 set 0 _D NO_ACTION, Output 1 no action Reset: 0 _B

rw

rw

16 bit SPI interface

Field	Bits	Туре	Description
OUT1_ON_C	0	rw	OUT1 SPI control bit (used if CFG.OUT1_DD = 0)
			1 _D CLEAR , Output 1 clear
			0 _D NO_ACTION , Output 1 no action
			Reset: 0 _B

Configuration register

CFG Configuration register			Of	fset			Reset Value
			01 _H				
7	6	5	1	2	2	1	0

 7	6	5	4	3	2	1	0
CWD_	_TIME	OUT3_4_ PAR	OUT1_2_ PAR	OUT4_DD	OUT3_DD	OUT2_DD	OUT1_DD

Field	Bits	Туре	Description
CWD_TIME	7:6	rw	Communication watchdog timeout configuration3 _D LONG, 75 ms2 _D MEDIUM, 50 ms (default)1 _D SHORT, 25 ms0 _D DISABLED, Communication watchdog disabledReset: 10 _B
OUT3_4_PAR	5	rw	 OUT3-4 parallel mode 1_D ENABLED, OUT3-4 parallel mode (controlled by IN3 or CTRL.OUT3_ON) 0_D DISABLED, OUT3, OUT4 controlled separately (default) Reset: 0_B
OUT1_2_PAR	4	rw	 OUT1-2 parallel mode 1_D ENABLED, OUT1-2 parallel mode (controlled by IN1 or CTRL.OUT1_ON) 0_D DISABLED, OUT1, OUT2 controlled separately (default) Reset: 0_B
OUT4_DD	3	rw	OUT4 direct drive mode1 DENABLED, OUT4 controlled by IN4 (default)0 DDISABLED, OUT4 controlled by SPI (CTRL.OUT4_ON)Reset: 1 B
OUT3_DD	2	rw	OUT3 direct drive mode11BID0DISABLED, OUT3 controlled by SPI (CTRL.OUT3_ON)Reset: 1
OUT2_DD	1	rw	OUT2 direct drive mode11BID0DISABLED, OUT2 controlled by SPI (CTRL.OUT2_ON)Reset: 1
OUT1_DD	0	rw	OUT1 direct drive mode1 DENABLED, OUT1 controlled by IN1 (default)0 DDISABLED, OUT1 controlled by SPI (CTRL.OUT1_ON)Reset: 1 B

Off-state diagnostic configuration register

OFF_DIAG_CFG					fset			Reset Valu	е
C)ff-state diag	nostic config	guration regi	ister 0	2 _H			1F	н
	7	6	5	4	3	2	1	0	
	RE	ËS	DIAG_F	ILT_CFG	OUT4_DI AG_EN	OUT3_DI AG_EN	OUT2_DI AG_EN	OUT1_DI AG_EN	

Field	Bits	Туре	Description
DIAG_FILT_CFG	5:4	rw	Diagnostic filter time configuration 3_D 2000_us, 2000 us 2_D 1000_us, 1000 us 1_D 500_us, 500 us (default) 0_D 200_us, 200 us Reset: 01_B 0_D
OUT4_DIAG_EN	3	rw	Enable diagnostic current OUT4100D0OFF, Diagnostic current OFFReset: 11
OUT3_DIAG_EN	2	rw	Enable diagnostic current OUT310N, Diagnostic current ON (default)00FF, Diagnostic current OFFReset: 11
OUT2_DIAG_EN	1	rw	Enable diagnostic current OUT210N, Diagnostic current ON (default)00FF, Diagnostic current OFFReset: 11
OUT1_DIAG_EN	0	rw	Enable diagnostic current OUT11D0ON, Diagnostic current ON (default)0OFF, Diagnostic current OFFReset: 1B

On-state diagnostic configuration register

ON_DIAG_CFG				Of	fset			Reset Valı	ue
On-state diagnostic configuration register			ster 0	3 _H			0	1 _H	
_	7	6	5	4	3	2	1	0	_
		RES		(OC_FILT_CF	3	oc	• _TH •	

Field	Bits	Туре	Description
OC_FILT_CFG	4:2	rw	Overcurrent shut-down delay time (for all channels)
			7 _D 30_ms , 30 ms
			6 _D 20_ms , 20 ms
			5 _D 10_ms , 10 ms
			4 _D 5_ms , 5 ms
			3 _D 1_ms , 1 ms
			2 _D 500_us , 500 us
			1 _D 120_us , 120 us
			0 _D 60_us , 60 us (default)
			Reset: 000 _B
OC_TH	1:0	rw	Overcurrent shut-down threshold (for all channels) (d_oc_th)
			3 _D 4000_mA , 4 A
			2 _D 3000_mA , 3
			1 _D 2000_mA , 2 A (default)
			0 _D 1000_mA , 1 A
			Reset: 01 _B

On-state diagnostic result register OUT1 & OUT2

C	DIAG_OUT_1_ Dn-state diag DUT2	_2_ON nostic result	register OU	Off 171 & 04	set 4 _н			Reset Valu 00	
	7	6	5	4	3	2	1	0	
	OUT2_ST AT	OUT1_ST AT		DIAG_CH2_ON	١	[DIAG_CH1_O	, V	

Field	Bits	Туре	Description
OUT2_STAT	7	r	Channel 2 output status1 _D ON , Channel is ON0 _D OFF , Channel is OFFReset: 0 _B
OUT1_STAT	6	r	Channel 1 output status 1 _D ON, Channel is ON 0 _D OFF, Channel is OFF Reset: 0 _B
DIAG_CH2_ON	5:3	rwc	On-state diagnostic result register - Channel 2 7_D UNUSED, unused combination 6_D UNUSED, unused combination 5_D OT, Overtemperature 4_D OC_TIME, Overcurrent timeout 3_D OC_OT, Overtemperature during overcurrent 2_D SCB, Short to battery 1_D NO_FAIL, no failure detected 0_D UNKNOWN, no diagnosis doneReset: 000_B
DIAG_CH1_ON	2:0	rwc	On-state diagnostic result register - Channel 1 7_D UNUSED, unused combination 6_D UNUSED, unused combination 5_D OT, Overtemperature 4_D OC_TIME, Overcurrent timeout 3_D OC_OT, Overtemperature during overcurrent 2_D SCB, Short to battery 1_D NO_FAIL, no failure detected 0_D UNKNOWN, no diagnosis doneReset: 000_B

On-state diagnostic result register OUT3 & OUT4

C	DIAG_OUT_3_ Dn-state diag DUT4	_4_ON mostic result	register OU	Off T3 & 05				Reset Value 00,	
	7	6	5	4	3	2	1	0	
	OUT4_ST AT	OUT3_ST AT	[DIAG_CH4_ON	1	C	DIAG_CH3_O	N	

Field	Bits	Туре	Description
OUT4_STAT	7	r	Channel 4 output status1 _D ON, Channel is ON0 _D OFF, Channel is OFFReset: 0 _B
OUT3_STAT	6	r	Channel 3 output status 1_D ON , Channel is ON 0_D OFF , Channel is OFFReset: 0_B
DIAG_CH4_ON	5:3	rwc	On-state diagnostic result register - Channel 4 7_D UNUSED, unused combination 6_D UNUSED, unused combination 5_D OT, Overtemperature 4_D OC_TIME, Overcurrent timeout 3_D OC_OT, Overtemperature during overcurrent 2_D SCB, Short to battery 1_D NO_FAIL, no failure detected 0_D UNKNOWN, no diagnosis doneReset: 000_B
DIAG_CH3_ON	2:0	rwc	On-state diagnostic result register - Channel 3 7_D UNUSED, unused combination 6_D UNUSED, unused combination 5_D OT, Overtemperature 4_D OC_TIME, Overcurrent timeout 3_D OC_OT, Overtemperature during overcurrent 2_D SCB, Short to battery 1_D NO_FAIL, no failure detected 0_D UNKNOWN, no diagnosis doneReset: 000_B

Off-state diagnostic result register

DIAG_OFF Off-state diagnostic result register			t register		fset 16 _H			Reset Valı 0	ue 0 _H
	7	6	5	4	3	2	1	0	
	DIAG_C	H4_OFF	DIAG_C	H3_OFF	DIAG_C	H2_OFF	DIAG_C	H1_OFF]

Field	Bits	Туре	Description
DIAG_CH4_OFF	7:6	rwc	OFF-state diagnostic result register Channel 4 3_D SCG, Short to ground 2_D OL, Open load 1_D NO_FAIL, no failure detected 0_D UNKNOWN, no diagnosis doneReset: 00_B
DIAG_CH3_OFF	5:4	rwc	Off-state diagnostic result register Channel 33 _D SCG, Short to ground2 _D OL, Open load1 _D NO_FAIL, no failure detected0 _D UNKNOWN, no diagnosis doneReset: 00 _B
DIAG_CH2_OFF	3:2	rwc	Off-state diagnostic result register Channel 2 3 _D SCG, Short to ground 2 _D OL, Open load 1 _D NO_FAIL, no failure detected 0 _D UNKNOWN, no diagnosis done Reset: 00 _B
DIAG_CH1_OFF	1:0	rwc	Off-state diagnostic result register Channel 13 _D SCG, Short to ground2 _D OL, Open load1 _D NO_FAIL, no failure detected0 _D UNKNOWN, no diagnosis doneReset: 00 _B

Global device status register

GLOBAL STATUS

GLOBAL_STATUS				Offset			Reset Value		
Global device status register			ter	07 _H			01 _H		
	7	6	5	4	3	2	1	0	
	OUT_EN	SPARE	GEN_FAU LT	COM_ERR	PAR_ERR	CWD_TO	EN_LATC H	POR_LAT CH	

rw	

Field	Bits	Туре	Description
OUT_EN	7	rw	OUTx enable bit1DENABLED, Output switching enabled0DISABLED, Outputs disabled (default)Reset: 0
SPARE	6	rw	$\begin{array}{llllllllllllllllllllllllllllllllllll$
GEN_FAULT	5	rwc	General fault flag1DERR, At least one fault was detected0NO_ERR, No fault was detectedReset: 0
COM_ERR	4	rwc	Communication Error Flag10BRR, At least one communication failure was detected0NO_ERR, No communication failure was detectedReset: 0
PAR_ERR	3	rwc	Parity Error Flag1DERR, At least one parity error was detected0ONO_ERR, No parity error was detectedReset: 0
CWD_TO	2	rwc	Communication watchdog timeout1ERR, Communication watchdog timeout occurred0NO_ERR, No communication watchdog timeout (default)Reset: 0B
EN_LATCH	1	rwc	EN Latch 1 _D EN , Device was enabled since last read-out 0 _D NO_EN , Device was not enabled since last cleared Reset: 0 _B
POR_LATCH	0	rwc	Power-on reset latch1DPOR, Device was reset since last cleared0NO_POR, Device was not reset since last clearedReset: 1

16 bit SPI interface

IC Version ID

Field	Bits	Туре	Description
ICVID	7:0	r	IC Version ID 177 _D ICVID, Reset: B1 _H

Package outlines

7 Package outlines

Figure 7-1 PG-DSO-20-88 (Plastic Dual Small Outline Package) Green Product - Package dimensions are preliminary and may be updated

Green product (RoHS-compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Floating exposed pad

The exposed pad of TLE9104SH is not connected to the ground internally. It is highly recommended to connect the exposed pad to GND pins externally.

Application information

8 Application information

Figure 8-1 Multi port injection application diagram

Revision history

9 Revision history

Table 9-1Revision history

Version Date Changes		Changes
Rev. 1.2	2018-10-26	Changed H level output voltage of SO Pin symbol and minimum value changed
Rev. 1.1	2018-02-15	OC filter times updates in SPI table
Rev. 1.0	2018-02-01	First datasheet release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-10-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F56123922

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.