

# SANYO Semiconductors DATA SHEET



# Thick-Film Hybrid IC STK433-290-E — 3-channel class AB audio power IC, 80W+80W+80W

#### Overview

The STK433-290-E is a hybrid IC designed to be used in 80W × 3ch class AB audio power amplifiers.

#### Applications

• Audio power amplifiers.

#### Features

- Pin-to-pin compatible outputs ranging from 80W to 150W.
- Can be used to replace the STK433-000/-100 series (30W to 150W × 2ch) and STK433-200(A) series (30W to 60W × 3ch) due to its pin compatibility.
- Miniature package (64.0mm × 36.6mm × 9.0mm)
- Output load impedance:  $R_{I} = 6\Omega$  to  $4\Omega$  supported
- Allowable load shorted time: 0.3 second
- Allows the use of predesigned applications for standby and mute circuits.

#### **Series Models**

|                                                  | STK433-290-E        | STK433-300-E | STK433-320-E | STK433-330-E |  |  |  |
|--------------------------------------------------|---------------------|--------------|--------------|--------------|--|--|--|
| Output 1 (10%/1kHz)                              | 80W×3ch             | 100W×3ch     | 120W×3ch     | 150W×3ch     |  |  |  |
| Output 2 (0.4%/20Hz to 20kHz)                    | 50W×3ch             | 60W×3ch      | 80W×3ch      | 100W×3ch     |  |  |  |
| Maximum rating $V_{CC}$ max (no sig.)            | ±54V                | ±57V         | ±65V         | ±71.5V       |  |  |  |
| Maximum rating V <sub>CC</sub> max (6 $\Omega$ ) | ±47V                | ±50V         | ±57V         | ±63V         |  |  |  |
| Recommended operating $V_{CC}$ (6 $\Omega$ )     | ±33V                | ±36V         | ±41V         | ±44V         |  |  |  |
| Dimensions (excluding pin height)                | 64.0mm×36.6mm×9.0mm |              |              |              |  |  |  |

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

## **Specifications**

**Absolute maximum ratings** at Ta=25°C, Unless otherwise specified Tc=25°C

| Parameter                             | Symbol                  | Conditions                                                                  | Ratings      | Unit |
|---------------------------------------|-------------------------|-----------------------------------------------------------------------------|--------------|------|
| Maximum power supply voltage          | V <sub>CC</sub> max (0) | Non signal                                                                  | ±54          | V    |
| Maximum power supply voltage          | V <sub>CC</sub> max (1) | RL≥6Ω                                                                       | ±47          | V    |
| Minimum operating supply voltage      | V <sub>CC</sub> min     |                                                                             | ±10          | V    |
| #13 Operating voltage                 | VST OFF max             |                                                                             | -0.3 to +5.5 | V    |
| Thermal resistance                    | өј-с                    | Per one power transistor                                                    | 2.1          | °C/W |
| Junction temperature                  | Tj max                  | Should satisfy Tj max and Tc max                                            | 150          | °C   |
| Operating substrate temperature       | Tc max                  |                                                                             | 125          | °C   |
| Storage temperature                   | Tstg                    |                                                                             | -30 to +125  | °C   |
| Allowable time for load short-circuit | ts                      | $V_{CC}=\pm 33V$ , $R_{L}=6\Omega$ , f=50Hz, $P_{O}=50W$ , 1-channel active | 0.3          | S    |

# **Operating Characteristics** at Unless otherwise specified Tc=25°C, RL=6 $\Omega$ (Non-inductive Load), Rg=600 $\Omega$ , VG=30dB

| vG-50ub                    |                  |                    |                        |           |     |            |            |     |           |     |       |
|----------------------------|------------------|--------------------|------------------------|-----------|-----|------------|------------|-----|-----------|-----|-------|
|                            |                  |                    |                        |           |     |            |            |     |           |     |       |
| Parameter                  | Parameter Symbol |                    | V <sub>CC</sub><br>(V) |           |     | THD<br>(%) |            | min | typ       | max | unit  |
| Output power               | *1               | P <sub>O</sub> (1) | ±33                    | 20 to 20k |     | 0.4        |            | 47  | 50        |     | 10/   |
|                            |                  | P <sub>O</sub> (2) | ±33                    | 1k        |     | 10         |            |     | 80        |     | W     |
| Total harmonic distortion  | *1               | THD (1)            | ±33                    | 20 to 20k | 5.0 |            |            |     |           | 0.4 |       |
|                            |                  | THD (2)            | ±33                    | 1k        | 5.0 |            | VG=30dB    |     | 0.01      |     | %     |
| Frequency characteristics  | *1               | fL, fH             | ±33                    |           | 1.0 |            | +0 -3dB    |     | 20 to 50k |     | Hz    |
| Input impedance            |                  | ri                 | ±33                    | 1k        | 1.0 |            |            |     | 55        |     | kΩ    |
| Output noise voltage       | *3               | V <sub>NO</sub>    | ±39                    |           |     |            | Rg=2.2kΩ   |     |           | 1.0 | mVrms |
| Quiescent current          |                  | Icco               | ±39                    |           |     |            | No loading | 30  | 70        | 120 | mA    |
| Output neutral voltage     |                  | V <sub>N</sub>     | ±39                    |           |     |            |            | -70 | 0         | +70 | mV    |
| #13 Stand-by ON threshold  | *5               | VST ON             | ±33                    |           |     |            | Stand-by   |     | 0         | 0.6 | V     |
| #13 Stand-by OFF threshold | *5               | VST OFF            | ±33                    |           |     |            | Operation  | 2.5 | 3.0       |     | V     |

[Remarks]

\*1: For 1-channel operation

\*2: Unless otherwise specified, use a constant-voltage power supply to supply power when inspections are carried out.

\*3: The output noise voltage values shown are peak values read with a VTVM. However, an AC stabilized (50Hz) power supply should be used to minimize the influence of AC primary side flicker noise on the reading.

\*4: Use the transformer power supply circuit shown in the figure below for allowable load shorted time and output noise voltage measurement.

\*5: The impression voltage of '#13 (Stand-By) pin' must not exceed the maximum rating. Power amplifier operate by impressing voltage +2.5 to +5.5V to '#13 (Stand-By) pin'.

\*6: Please connect -PreV<sub>CC</sub> pin (#1 pin)with the stable minimum voltage, and connect so that current does not flow in by reverse bias.

\*7: Thermal design must be implemented based on the conditions under which the customer's end products are expected to operate on the market.

\*8: The case of this Hybrid-IC is using thermosetting silicon adhesive (TSE322SX).

\*9: Weight of HIC: 24.8g

Outer carton dimensions (W×L×H): 452mm×325mm×192mm



# Package Dimensions

unit:mm (typ)



**RoHS DIRECTIVE PASS** 

## **Equivalent Circuit**



## **Application Circuit**



## **PCB Layout Example**



# **Recommended External Components**

| Parts         | Recommended | Circuit purpose                                                             | Above Recommended            | Below Recommended          |  |  |  |  |
|---------------|-------------|-----------------------------------------------------------------------------|------------------------------|----------------------------|--|--|--|--|
| Location      | value       |                                                                             | value                        | value                      |  |  |  |  |
| R01, R23      | 100Ω/1W     | Resistance for ripple filter.                                               |                              | Short-through current      |  |  |  |  |
|               |             | (Fuse resistance is recommended. Ripple filter is                           | -                            | may increase at high       |  |  |  |  |
|               |             | constituted with C03, C23.)                                                 |                              | frequency.                 |  |  |  |  |
| R02, R03, R04 | 1kΩ         | Resistance for input filters.                                               | -                            | -                          |  |  |  |  |
| R05, R06, R07 | 56kΩ        | Input impedance is determined.                                              | Output neutral voltage (VN   | I) shift.                  |  |  |  |  |
|               |             |                                                                             | (It is referred that R05=R0  | 8, R06=R09, R07=R10)       |  |  |  |  |
| R08, R09, R10 | 56kΩ        | Voltage gain (VG) is determined with R11, R12, R13                          | -                            | -                          |  |  |  |  |
| R11, R12, R13 | 1.8kΩ       | Voltage gain (VG) is determined with R8, R9, R10.                           | It may oscillate.            | With especially no         |  |  |  |  |
|               |             | (As for VG, it is desirable to set up by R11, R12, R13.)                    | (VG<30dB)                    | problem                    |  |  |  |  |
| R14, R15, R16 | 4.7Ω        | Noise absorption resistance.                                                | -                            | -                          |  |  |  |  |
| R17, R18, R19 | 4.7Ω/1W     | Resistance for oscillation prevention.                                      | -                            | -                          |  |  |  |  |
| R20, R21, R22 | 0.22Ω       | Output emitter resistor                                                     | Decrease of maximum          | It may cause thrmal        |  |  |  |  |
|               | ±10%, 5W    | (Metal-plate resistor is recommended.)                                      | output Power                 | runaway                    |  |  |  |  |
| R30           | Note*5      | Select restriction resistance, for the impression voltage of '              | #17 (Stand-By) pin' must not | exceed the maximum         |  |  |  |  |
|               |             | rating.                                                                     |                              |                            |  |  |  |  |
| C01, C02      | 100µF/100V  | Capacitor for oscillation prevention.                                       |                              |                            |  |  |  |  |
|               |             | <ul> <li>Locate near the HIC as much as possible.</li> </ul>                |                              |                            |  |  |  |  |
|               |             | <ul> <li>Power supply impedance is lowered and stable</li> </ul>            | -                            | -                          |  |  |  |  |
|               |             | operation of the IC is carried out. (Electrolytic capacitor                 |                              |                            |  |  |  |  |
|               |             | is recommended.)                                                            |                              |                            |  |  |  |  |
| C03, C23      | 100μF/100V  | Decoupling capacitor                                                        | The change in the ripple in  | ngredient mixed in an inpu |  |  |  |  |
|               |             | <ul> <li>The ripple ingredient mixed in an input side is removed</li> </ul> | side from a power supply     | ine                        |  |  |  |  |
|               |             | from a power supply line. (Ripple filter is constituted                     |                              |                            |  |  |  |  |
|               |             | with R03, R04.)                                                             |                              |                            |  |  |  |  |
| C04, C05, C06 | 2.2µF/50V   | Input coupling capacitor. (for DC current prevention.)                      |                              | -                          |  |  |  |  |
| C07, C08, C09 | 470pF       | Input filter capacitor                                                      |                              |                            |  |  |  |  |
|               |             | <ul> <li>A high frequency noise is reduced with the filter</li> </ul>       |                              | -                          |  |  |  |  |
|               |             | constituted by R02, R03, R04.                                               |                              |                            |  |  |  |  |
| C10, C11, C12 | 3pF         | Capacitor for oscillation prevention.                                       | It may oscillate.            |                            |  |  |  |  |
| C13, C14, C15 | 10μF/10V    | Negative feedback capacitor.                                                | The voltage gain (VG)        | The voltage gain (VG)      |  |  |  |  |
|               |             | <ul> <li>The cutoff frequency of a low cycle changes.</li> </ul>            | of low frequency is          | of low frequency           |  |  |  |  |
|               |             | $(f_L=1/(2\pi \cdot C13 \cdot R11))$                                        | extended. However, the       | decreases.                 |  |  |  |  |
|               |             |                                                                             | pop noise at the time of     |                            |  |  |  |  |
|               |             |                                                                             | a power supply injection     |                            |  |  |  |  |
|               |             |                                                                             | also becomes large.          |                            |  |  |  |  |
| C16, C17, C18 | 0.1µF       | Capacitor for oscillation prevention.                                       | It may oscillate.            |                            |  |  |  |  |
| C19, C20, C21 | 68pF        | Capacitor for oscillation prevention. It may oscillate.                     |                              |                            |  |  |  |  |
| L01, L02, L03 | ЗμН         | Coil for oscillation prevention.                                            | With especially              | It may oscillate.          |  |  |  |  |
|               | · ·         |                                                                             | no problem                   | -                          |  |  |  |  |

#### STK433-100/-300sr PCB PARTS LIST

PCB Name: STK403-000Sr/100Sr/200Sr PCBA

| Location No.<br>(*2) 2ch Amp doesn't mount parts of ( ). |                              |         | PARTS                                  | RATING                                    | Compor            | ient         |  |  |  |  |
|----------------------------------------------------------|------------------------------|---------|----------------------------------------|-------------------------------------------|-------------------|--------------|--|--|--|--|
| Hybrid IC#1 Pin                                          |                              |         |                                        |                                           | 0                 |              |  |  |  |  |
|                                                          |                              |         | -                                      | -                                         | STK433-100Sr (*2) | STK433-300Sr |  |  |  |  |
| R01                                                      |                              |         | ERG1SJ101                              | 100Ω, 1W                                  | enable            | ed           |  |  |  |  |
| R02, R03, (R04)                                          | )                            |         | RN16S102FK                             | 1kΩ, 1/6W                                 | enable            | ed           |  |  |  |  |
| R05, R06, (R07)                                          | ), R08, R09, (R <sup>-</sup> | 10)     | RN16S563FK                             | 56kΩ, 1/6W                                | enable            | ed           |  |  |  |  |
| R11, R12, (R13)                                          | )                            |         | RN16S182FK                             | 1.8kΩ, 1/6W                               | enable            | ed           |  |  |  |  |
| R14, R15, (R16)                                          | )                            |         | RN14S4R7FK                             | 4.7Ω, 1/4W                                | enable            | ed           |  |  |  |  |
| R17, R18, (R19)                                          | )                            |         | ERX1SJ4R7                              | 4.7Ω, 1W                                  | enable            | ed           |  |  |  |  |
| R20, R21, (R22)                                          | )                            |         | Metal-plate resistor is<br>recommended | 0.22Ω, 5W                                 | enabled           |              |  |  |  |  |
| C01, C02, C03,                                           | C23                          | (*3)    | 100MV100HC                             | 100µF, 100V                               | enabled           |              |  |  |  |  |
| C04, C05, (C06)                                          | )                            |         | 50MV2R2HC                              | 2.2μF, 50V                                | enabled (*1)      |              |  |  |  |  |
| C07, C08, (C09)                                          | )                            |         | DD104-63B471K50                        | 470pF, 50V                                | enabled           |              |  |  |  |  |
| C10, C11, (C12)                                          | )                            |         | DD104-63CJ030C50                       | 3pF, 50V                                  | enable            | ed           |  |  |  |  |
| C13, C14, (C15)                                          | )                            |         | 10MV10HC                               | 10μF, 10V                                 | enabled           | (*1)         |  |  |  |  |
| C16, C17, (C18)                                          |                              |         | ECQ-V1H104JZ                           | 0.1µF, 50V                                | enable            | ed           |  |  |  |  |
| C19, C20, (C21)                                          | )                            |         | DD104-63B***K50                        | ***pF, 50V                                | 100pF             | 68pF         |  |  |  |  |
| R34, R35, (R36)                                          | )                            |         | RN16S302FK                             | 3kΩ, 1/6W                                 | Short             |              |  |  |  |  |
| L01, L02, (L03)                                          |                              |         | -                                      | ЗμН                                       | enabled           |              |  |  |  |  |
| Stand-By                                                 | Tr1                          |         | 2SC3332 (Reference)                    | V <sub>CE</sub> ≥75V, I <sub>C</sub> ≥1mA | enabled           |              |  |  |  |  |
| Control                                                  | D1                           |         | GMB01(Reference)                       | Di                                        | enable            | ed           |  |  |  |  |
| Circuit                                                  | R30                          | (*4)    | RN16S***FK                             | 13kΩ                                      | 2.7kΩ             |              |  |  |  |  |
|                                                          | R31                          |         | RN16S333FK                             | 33kΩ, 1/6W                                | enable            | ed           |  |  |  |  |
| R32                                                      |                              |         | RN16S102FK                             | 1kΩ, 1/6W                                 | enable            | ed           |  |  |  |  |
|                                                          | R33                          |         | RN16S202FK                             | 2kΩ, 1/6W                                 | enable            | ed           |  |  |  |  |
|                                                          | C32                          |         | 10MV33HC                               | 33μF, 10V                                 | enabled           |              |  |  |  |  |
| J1, J2, J3, J4, J                                        | 5, J6, J8, J9                |         | -                                      | -                                         | enabled           |              |  |  |  |  |
| J7, JS2, JS3, JS                                         | 84, JS5, JS7, JS             | S8, JS9 | -                                      | -                                         | -                 |              |  |  |  |  |
| JS6, JS10                                                |                              |         | -                                      | -                                         | enable            | ed           |  |  |  |  |
| JS1                                                      |                              |         | ERG1SJ101                              | 100Ω, 1W                                  | enabled           |              |  |  |  |  |

(\*1) Capacitor mark "A" side is "-" (negative).

(\*2) STK433-100Sr (2ch AMP) doesn't mount parts of ( ).

(\*3) Add parts C23 to the other side of PCB.

(\*4) Recommended standby circuit is used.

# Pin Assignments

[STK433-000/-100/-200Sr & STK415/416-100Sr Pin Layout]

| [STK433-000/-100/-200Sr & S] |   | 15/- | 10 | 100 | 1 | 2                  | 3 | 4 | 5 | 6   | 7      | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 |    |    |    |    |
|------------------------------|---|------|----|-----|---|--------------------|---|---|---|-----|--------|-------|-------|----|----|----|----|----|----|----|----|----|----|
| 2ch class-AB                 |   |      |    |     |   | 2ch classAB/2.00mm |   |   |   |     |        |       |       |    |    |    |    |    |    |    |    |    |    |
| (Size) 47.0×25.6×9.0         |   |      |    |     | - |                    |   |   |   |     |        | sab/  | 2.00r | nm |    |    | 1  | 1  | 1  |    |    |    |    |
| STK433-030-E 30W/JEITA       |   |      |    |     | - | -                  | + | 0 | 0 | 0   | 0      | +     |       |    | I  | Ν  | S  | Ν  | I  |    |    |    |    |
| STK433-040-E 40W/JEITA       |   |      |    |     | Ρ | V                  | V | U | U | U   | U      | Ρ     | S     | G  | Ν  | F  | Т  | F  | Ν  |    |    |    |    |
| STK433-060-E 50W/JEITA       |   |      |    |     | R | С                  | С | Т | Т | Т   | Т      | R     | U     | N  | /  | /  | Α  | /  | /  |    |    |    |    |
| STK433-070-E 60W/JEITA       |   |      |    |     | Е | С                  | С | / | / | /   | /      | Е     | В     | D  | С  | С  | Ν  | С  | С  |    |    |    |    |
| (Size) 67.0×25.6×9.0         |   |      |    |     |   |                    |   | С | С | С   | С      |       | •     |    | Н  | Н  | D  | Н  | Н  |    |    |    |    |
| STK433-090-E 80W/JEITA       |   |      |    |     |   |                    |   | Н | Н | Н   | Н      |       | G     |    | 1  | 1  |    | 2  | 2  |    |    |    |    |
| STK433-100-E 100W/JEITA      |   |      |    |     |   |                    |   | 1 | 1 | 2   | 2      |       | N     |    |    |    | В  |    |    |    |    |    |    |
| STK433-120-E 120W/JEITA      |   |      |    |     |   |                    |   | + | - | +   | -      |       | D     |    |    |    | Y  |    |    |    |    |    |    |
| STK433-130-E 150W/JEITA      |   |      |    |     |   |                    |   |   |   |     |        |       |       |    |    |    |    |    |    |    |    |    |    |
| 3ch class-AB                 |   |      |    |     | 1 | 2                  | 3 | 4 | 5 | 6   | 7      | 8     | 9     | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| (Size) 67.0×25.6×9.0         |   |      |    |     |   |                    |   |   |   | 3ch | ı clas | sAB/  | 2.00r | nm |    |    |    |    |    |    |    |    |    |
| STK433-230A-E 30W/JEITA      |   |      |    |     | - | -                  | + | 0 | 0 | 0   | 0      | +     |       |    | Ι  | Ν  | s  | Ν  | Т  | Т  | Ν  | 0  | 0  |
| STK433-240A-E 40W/JEITA      |   |      |    |     | Р | V                  | V | U | U | U   | U      | Ρ     | s     | G  | Ν  | F  | т  | F  | Ν  | Ν  | F  | U  | U  |
| STK433-260A-E 50W/JEITA      |   |      |    |     | R | С                  | С | Т | Т | т   | Т      | R     | U     | Ν  | /  | /  | А  | /  | /  | /  | /  | т  | Т  |
| STK433-270-E 60W/JEITA       |   |      |    |     | Е | С                  | С | / | / | /   | /      | Е     | В     | D  | С  | С  | Ν  | С  | С  | С  | С  | /  | /  |
| (Size) 64.0×36.6×9.0         |   |      |    |     |   |                    |   | С | С | С   | С      |       | •     |    | н  | Н  | D  | н  | н  | н  | н  | С  | С  |
| STK433-290-E 80W/JEITA       |   |      |    |     |   |                    |   | Н | Н | н   | Н      |       | G     |    | 1  | 1  |    | 2  | 2  | 3  | 3  | н  | Н  |
| STK433-300-E 100W/JEITA      |   |      |    |     |   |                    |   | 1 | 1 | 2   | 2      |       | Ν     |    |    |    | В  |    |    |    |    | 3  | 3  |
| STK433-320-E 120W/JEITA      |   |      |    |     |   |                    |   | + | - | +   | -      |       | D     |    |    |    | Y  |    |    |    |    | +  | -  |
| STK433-330-E 150W/JEITA      |   |      |    |     |   |                    |   |   |   |     |        |       |       |    |    |    |    |    |    |    |    |    |    |
| 2ch class-H                  | 1 | 2    | 3  | 4   | 5 | 6                  | 7 | 8 | 9 | 10  | 11     | 12    | 13    | 14 | 15 | 16 | 17 | 18 | 19 |    |    |    |    |
| (Size) 64.0×31.1×9.0         |   |      |    |     |   |                    |   |   |   | 2c  | h cla  | ssH/2 | 2.00m | nm |    |    |    |    |    |    |    |    |    |
| STK415-090-E 80W/JEITA       | + | -    | +  | -   | - | -                  | + | 0 | 0 | 0   | 0      | +     |       |    | Ι  | Ν  | s  | Ν  | Ι  |    |    |    |    |
| STK415-100-E 90W/JEITA       | v | V    | 0  | 0   | Р | V                  | V | U | U | U   | U      | Р     | s     | G  | Ν  | F  | т  | F  | Ν  |    |    |    |    |
| STK415-120-E 120W/JEITA      | L | L    | F  | F   | R | н                  | н | т | Т | т   | т      | R     | υ     | Ν  | /  | /  | А  | /  | /  |    |    |    |    |
| STK415-130-E 150W/JEITA      |   |      | F  | F   | Е |                    |   | / | / | /   | /      | Е     | в     | D  | С  | С  | Ν  | С  | С  |    |    |    |    |
| STK415-140-E 180W/JEITA      |   |      | s  | s   |   |                    |   | С | С | С   | С      |       | •     |    | н  | н  | D  | н  | н  |    |    |    |    |
|                              |   |      | Е  | Е   |   |                    |   | н | н | н   | н      |       | G     |    | 1  | 1  |    | 2  | 2  |    |    |    |    |
|                              |   |      | т  | т   |   |                    |   | 1 | 1 | 2   | 2      |       | Ν     |    |    |    | В  |    |    |    |    |    |    |
|                              |   |      |    |     |   |                    |   | + | - | +   | -      |       | D     |    |    |    | Y  |    |    |    |    |    |    |
| 3ch class-H                  | 1 | 2    | 3  | 4   | 5 | 6                  | 7 | 8 | 9 | 10  | 11     | 12    | 13    | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| (Size) 64.0×31.1×9.0         |   |      |    |     |   |                    |   |   |   | 3c  | h cla  | ssH/2 | 2.00m | nm |    |    |    |    |    |    |    |    |    |
| STK416-090-E 80W/JEITA       | + | -    | +  | -   | - | -                  | + | 0 | 0 | 0   | 0      | +     |       |    | I  | Ν  | S  | Ν  | T  | 1  | Ν  | 0  | 0  |
| STK416-100-E 90W/JEITA       | V | V    | 0  | 0   | Р | V                  | V | U | U | U   | U      | Ρ     | s     | G  | Ν  | F  | т  | F  | Ν  | Ν  | F  | U  | U  |
| STK416-120-E 120W/JEITA      | L | L    | F  | F   | R | н                  | н | Т | т | т   | Т      | R     | U     | Ν  | /  | /  | А  | /  | /  | /  | /  | т  | Т  |
| STK416-130-E 150W/JEITA      |   |      | F  | F   | Е |                    |   | / | / | /   | /      | Е     | В     | D  | С  | С  | Ν  | С  | С  | С  | С  | /  | /  |
|                              |   |      | s  | s   |   |                    |   | С | С | С   | С      |       | •     |    | н  | н  | D  | н  | н  | н  | н  | С  | С  |
|                              |   |      | Е  | Е   |   |                    |   | Н | н | н   | н      |       | G     |    | 1  | 1  |    | 2  | 2  | 3  | 3  | н  | н  |
|                              |   |      | т  | т   |   |                    |   | 1 | 1 | 2   | 2      |       | Ν     |    |    |    | в  |    |    |    |    | 3  | 3  |
|                              |   |      |    |     |   |                    |   | + | - | +   | -      |       | D     |    |    |    | Υ  |    |    |    |    | +  | -  |



#### **Evaluation Board Characteristics**

Total harmonic distortion, THD - %

Output power, PO/ch - W

0

10

20

[Thermal Design Example for STK433-290-E ( $R_{I} = 6\Omega$ )]

30

Supply voltage,  $V_{CC}$  -  $\pm V$ 

The thermal resistance,  $\theta$ c-a, of the heat sink for total power dissipation, Pd, within the hybrid IC is determined as follows.

Condition 1: The hybrid IC substrate temperature, Tc, must not exceed 125°C.

40

 $Pd \times \theta c - a + Ta < 125^{\circ}C$  (1)

0

10

2 3 5 7<sub>100</sub>

57<sub>1k</sub>

Frequency, f - Hz

2 3

2 3 5 7<sub>10k</sub>

2 3

5 7<sub>100k</sub>

ITF02735

Ta: Guaranteed ambient temperature for the end product

Condition 2: The junction temperature, Tj, of each power transistor must not exceed 150°C.

 $Pd \times \theta c - a + Pd/N \times \theta j - c + Ta < 150^{\circ}C$ (2)

N: Number of power transistors

50

ITF02734

 $\theta$ j-c: Thermal resistance per power transistor

However, the power dissipation, Pd, for the power transistors shall be allocated equally among the number of power transistors.

The following inequalities result from solving equations (1) and (2) for  $\theta$ c-a.

 $\theta c - a < (125 - Ta)/Pd$  .....(1)

 $\theta c-a < (150 - Ta)/Pd - \theta j-c/N$  .....(2)

Values that satisfy these two inequalities at the same time represent the required heat sink thermal resistance. When the following specifications have been stipulated, the required heat sink thermal resistance can be determined from formulas (1)' and (2)'.

| • Supply voltage                 | V <sub>CC</sub> |
|----------------------------------|-----------------|
| Load resistance                  | RL              |
| • Guarantaad ambient temperature | To              |

 Guaranteed ambient temperature 1 a 5 71000

ITF02733

#### [Example]

When the IC supply voltage, V<sub>CC</sub>, is  $\pm 33$ V and R<sub>L</sub> is 6Ω, the total power dissipation, Pd, within the hybrid IC, will be a maximum of 109.7W at 1kHz for a continuous sine wave signal according to the Pd-P<sub>O</sub> characteristics. For the music signals normally handled by audio amplifiers, a value of 1/8P<sub>O</sub> max is generally used for Pd as an estimate of the power dissipation based on the type of continuous signal. (Note that the factor used may differ depending on the safety standard used.)

This is:

Pd  $\approx 85.0$ W (when 1/8PO max. = 10W, PO max. = 80W).

The number of power transistors in audio amplifier block of these hybrid ICs, N, is 6, and the thermal resistance per transistor,  $\theta$ j-c, is 2.1°C/W. Therefore, the required heat sink thermal resistance for a guaranteed ambient temperature, Ta, of 50°C will be as follows.

| From formula (1)' | $\theta$ c-a < (125 - 50)/85.0         |
|-------------------|----------------------------------------|
|                   | < 0.88                                 |
| From formula (2)' | $\theta$ c-a < (150 - 50)/85.0 - 2.1/6 |
|                   | < 0.82                                 |

Therefore, the value of  $0.82^{\circ}$ C/W, which satisfies both of these formulae, is the required thermal resistance of the heat sink.

Note that this thermal design example assumes the use of a constant-voltage power supply, and is therefore not a verified design for any particular user's end product.

## STK433-300series Stand-by Control & Mute Control & Load-Short Protection Application



#### [STK433-300 series Stand-By Control Using Example]

#### Characteristic

- It can largely improve a pop noise to occur in power supply ON/OFF by using recommended Stand-By Control Application.
- Because It can perform Stand-By Control by regulating limit resistance to the voltage such as used microcomputers, a set design is easy.
- (ex) STK433-300series test circuit. When impressed by Stand-by control control [+5V].



#### **Operation Explanation**

(1) Concerning pin 13 reference voltage VST

<1> Operation mode

The SW transistor of bias circuit is turned on at VST≥2.5V, and the amplifier becomes operation mode. ex) VST=2.5V

VST=(\*2)×IST+0.6V→2.5V=4.7kΩ×IST+0.6V, IST≈0.40mA

<2> Standby mode

The SW transistor of Pre-driver IC is turned off at VST≤0.6V (typ0V), and the amplifier becomes Stand-By Mode.

ex) VST=0.6V

 $VST=(*2)\times IST+0.6V \rightarrow 0.6V=4.7k\Omega \times IST+0.6V, IST\approx 0mA$ 

(\*3) It can improve a pop noise at power up time by giving a time constant of the condenser during operation. (\*4) Please decide a time constant to discharge the condenser during standby.

# STK433-300-E series Stand-by control, Mute control, Load-short protection & DC offset protection application



## STK433-300-E Application Explanation



The protection circuit application for the STK433-300-Esr consists of the following blocks (blocks (1) to (4)).

- (1) Standby control circuit block
- (2) Load short-circuit detection block
- (3) Latch-up circuit block
- (4) DC voltage protection block

#### 1) Stand-by control circuit block (Reference example) STK433-300-E series test circuit (when +5V is applied to Stand-by control.)



Concerning pin 13 reference voltage VST

<1> Operation Mode

The switching transistor in the bias circuit turns on and places the amplifier into the operating mode when the voltage flowing into pin 13 (VST) becomes 0.25V or greater.

<2> Stand-By Mode

When the voltage flowing into pin 13 (VST) is stopped (=0V), the switching transistor in the bias circuit turns off, placing the amplifier into the standby mode.

- (\*1) The current limiting resistor (R1) must be used to ensure that the voltage flowing into the stand-by pin (pin 13) does not exceed its maximum rated value VST max.
- (\*2) The pop noise level when the power is turned on can be reduced by setting the time constant with a capacitor in operating mode.
- (\*3) Determines the time constant at which the capacitor (\*2) is discharged in standby mode.
- 2) Load short detection block

Since the voltage between point B and point C is less than 0.6V in normal operation mode ( $V_{BE} < 0.6V$ ) and TR1 (or TR2) is not activated, the load short-circuit detection block does not operate.

When a load short-circuit occurs, however, the voltage between point B and point C becomes larger than 0.6V, causing TR1 (or TR2) to turn on ( $V_{BE} > 0.6V$ ), and current I2 to flows

3) Latch-up circuit block

When I2 was supplied to latch-up circuit, TR3 operate.

VST becomes Stand-By Mode (0V) when TR3 operates (I3 flows), the power amplifier is protected.

Stand-By Mode is maintained when once TR3 operates because TR3 and TR4 compose the thyristor.

It is necessary to make the Stand-By Control voltage (\*2) L (0V) once to release Stand-By mode and to make the power amplifier operate again.

After, when Stand-By Control (\*2) is returned to H (ex, +5V), it operates again.

(\*4) I3 is changed depending on the power-supply voltage (-V<sub>CC</sub>).

Please set resistance (R2) to become I1 < I3 by the following calculation types.

 $I1 \le I3 = V_{CC}/R2$ 

4) DC offset protection block

The DC offset protection circuit is activated when  $\pm 0.5V$  (typ) voltage is applied to either "OUT CH1" or "OUT CH2," or "OUT CH3," and the hybrid IC is shut down (standby mode). To release the IC from the standby mode and reactivate the power amplifier, it is necessary to set the standby control voltage temporarily low (0V). Subsequently, when the standby control is returned to high (+5V, for example), the power amplifier will become active again. The protection level must be set using the 82k $\Omega$  resistor. Furthermore, the time constant must be determined using  $22\mu//22\mu$  capacitors to prevent the amplifier from malfunctioning due to the audio signal.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2010. Specifications and information herein are subject to change without notice.



Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.



#### Как с нами связаться

**Телефон:** 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.