SANYO Semiconductors DATA SHEET An ON Semiconductor Company LV8498CT — For VCMs **Bi-CMOS IC** # **Constant-current Driver IC** #### Overview The LV8498CT is a constant current driver IC for voice coil motors that supports 1²C control integrating a digital/analog converter (DAC). It uses an ultraminiature WLP package and includes a current detection resistor for constant current control, which makes the IC ideal for miniaturization of camera modules intended for use in camera-equipped mobile phones. The output transistor has a low on-resistance of 1Ω and the resistance of the built-in current detection resistor is 1Ω , which minimizes the voltage loss and helps withstand voltage drop in V_{CC} . The function is incorporated, which, by changing the current in a stepped pattern while taking time at rise and fall of the output current, provides the current a slope, improving the converging stability of the voice coil motor (current slope function). #### **Functions** - Constant current driver for voice coil motors. - I²C bus control supported. - Built-in current detection resistor. - Built-in voltage drop protection circuit (V_{CC} = 2V output off). - Constant current control enabled by DAC (10 bits). - Wide operating voltage range (2.2 to 5.0V). - 6-pin WLP package used $(1.27 \times 0.87 \times 0.25 \text{mm})$. - Built-in thermal protection circuit. - Low output block total-resistance of 2Ω helps withstand voltage drop in V_{CC} . (Current detection resistance + output transistor on-resistance). - Built-in VCM overshoot preventive function (current slope function). ### **Specifications** #### **Absolute Maximum Ratings** at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-----------------------------|----------------------|----------------------------|-----------------------|------| | Maximum supply voltage | V _{CC} max | | 5.5 | V | | Output voltage | V _{OUT} max | | V _{CC} + 0.5 | V | | Input voltage | V _{IN} max | SCL, SDA, ENA | 5.5 | V | | GND pin source current | ^I GND | | 200 | mA | | Allowable power dissipation | Pd max | With specified substrate * | 350 | mW | | Operating temperature | Topr | | -30 to +85 | °C | | Storage temperature | Tstg | | -40 to +150 | °C | ^{*} Specified substrate : 40mm × 40mm × 1.6mm, Single layer glass epoxy substrate - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. ### **LV8498CT** ## Allowable Operating Conditions at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-------------------------------|-----------------|------------|------------------------------|------| | Supply voltage | VCC | | 2.2 to 5.0 | ٧ | | Maximum preset output current | lo | | 150 | mA | | Input signal voltage | V _{IN} | | -0.3 to V _{CC} +0.3 | V | # **Electrical Characteristics** at Ta = 25°C, $V_{CC} = 2.8V$ | | | 0 111 | | Ratings | | | | | |---|--------------------|---|------|---------|---------|------|--|--| | Parameter | Symbol | Conditions | min | typ | max | Unit | | | | Supply current | I _{CC} 0a | ENA = 0V, SCL=SDA=V _{CC} | | | 1 | μА | | | | | ICC0b | ENA=SCL=SDA=V _{CC} , PD = 1 | | | 1 | μА | | | | | I _{CC} 0c | ENA=SCL=SDA= V_{CC} , D0 to D9 = 0 | | | 1 | μА | | | | | I _{CC} 1 | ENA=SCL=SDA= V_{CC} , D0 to D9 \neq 0 | | 0.5 | 3 | mA | | | | Input current | I _{IN} | SCL, SDA, ENA | -1 | 0 | 1 | μА | | | | High level input voltage | V _I H | Applied to SCL, SDA and ENA pin. | 1.5 | | VCC-0.3 | V | | | | Low level input voltage | V _I L | 1 | -0.3 | | 0.5 | V | | | | Total resistance value of the output block (built-in resistor + transistor on-resistance) | RTTL | V _{CC} = 2.8V, I _{OUT} = 80mA | | 2 | 3 | Ω | | | | DAC block | | | | | | | | | | Resolution | | | | 10 | | bits | | | | Relative accuracy | INL | | | | ±2 | LSB | | | | Differential linearity | DNL | | | | ±1 | LSB | | | | Full code current | Ifull | D0 to D9 = 1 | | 150 | | mA | | | | Error code current 0 | Izero | D0 to D9 = 0 | | 0 | | mA | | | | Spark killer diode | | | | | | | | | | Reverse current | IS (leak) | | | | 1 | μА | | | | Forward voltage | VSF | I _{OUT} =100mA | | | 1.3 | V | | | ### 外形図 unit:mm (typ) ### **Pin Assignment** Bottom View (Ball side up) | Pin No. | Pin Name | Pin Description | |---------|----------|--------------------------------| | A1 | SCL | I ² C SCL input pin | | A2 | ENA | Enable & reset *1, 2 | | А3 | GND | Ground | | B1 | SDA | I ² C SDA input pin | | B2 | Vcc | Power supply pin | | B3 | OUT | Output pin | - *1 : Setting the ENA pin to low powers down and resets the IC. It is necessary to power on the IC by setting the ENA pin to low and hold it high during normal operation. - *2: When the ENA pin is to be used with pull_up, it is necessary to send code 0 in advance after power-on. # **Block Diagram** # **Serial Bus Communication Specifications** I²C serial transfer timing conditions Standard mode ### Standard mode | Parameter | symbol | Conditions | min | typ | max | unit | |---------------------------|--------|---|-----|-----|------|------| | SCL clock frequency | fscl | SCL clock frequency | 0 | | 100 | kHz | | Data setup time | ts1 | Setup time of SCL with respect to the falling edge of SDA | 4.7 | | | μS | | | ts2 | Setup time of SDA with respect to the rising edge of SCL | 250 | | | ns | | | ts3 | Setup time of SCL with respect to the rising edge of SDA | 4.0 | | | μS | | Data hold time | th1 | Hold time of SCL with respect to the rising edge of SDA | 4.0 | | | μS | | | th2 | Hold time of SDA with respect to the falling edge of SCL | 0 | | | μS | | Pulse width | twL | SCL low period pulse width | 4.7 | | | μS | | | twH | SCL high period pulse width | 4.0 | | | μS | | Input waveform conditions | ton | SCL, SDA (input) rising time | | | 1000 | ns | | | tof | SCL, SDA (input) falling time | | | 300 | ns | | Bus free time | tbuf | Interval between stop condition and start condition | 4.7 | | | μS | ## High-speed mode | Parameter | Symbol | Conditions | min | typ | max | unit | |---------------------------|--------|---|-----|-----|-----|------| | SCL clock frequency | fscl | SCL clock frequency | 0 | | 400 | kHz | | Data setup time | ts1 | Setup time of SCL with respect to the falling edge of SDA | 0.6 | | | μS | | | ts2 | Setup time of SDA with respect to the rising edge of SCL | 100 | | | ns | | | ts3 | Setup time of SCL with respect to the rising edge of SDA | 0.6 | | | μS | | Data hold time | th1 | Hold time of SCL with respect to the rising edge of SDA | 0.6 | | | μS | | | th2 | Hold time of SDA with respect to the falling edge of SCL | 0 | | | μS | | Pulse width | twL | SCL low period pulse width | 1.3 | | | μS | | | twH | SCL high period pulse width | 0.6 | | | μS | | Input waveform conditions | ton | SCL, SDA (input) rising time | | | 300 | ns | | | tof | SCL, SDA (input) falling time | | | 300 | ns | | Bus free time | tbuf | Interval between stop condition and start condition | 1.3 | | | μS | I²C bus transmission method Start and stop conditions The I²C bus requires that the state of SDA be preserved while SCL is high as shown in the timing diagram below during a data transfer operation. When data is not being transferred, both SCL and SDA are in the high state. The start condition is generated and access is started when SDA is changed from high to low while SCL and SDA are high. Conversely, the stop condition is generated and access is ended when SDA is changed from low to high while SCL is high. Data transfer and acknowledgement response After the start condition has been generated, the data is transferred one byte (8 bits) at a time. Generally, in an I²C bus, a unique 7-bit slave address is assigned to each device, and the first byte of the transfer data is allocated to the 7-bit slave address and to the command (R/W) indicating the transfer direction of the subsequent data. However, this IC is provided with only a write mode for receiving the data. Every time 8 bits of data for each byte are transferred, the ACK signal is sent from the receiving end to the sending end. Immediately after the clock pulse of SCL bit 8 in the data transferred has fallen to low, SDA at the sending end is released, and SDA is set to low at the receiving end, causing the ACK signal to be sent. When, after the receiving end has sent the ACK signal, the transfer of the next byte remains in the receiving status, the receiving end releases SDA at the falling edge of the ninth SCL clock. ### **LV8498CT** The standard data transfer to this device consists of four bytes: the slave address of the first byte and the data of the second, third and four bytes. Slave address: 0110011(0) PD: Power-down The table below shows the format of the second, third and four bytes. | | | 2nd byte | | | | | | | | | | 3rd | byte | | | | |------------------|-----|---------------------------------|----|----|----|----|----|-----|-----|-----|-----|-----|------|-----|-----|---| | Serial data bits | SD7 | SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD0 | | | | | | SD7 | SD6 | SD5 | SD4 | SD3 | SD2 | SD1 | SD0 | | | Function | PD | × | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | × | × | × | × | | 4th byte | | | | | | | | | | | |--------------------------------|-----|-----|-----|-----|-----|---|---|--|--|--| | SD7 SD6 SD5 SD4 SD3 SD2 SD1 SD | | | | | | | | | | | | ST2 | ST1 | ST0 | TM2 | TM1 | TM0 | х | х | | | | PD : Power_down (PD = 1 : standby mode and reset) ### D0-D9 setting method | Current setting code | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Output current (mA)
(design value) | |----------------------|----|----|----|----|----|----|----|----|----|----|---------------------------------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.147 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.293 | | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.586 | 1021 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 149.70 | | 1022 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 149.85 | | 1023 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 150 | ### Current slope function operation image chart ### LV8498CT | STP | TIM | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |----------------|-----|--------|--------|--------|------------|-----------|---------|---------|---------| | 00 | 00 | | | | At current | slope OFF | | | | | 00 |)1 | 0.032 | 0.064 | 0. 128 | 0. 256 | 0.512 | 1.024 | 2. 048 | 4. 096 | | | 71 | 0. 147 | 0. 147 | 0. 147 | 0. 147 | 0. 147 | 0. 147 | 0. 147 | 0. 147 | | 01 | 10 | 0.064 | 0. 128 | 0. 256 | 0. 512 | 1.024 | 2.048 | 4. 096 | 8. 192 | | 01 | 10 | 0. 293 | 0. 293 | 0. 293 | 0. 293 | 0. 293 | 0. 293 | 0. 293 | 0. 293 | | 01 | 11 | 0. 128 | 0. 256 | 0.512 | 1. 024 | 2.048 | 4. 096 | 8. 192 | 16. 38 | | 01 | . 1 | 0. 586 | 0.586 | 0.586 | 0. 586 | 0.586 | 0. 586 | 0. 586 | 0. 586 | | 10 |)() | 0. 256 | 0.512 | 1.024 | 2. 048 | 4. 096 | 8. 192 | 16. 38 | 32. 77 | | 10 | ,,, | 1. 173 | 1. 173 | 1. 173 | 1. 173 | 1. 173 | 1. 173 | 1. 173 | 1. 173 | | 10 |)1 | 0.512 | 1.024 | 2.048 | 4. 096 | 8. 192 | 16. 38 | 32. 77 | 65. 54 | | 10 | 71 | 2. 346 | 2. 346 | 2. 346 | 2. 346 | 2.346 | 2. 346 | 2. 346 | 2. 346 | | 11 | 10 | 1.024 | 2.048 | 4. 096 | 8. 192 | 16. 38 | 32.77 | 65. 54 | 131. 08 | | 11 | | 4. 692 | 4. 692 | 4. 692 | 4. 692 | 4. 692 | 4. 692 | 4. 692 | 4. 692 | | 11 | 11 | 2. 048 | 4. 096 | 8. 192 | 16.38 | 32. 77 | 65. 54 | 131.08 | 262. 16 | | 11 | . 1 | 9. 383 | 9. 383 | 9. 383 | 9. 383 | 9. 383 | 9. 383 | 9. 383 | 9. 383 | | FULL_
Sweep | | 32. 7 | 65. 5 | 130. 9 | 261.9 | 523.8 | 1047. 6 | 2095. 1 | 4190. 2 | In the upper row in the above table each column, the lower is a current step value (I_{ST}:mA), at the step time (T_{St}:msec). Relationship between the ENA pin input, I²C input data PD, and current setting 0 (code 0) This IC supports the following three modes of setting up the standby mode: - 1) Setting the ENA pin low. - 2) Setting the PD bit to 1 (high) with I²C input data. - 3) Setting the output current to 0 with I²C input data. Execution of one of the steps 1) to 3) causes the output current to 0 and stops operation of the circuit. When the ENA pin is set low, the I^2C data register is reset and the IC is reset to its default state (PD bit set to 0 and output current setting to code 0). When the ENA pin is to be used with pull_up to VCC, it is necessary to send code 0 once after VCC ON. - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of May, 2011. Specifications and information herein are subject to change without notice. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! #### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов; - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.