

Gigabit Ethernet Transceiver with RGMII Support

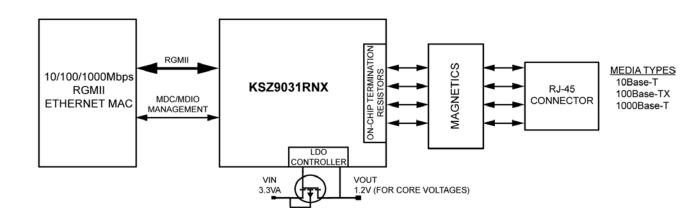
Data Sheet Rev. 1.0

General Description

The KSZ9031RNX is a completely integrated triple-speed (10Base-T/100Base-TX/1000Base-T) Ethernet physicallayer transceiver for transmission and reception of data on standard CAT-5 unshielded twisted pair (UTP) cable.

The KSZ9031RNX provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000Mbps.

The KSZ9031RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2V core.


The KSZ9031RNX offers diagnostic features to facilitate system bring-up and debugging in production testing and in product deployment. Parametric NAND tree support enables fault detection between KSZ9031 I/Os and the board. The LinkMD[®] TDR-based cable diagnostic identifies faulty copper cabling. Remote and local loopback functions verify analog and digital data paths.

The KSZ9031RNX is available in a 48-pin, lead-free QFN package (see "Ordering Information").

Data sheets and support documentation are available on Micrel's web site at: <u>www.micrel.com</u>.

Features

- Single-chip 10/100/1000Mbps IEEE 802.3 compliant Ethernet transceiver
- RGMII timing supports on-chip delay according to RGMII Version 2.0, with programming options for external delay and making adjustments and corrections to TX and RX timing paths
- RGMII with 3.3V/2.5V/1.8V tolerant I/Os
- Auto-negotiation to automatically select the highest linkup speed (10/100/1000Mbps) and duplex (half/full)
- On-chip termination resistors for the differential pairs
- On-chip LDO controller to support single 3.3V supply operation – requires only one external FET to generate 1.2V for the core
- Jumbo frame support up to 16KB
- 125MHz reference clock output
- Energy detect power-down mode for reduced power consumption when the cable is not attached
- Energy Efficient Ethernet (EEE) support with low-power idle (LPI) mode and clock stoppage for 100Base-TX/ 1000Base-T and transmit amplitude reduction with 10Base-Te option
- Wake-on-LAN (WOL) support with robust custom-packet detection

Functional Diagram

LinkMD is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Features (Continued)

- Programmable LED outputs for link, activity, and speed
- Baseline wander correction
- LinkMD TDR-based cable diagnostic to identify faulty copper cabling
- Parametric NAND tree support to detect faults between chip I/Os and board
- Loopback modes for diagnostics
- Automatic MDI/MDI-X crossover to detect and correct pair swap at all speeds of operation
- Automatic detection and correction of pair swaps, pair skew, and pair polarity
- MDC/MDIO management interface for PHY register configuration
- Interrupt pin option
- Power-down and power-saving modes
- Operating voltages
 - Core (DVDDL, AVDDL, AVDDL_PLL):
 - 1.2V (external FET or regulator)
 - VDD I/O (DVDDH):
 - 3.3V, 2.5V, or 1.8V
 - Transceiver (AVDDH):

3.3V or 2.5V (commercial temp)

• Available in a 48-pin QFN (7mm x 7mm) package

Ordering Information

Applications

- Laser/Network printer
- Network attached storage (NAS)
- Network server
- Gigabit LAN on motherboard (GLOM)
- Broadband gateway
- Gigabit SOHO/SMB router
- IPTV
- IP set-top box
- Game console
- Triple-play (data, voice, video) media center
- Media converter

Part Number	Temperature Range	Package	Lead Finish	Wire Bonding	Description
KSZ9031RNXCA	0°C to 70°C	48-Pin QFN	48-Pin QFN Pb-Free		RGMII, Commercial Temperature, Gold Wire Bonding
KSZ9031RNXCC ⁽¹⁾	0°C to 70°C	48-Pin QFN	Ph-Free Conner		RGMII, Commercial Temperature, Copper Wire Bonding
KSZ9031RNXIA ⁽¹⁾	-40°C to 85°C	48-Pin QFN	Pb-Free Gold		RGMII, Industrial Temperature, Gold Wire Bonding
KSZ9031RNXIC ⁽¹⁾	-40°C to 85°C	48-Pin QFN	Pb-Free Copper		RGMII, Industrial Temperature, Copper Wire Bonding
KSZ9031RNX-EVAL	0°C to 70°C	48-Pin QFN	Pb-Free		KSZ9031RNX Evaluation Board (Mounted with KSZ9031RNX device in commercial temperature)

Note:

1. Contact factory for lead time.

Revision History

Revision	Date	Summary of Changes
1.0	10/31/12	Data sheet created

Contents

General Description	1
Features	1
Functional Diagram	1
Features (Continued)	2
Applications	2
Ordering Information	2
Revision History	3
Contents	4
List of Figures	7
List of Tables	8
Pin Configuration	9
Pin Description	10
Strapping Options	
Functional Overview	
Functional Description: 10Base-T/100Base-TX Transceiver	17
100Base-TX Transmit	
100Base-TX Receive	
Scrambler/De-Scrambler (100Base-TX only)	
10Base-T Transmit	
10Base-T Receive	
Functional Description: 1000Base-T Transceiver	
Analog Echo-Cancellation Circuit	
Automatic Gain Control (AGC)	
Analog-to-Digital Converter (ADC)	
Timing Recovery Circuit	
Adaptive Equalizer Trellis Encoder and Decoder	
Functional Description: 10/100/1000 Transceiver Features	
Auto MDI/MDI-X Pair-Swap, Alignment, and Polarity Check	
Wave Shaping, Slew-Rate Control, and Partial Response	
PLL Clock Synthesizer	
Auto-Negotiation	
RGMII Interface	
RGMII Signal Definition	
RGMII Signal Diagram	
RGMII Pad Skew Registers	
RGMII In-Band Status	
MII Management (MIIM) Interface	27
Interrupt (INT_N)	28

LED Mode	
Single-LED Mode	
Tri-color Dual-LED Mode	28
Loopback Mode	29
Local (Digital) Loopback	29
Remote (Analog) Loopback	
LinkMD [®] Cable Diagnostic	31
NAND Tree Support	31
Power Management	32
Energy-Detect Power-Down Mode	
Software Power-Down Mode	
Chip Power-Down Mode	
Energy Efficient Ethernet (EEE)	32
Transmit Direction Control (MAC-to-PHY)	
Receive Direction Control (PHY-to-MAC)	
Registers Associated with EEE	
Wake-On-LAN	
Magic-Packet Detection	
Customized-Packet Detection	
Link Status Change Detection Typical Current/Power Consumption	
Transceiver (3.3V), Digital I/Os (3.3V) Transceiver (3.3V), Digital I/Os (1.8V)	
Transceiver (2.5V), Digital I/Os (2.5V).	
Transceiver (2.5V), Digital I/Os (1.8V)	
Register Map	
Standard Registers	42
IEEE Defined Registers – Descriptions	42
Vendor-Specific Registers – Descriptions	
MMD Registers	52
MMD Registers – Descriptions	
Absolute Maximum Ratings ⁽¹⁾	62
Operating Ratings ⁽²⁾	
Electrical Characteristics ⁽³⁾	
Timing Diagrams	65
RGMII Timing	65
Auto-Negotiation Timing	66
MDC/MDIO Timing	
Power-Up/Power-Down/Reset Timing	
Reset Circuit	
Reference Circuits – LED Strap-In Pins	
Reference Clock – Connection and Selection	
Magnetic – Connection and Selection	72

Recommended Land Pattern	74
Package Information	75

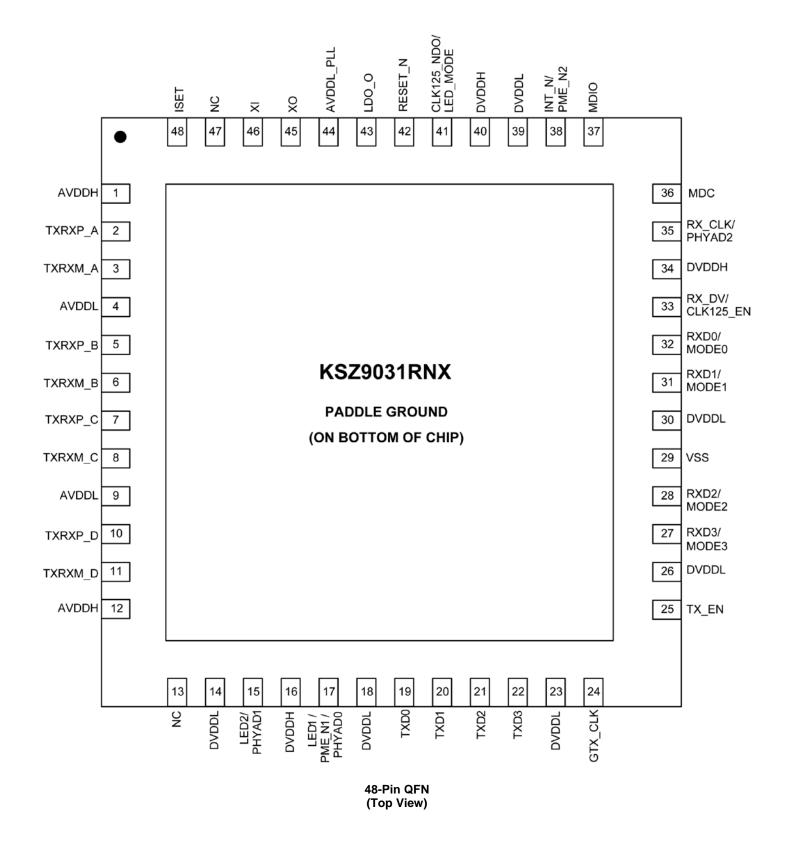

List of Figures

Figure 1. KSZ9031RNX Block Diagram	16
Figure 2. KSZ9031RNX 1000Base-T Transceiver Block Diagram – Single Channel	
Figure 3. Auto-Negotiation Flow Chart	
Figure 4. KSZ9031RNX RGMII Interface	
Figure 5. Local (Digital) Loopback	
Figure 6. Remote (Analog) Loopback	
Figure 7. LPI Mode (Refresh Transmissions and Quiet Periods)	
Figure 8. LPI Transition – RGMII (1000Mbps) Transmit	
Figure 9. LPI Transition – RGMII (100Mbps) Transmit	
Figure 10. LPI Transition – RGMII (1000Mbps) Receive	35
Figure 11. LPI Transition – RGMII (100Mbps) Receive	35
Figure 12. RGMII v2.0 Specification (Figure 3 – Multiplexing and Timing Diagram)	65
Figure 13. Auto-Negotiation Fast Link Pulse (FLP) Timing	66
Figure 14. MDC/MDIO Timing	67
Figure 15. Power-Up/Power-Down/Reset Timing	
Figure 16. Recommended Reset Circuit	69
Figure 17. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output	69
Figure 18. Reference Circuits for LED Strapping Pins	70
Figure 19. 25MHz Crystal/Oscillator Reference Clock Connection	71
Figure 20. Typical Gigabit Magnetic Interface Circuit	72
Figure 21. Recommended Land Pattern, 48-Pin (7mm x 7mm) QFN	

List of Tables

Table 1. MDI/MDI-X Pin Mapping	
Table 2. Auto-Negotiation Timers	
Table 3. RGMII Signal Definition	23
Table 4. RGMII Pad Skew Registers	24
Table 5. Absolute Delay for 5-bit Pad Skew Setting	25
Table 6. Absolute Delay for 4-bit Pad Skew Setting	
Table 7. RGMII In-Band Status	
Table 8. MII Management Frame Format for the KSZ9031RNX	
Table 9. Single-LED Mode – Pin Definition	
Table 10. Tri-color Dual-LED Mode – Pin Definition	
Table 11. NAND Tree Test Pin Order for KSZ9031RNX	
Table 12. Typical Current/Power Consumption – Transceiver (3.3V), Digital I/Os (3.3V)	
Table 13. Typical Current/Power Consumption – Transceiver (3.3V), Digital I/Os (1.8V)	
Table 14. Typical Current/Power Consumption – Transceiver (2.5V), Digital I/Os (2.5V)	
Table 15. Typical Current/Power Consumption – Transceiver (2.5V), Digital I/Os (1.8V)	
Table 16. Standard Registers Supported by KSZ9031RNX	
Table 17. MMD Registers Supported by KSZ9031RNX	
Table 18. Portal Registers (Access to Indirect MMD Registers)	
Table 19. RGMII v2.0 Specification (Timing Specifics from Table 2)	65
Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters	
Table 21. MDC/MDIO Timing Parameters	67
Table 22. Power-Up/Power-Down/Reset Timing Parameters	
Table 23. Reference Crystal/Clock Selection Criteria	
Table 24. Magnetics Selection Criteria	
Table 25. Compatible Single-Port 10/100/1000 Magnetics	73

Pin Configuration

Pin Description

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function		
1	AVDDH	Р	3.3V/2.5V (commercial temp only) analog V _{DD}		
2	TXRXP_A	I/O	Media Dependent Interface[0], positive signal of differential pair		
			1000Base-T mode:		
			TXRXP_A corresponds to BI_DA+ for MDI configuration and BI_DB+ for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXP_A is the positive transmit signal (TX+) for MDI configuration and the positive receive signal (RX+) for MDI-X configuration, respectively.		
3	TXRXM_A	I/O	Media Dependent Interface[0], negative signal of differential pair		
			1000Base-T mode:		
			TXRXM_A corresponds to BI_DA– for MDI configuration and BI_DB– for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXM_A is the negative transmit signal (TX–) for MDI configuration and the negative receive signal (RX–) for MDI-X configuration, respectively.		
4	AVDDL	Р	1.2V analog V _{DD}		
5	TXRXP_B	I/O	Media Dependent Interface[1], positive signal of differential pair		
			1000Base-T mode:		
			TXRXP_B corresponds to BI_DB+ for MDI configuration and BI_DA+ for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXP_B is the positive receive signal (RX+) for MDI configuration and the positive transmit signal (TX+) for MDI-X configuration, respectively.		
6	TXRXM_B	I/O	Media Dependent Interface[1], negative signal of differential pair		
			1000Base-T mode:		
			TXRXM_B corresponds to BI_DB– for MDI configuration and BI_DA– for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXM_B is the negative receive signal (RX–) for MDI configuration and the negative transmit signal (TX–) for MDI-X configuration, respectively.		
7	TXRXP_C	I/O	Media Dependent Interface[2], positive signal of differential pair		
			1000Base-T mode:		
			TXRXP_C corresponds to BI_DC+ for MDI configuration and BI_DD+ for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXP_C is not used.		
8	TXRXM_C	I/O	Media Dependent Interface[2], negative signal of differential pair		
			1000Base-T mode:		
			TXRXM_C corresponds to BI_DC– for MDI configuration and BI_DD– for MDI-X configuration, respectively.		
			10Base-T/100Base-TX mode:		
			TXRXM_C is not used.		
9	AVDDL	Р	1.2V analog V _{DD}		

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function						
10	TXRXP_D	I/O	Media Dependent Interface[3], positive signal of differential pair						
			1000Base-T mode:						
			TXRXP_D corre MDI-X configura			_DD+ for MDI co vely.	nfiguration	and BI_DC+ for	
			10Base-T/100Base-TX	mode:					
			TXRXP_D is no	ot used.					
11	TXRXM_D	I/O	Media Dependent Inter	ace[3], ne	gati	ive signal of diffe	rential pair		
			1000Base-T mode:						
			TXRXM_D corr MDI-X configura			_DD– for MDI co vely.	nfiguration	and BI_DC– for	
			10Base-T/100Base-TX	mode:					
			TXRXM_D is no	ot used.					
12	AVDDH	Р	3.3V/2.5V (commercial	temp only) an	alog V _{DD}			
13	NC	-	No connect						
				This pin is not bonded and can be connected to digital ground for footprint compatibility with the Micrel KSZ9021RN Gigabit PHY.					
14	DVDDL	Р	1.2V digital V _{DD}						
15	LED2/	I/O	LED output: Programmable LED2 output						
	PHYAD1		Config mode: The pull-up/pull-down value is latched as PHYAD[1] during power-up/reset. See the "Strapping Options" section for details.						
			The LED2 pin is progra defined as follows:						
			Single-LED Mode	Pin Stat	e	LED Definition			
			Link off	Н		OFF	_		
			Link on (any speed)			ON			
			Tri-Color Dual-LED Mo		Pin	State	LED Defi	nition	
			Link/Activity		LED		LED2	LED1	
			Link off			 H	OFF	OFF	
			1000 Link / No activity			H	ON	OFF	
			1000 Link / Activity (R		Tog		Blinking	OFF	
			100 Link / No activity			L	OFF	ON	
			100 Link / Activity (RX	, TX) H	4	Toggle	OFF	Blinking	
			10 Link / No activity	L	_	L	ON	ON	
			10 Link / Activity (RX,	TX) T	Γog	gle Toggle	Blinking	Blinking	
			For tri-color dual-LED n indicate 10Mbps link an		2 w	orks in conjunction	on with LEC	01 (pin 17) to	
16	DVDDH	P	3.3V, 2.5V, or 1.8V digi						
	2,2011	'	5.51, 2.51, 51 1.51 digi	0/1_00					

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function							
17	LED1/	I/O	LED1 output: Programmable LED1 output							
	PHYAD0/		Config mode: The voltage on this pin is sampled and latched during the power- up/reset process to determine the value of PHYAD[0]. See the "Strapping Options" section for details.							
	PME_N1		requiin a	ires an ex range fron	tern n 1.(al pull- 0kΩ to	up resistor	to DVDDH en asserted	his pin functi (digital V _{DD_} I low, this pir	_I/O)
			The LED1 pin is prograded to the defined as follows.	ammed by	' the	ELED_	MODE stra	pping optio	n (pin 41), a	nd is
			Single-LED Mode							
			Activity	Pin Sta	te	LED	Definition	7		
			No activity	Н		OFF				
			Activity (RX, TX)	Toggle		Blinki	ing			
							-			
			Tri-Color Dual-LED N	lode	Pin	State		LED Defi	nition	
			Link/Activity	-	LE		LED1	LED Den	LED1	
			Link off		H		Н	OFF	OFF	
			1000 Link / No activit	v			н	ON	OFF	
			1000 Link / Activity (I	-		ggle	Н	Blinking	OFF	
			100 Link / No activity		H	99.0	L	OFF	ON	
			100 Link / Activity (R		H		– Toggle	OFF	Blinking	
			10 Link / No activity	, . <i></i> ,	L		L	ON	ON	
			10 Link / Activity (RX	. TX)	Tod	ggle	Toggle	Blinking	Blinking	
			For tri-color dual-LED indicate 10Mbps link a	mode, LEI	D1 \				<u> </u>	C
18	DVDDL	Р	1.2V digital V _{DD}	,						
19	TXD0	I	-	/III TD0 (T	rans	smit Da	ata 0) input			
20	TXD1	I	RGMII mode: RGM	/III TD1 (T	rans	smit Da	ata 1) input\			
21	TXD2	I	RGMII mode: RGM	/III TD2 (T	rans	smit Da	ata 2) input			
22	TXD3	I	RGMII mode: RGM	/III TD3 (T	rans	smit Da	ata 3) input			
23	DVDDL	Р	1.2V digital V _{DD}							
24	GTX_CLK	I	RGMII mode: RGM	/III TXC (T	ran	smit R	eference Cl	ock) input		
25	TX_EN	I	RGMII mode: RGMII TX_CTL (Transmit Control) input							
26	DVDDL	Р	1.2V digital V _{DD}							
27	RXD3/	I/O	RGMII mode: RGM	/III RD3 (R	Rece	eive Da	ata 3) output	t		
	MODE3						lue is latche "Strapping		E3 during ection for def	tails.
28	RXD2/	I/O	RGMII mode: RGM	/III RD2 (R	Rece	eive Da	ata 2) output	t		
	MODE2						lue is latche "Strapping		E2 during ection for def	tails.
29	VSS	Gnd	Digital ground							
30	DVDDL	Р	1.2V digital V _{DD}							

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function	
31	RXD1/	I/O	RGMII mode:	RGMII RD1 (Receive Data 1) output
	MODE1		Config mode:	The pull-up/pull-down value is latched as MODE1 during power-up/reset. See the "Strapping Options" section for details.
32	RXD0/	I/O	RGMII mode:	RGMII RD0 (Receive Data 0) output
	MODE0		Config mode:	The pull-up/pull-down value is latched as MODE0 during power-up/reset. See the "Strapping Options" section for details.
33	RX_DV/	I/O	RGMII mode:	RGMII RX_CTL (Receive Control) output
	CLK125_EN		Config mode:	Latched as CLK125_NDO Output Enable during power-up/reset. See the "Strapping Options" section for details.
34	DVDDH	Р	3.3V, 2.5V, or 1	8V digital V _{DD_I/O}
35	RX_CLK/	I/O	RGMII mode:	RGMII RXC (Receive Reference Clock) output
	PHYAD2		Config mode:	The pull-up/pull-down value is latched as PHYAD[2] during power-up/reset. See the "Strapping Options" section for details.
36	MDC	lpu	Management da	ta clock input
			This pin is the in	put reference clock for MDIO (pin 37).
37	MDIO	lpu/O	Management da	
				nronous to MDC (pin 36) and requires an external pull-up resistor al $V_{DD_{-}VO}$) in a range from 1.0kΩ to 4.7kΩ.
38	INT_N/	0	Interrupt output:	Programmable interrupt output, with register 1Bh as the Interrupt Control/Status register, for programming the interrupt conditions and reading the interrupt status. Register 1Fh, bit [14] sets the interrupt output to active low (default) or active high.
	PME_N2		PME_N output:	Programmable PME_N output (pin option 2). When asserted low, this pin signals that a WOL event has occurred.
				nen active low) and PME functions, this pin requires an external o DVDDH (digital $V_{DD_{-}I/O}$) in a range from 1.0k Ω to 4.7k Ω .
39	DVDDL	Р	1.2V digital V_{DD}	
40	DVDDH	Р	3.3V, 2.5V, or 1	8V digital V _{DD_I/O}
41	CLK125_NDO/	I/O	125MHz clock o	utput
			This pin provide	s a 125MHz reference clock output option for use by the MAC.
	LED_MODE		Config mode:	The pull-up/pull-down value is latched as LED_MODE during power-up/reset. See the "Strapping Options" section for details.
42	RESET_N	lpu	Chip reset (activ	ve low)
			Hardware pin co RESET_N. See	onfigurations are strapped-in at the de-assertion (rising edge) of the "Strapping Options" section for more details.
43	LDO_O	0	On-chip 1.2V LE	DO controller output
				he input gate of a P-channel MOSFET to generate 1.2V for the ges. If the system provides 1.2V and this pin is not used, it can be
44	AVDDL_PLL	Р	1.2V analog VDE	o for PLL
45	ХО	0	25MHz crystal fe	eedback
			This pin is a no	connect if an oscillator or external clock source is used.
46	XI	I	Crystal / Oscilla	tor/ External Clock input
			25MHz ±50ppm	tolerance
47	NC	-	No connect	
				onded and can be connected to AVDDH power for footprint h the Micrel KSZ9021RN Gigabit PHY.

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function
48	ISET	I/O	Set the transmit output level
			Connect a 12.1k Ω 1% resistor to ground on this pin.
PADDLE	P_GND	Gnd	Exposed paddle on bottom of chip
			Connect P_GND to ground.

Note:

- 1. P = Power supply.
 - Gnd = Ground.

I = Input.

O = Output.

I/O = Bi-directional.

Ipu = Input with internal pull-up (see "Electrical Characteristics" for value).

Ipu/O = Input with internal pull-up (see "Electrical Characteristics" for value)/Output.

Strapping Options

Pin Number	Pin Name	Type ⁽¹⁾	Pin Function			
35	PHYAD2	I/O		The PHY address, PHYAD[2:0], is sampled and latched at power-up/reset and is		
15	PHYAD1	I/O	configurable to any value from 0 to 7. Each PHY address bit is configured as follows:			
17	PHYAD0	I/O	Pull-up = 1			
			Pull-do	-		
			1	ts [4:3] are always set to '00'.		
27	MODE3	I/O	The MODE[3:0]	strap-in pins are sampled and latched at power-up/reset as follows:		
28	MODE2	I/O	MODE[3:0]	Mode		
31	MODE1	I/O	0000	Reserved – not used		
32	MODE0	I/O	0001	Reserved – not used		
			0010	Reserved – not used		
			0011	Reserved – not used		
			0100	NAND tree mode		
			0101	Reserved – not used		
			0110	Reserved – not used		
			0111	Chip power-down mode		
			1000	Reserved – not used		
			1001	Reserved – not used		
			1010 Reserved – not used			
			1011	Reserved – not used		
			1100	RGMII mode – advertise 1000Base-T full-duplex only		
			1101	RGMII mode – advertise 1000Base-T full- and half-duplex only		
			1110	RGMII mode – advertise all capabilities (10/100/1000 speed half-/full-duplex), except 1000Base-T half-duplex		
			1111	RGMII mode – advertise all capabilities (10/100/1000 speed half-/full-duplex)		
33	CLK125_EN	I/O	CLK125_EN is s	sampled and latched at power-up/reset and is defined as follows:		
			Pull-up	= Enable 125MHz clock output		
			Pull-down = Disable 125MHz clock output			
			Pin 41 (CLK125_NDO) provides the 125MHz reference clock output option for use by the MAC.			
41	LED_MODE	I/O	LED_MODE is la	atched at power-up/reset and is defined as follows:		
			Pull-up	= Single-LED mode		
			Pull-do	wn = Tri-color dual-LED mode		

Note:

1. I/O = Bi-directional.

Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may be driven during power-up or reset, and consequently cause the PHY strap-in pins on the RGMII signals to be latched to an incorrect configuration. In this case, Micrel recommends adding external pull-ups/pull-downs on the PHY strap-in pins to ensure the PHY is configured to the correct pin strap-in mode.

Functional Overview

The KSZ9031RNX is a completely integrated triple-speed (10Base-T/100Base-TX/1000Base-T) Ethernet physical layer transceiver solution for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable. Its on-chip proprietary 1000Base-T transceiver and Manchester/MLT-3 signaling-based 10Base-T/100Base-TX transceivers are all IEEE 802.3 compliant.

The KSZ9031RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2V core.

On the copper media interface, the KSZ9031RNX can automatically detect and correct for differential pair misplacements and polarity reversals, and correct propagation delays and re-sync timing between the four differential pairs, as specified in the IEEE 802.3 standard for 1000Base-T operation.

The KSZ9031RNX provides the RGMII interface for direct and seamless connection to RGMII MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000Mbps.

Figure 1 shows a high-level block diagram of the KSZ9031RNX.

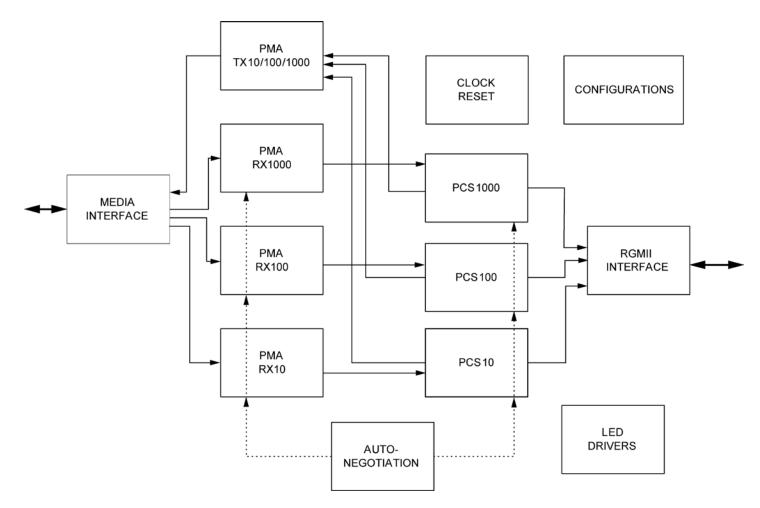


Figure 1. KSZ9031RNX Block Diagram

Functional Description: 10Base-T/100Base-TX Transceiver

100Base-TX Transmit

The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI conversion, and MLT-3 encoding and transmission.

The circuitry starts with a parallel-to-serial conversion, which converts the RGMII data from the MAC into a 125MHz serial bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format then transmitted in MLT-3 current output. The output current is set by an external 12.1k Ω 1% resistor for the 1:1 transformer ratio.

The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX transmitter.

100Base-TX Receive

The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT-3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.

The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Because the amplitude loss and phase distortion are a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.

Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit converts the MLT-3 format back to NRZI. The slicing threshold is also adaptive.

The clock-recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B decoder. Finally, the NRZ serial data is converted to the RGMII format and provided as the input data to the MAC.

Scrambler/De-Scrambler (100Base-TX only)

The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI) and baseline wander. Transmitted data is scrambled using an 11-bit wide linear feedback shift register (LFSR). The scrambler generates a 2047-bit non-repetitive sequence, then the receiver de-scrambles the incoming data stream using the same sequence as at the transmitter.

10Base-T Transmit

The 10Base-T output drivers are incorporated into the 100Base-TX drivers to allow for transmission with the same magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output signals with a typical amplitude of 2.5V peak for standard 10Base-T mode and 1.75V peak for energy-efficient 10Base-Te mode. The 10Base-T/10Base-Te signals have harmonic contents that are at least 31dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal.

10Base-T Receive

On the receive side, input buffer and level-detecting squelch circuits are used. A differential input receiver circuit and a phase-locked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 300mV or with short pulse widths to prevent noises at the receive inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ9031RNX decodes a data frame. The receiver clock is maintained active during idle periods between receiving data frames.

Auto-polarity correction is provided for the receive differential pair to automatically swap and fix the incorrect +/- polarity wiring in the cabling.

Functional Description: 1000Base-T Transceiver

The 1000Base-T transceiver is based-on a mixed-signal/digital-signal processing (DSP) architecture, which includes the analog front-end, digital channel equalizers, trellis encoders/decoders, echo cancellers, cross-talk cancellers, precision clock recovery scheme, and power-efficient line drivers.

Figure 2 shows a high-level block diagram of a single channel of the 1000Base-T transceiver for one of the four differential pairs.

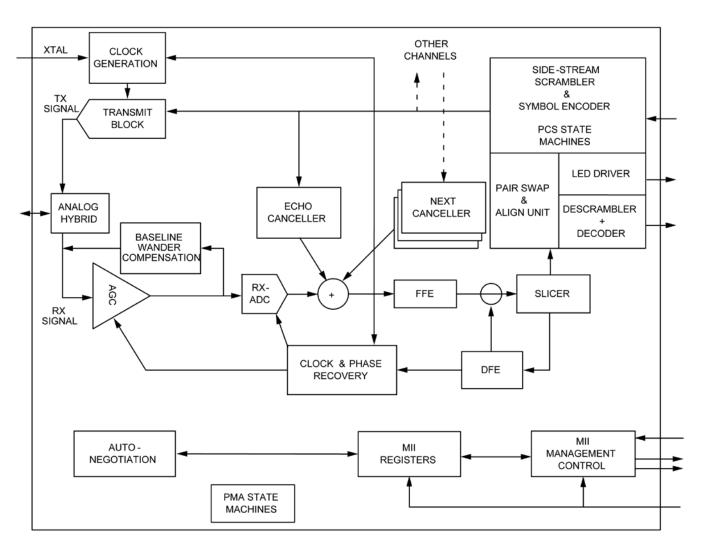


Figure 2. KSZ9031RNX 1000Base-T Transceiver Block Diagram – Single Channel

Analog Echo-Cancellation Circuit

In 1000Base-T mode, the analog echo-cancellation circuit helps to reduce the near-end echo. This analog hybrid circuit relieves the burden of the ADC and the adaptive equalizer.

This circuit is disabled in 10Base-T/100Base-TX mode.

Automatic Gain Control (AGC)

In 1000Base-T mode, the automatic gain control (AGC) circuit provides initial gain adjustment to boost up the signal level. This pre-conditioning circuit is used to improve the signal-to-noise ratio of the receive signal.

Analog-to-Digital Converter (ADC)

In 1000Base-T mode, the analog-to-digital converter (ADC) digitizes the incoming signal. ADC performance is essential to the overall performance of the transceiver.

This circuit is disabled in 10Base-T/100Base-TX mode.

Timing Recovery Circuit

In 1000Base-T mode, the mixed-signal clock recovery circuit together with the digital phase-locked loop is used to recover and track the incoming timing information from the received data. The digital phase-locked loop has very low long-term jitter to maximize the signal-to-noise ratio of the receive signal.

The 1000Base-T slave PHY must transmit the exact receive clock frequency recovered from the received data back to the 1000Base-T master PHY. Otherwise, the master and slave will not be synchronized after long transmission. This also helps to facilitate echo cancellation and NEXT removal.

Adaptive Equalizer

In 1000Base-T mode, the adaptive equalizer provides the following functions:

- Detection for partial response signaling
- Removal of NEXT and ECHO noise
- Channel equalization

Signal quality is degraded by residual echo that is not removed by the analog hybrid because of impedance mismatch. The KSZ9031RNX uses a digital echo canceller to further reduce echo components on the receive signal.

In 1000Base-T mode, data transmission and reception occurs simultaneously on all four pairs of wires (four channels). This results in high-frequency cross-talk coming from adjacent wires. The KSZ9031RNX uses three NEXT cancellers on each receive channel to minimize the cross-talk induced by the other three channels.

In 10Base-T/100Base-TX mode, the adaptive equalizer needs only to remove the inter-symbol interference and recover the channel loss from the incoming data.

Trellis Encoder and Decoder

In 1000Base-T mode, the transmitted 8-bit data is scrambled into 9-bit symbols and further encoded into 4D-PAM5 symbols. The initial scrambler seed is determined by the specific PHY address to reduce EMI when more than one KSZ9031RNX is used on the same board. On the receiving side, the idle stream is examined first. The scrambler seed, pair skew, pair order, and polarity must be resolved through the logic. The incoming 4D-PAM5 data is then converted into 9-bit symbols and de-scrambled into 8-bit data.

Functional Description: 10/100/1000 Transceiver Features

Auto MDI/MDI-X

The Automatic MDI/MDI-X feature eliminates the need to determine whether to use a straight cable or a crossover cable between the KSZ9031RNX and its link partner. This auto-sense function detects the MDI/MDI-X pair mapping from the link partner, and assigns the MDI/MDI-X pair mapping of the KSZ9031RNX accordingly.

Table 1 shows the KSZ9031RNX 10/100/1000 pin configuration assignments for MDI/MDI-X pin mapping.

Din (D L 45 pair)		MDI			MDI-X		
Pin (RJ-45 pair)	1000Base-T	100Base-TX	10Base-T	1000Base-T	100Base-TX	10Base-T	
TXRXP/M_A (1,2)	A+/	TX+/	TX+/-	B+/	RX+/-	RX+/-	
TXRXP/M_B (3,6)	B+/-	RX+/-	RX+/-	A+/	TX+/–	TX+/-	
TXRXP/M_C (4,5)	C+/-	Not used	Not used	D+/	Not used	Not used	
TXRXP/M_D (7,8)	D+/	Not used	Not used	C+/-	Not used	Not used	

Table 1. MDI/MDI-X Pin Mapping

Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 1Ch, bit [6]. MDI and MDI-X mode is set by register 1Ch, bit [7] if Auto MDI/MDI-X is disabled.

An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.

Pair-Swap, Alignment, and Polarity Check

In 1000Base-T mode, the KSZ9031RNX

- Detects incorrect channel order and automatically restores the pair order for the A, B, C, D pairs (four channels)
- Supports 50±10ns difference in propagation delay between pairs of channels in accordance with the IEEE 802.3 standard, and automatically corrects the data skew so the corrected four pairs of data symbols are synchronized

Incorrect pair polarities of the differential signals are automatically corrected for all speeds.

Wave Shaping, Slew-Rate Control, and Partial Response

In communication systems, signal transmission encoding methods are used to provide the noise-shaping feature and to minimize distortion and error in the transmission channel.

- For 1000Base-T, a special partial-response signaling method is used to provide the band-limiting feature for the transmission path.
- For 100Base-TX, a simple slew-rate control method is used to minimize EMI.
- For 10Base-T, pre-emphasis is used to extend the signal quality through the cable.

PLL Clock Synthesizer

The KSZ9031RNX generates 125MHz, 25MHz, and 10MHz clocks for system timing. Internal clocks are generated from the external 25MHz crystal or reference clock.

Auto-Negotiation

The KSZ9031RNX conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.

Auto-negotiation allows UTP (unshielded twisted pair) link partners to select the highest common mode of operation.

During auto-negotiation, link partners advertise capabilities across the UTP link to each other, and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the operating mode.

The following list shows the speed and duplex operation mode from highest to lowest.

- Priority 1: 1000Base-T, full-duplex
- Priority 2: 1000Base-T, half-duplex
- Priority 3: 100Base-TX, full-duplex
- Priority 4: 100Base-TX, half-duplex
- Priority 5: 10Base-T, full-duplex
- Priority 6: 10Base-T, half-duplex

If auto-negotiation is not supported or the KSZ9031RNX link partner is forced to bypass auto-negotiation for 10Base-T and 100Base-TX modes, the KSZ9031RNX sets its operating mode by observing the input signal at its receiver. This is known as parallel detection, and allows the KSZ9031RNX to establish a link by listening for a fixed signal protocol in the absence of the auto-negotiation advertisement protocol.

The auto-negotiation link-up process is shown in Figure 3.

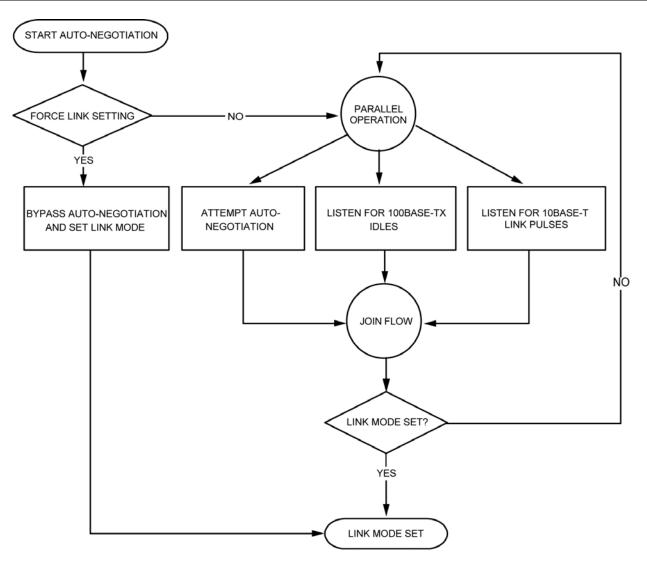


Figure 3. Auto-Negotiation Flow Chart

For 1000Base-T mode, auto-negotiation is always required to establish a link. During 1000Base-T auto-negotiation, the master and slave configuration is first resolved between link partners. Then the link is established with the highest common capabilities between link partners.

Auto-negotiation is enabled by default after power-up or hardware reset. After that, auto-negotiation can be enabled or disabled through register 0h, bit [12]. If auto-negotiation is disabled, the speed is set by register 0h, bits [6, 13] and the duplex is set by register 0h, bit [8].

If the speed is changed on the fly, the link goes down and auto-negotiation and parallel detection initiate until a common speed between KSZ9031RNX and its link partner is re-established for a link.

If the link is already established and there is no change of speed on the fly, the changes (for example, duplex and pause capabilities) will not take effect unless either auto-negotiation is restarted through register 0h, bit [9], or a link-down to linkup transition occurs (that is, disconnecting and reconnecting the cable).

After auto-negotiation is completed, the link status is updated in register 1h, bit [2], and the link partner capabilities are updated in registers 5h, 6h, 8h, and Ah.

The auto-negotiation finite state machines use interval timers to manage the auto-negotiation process. The duration of these timers under normal operating conditions is summarized in Table 2.

Auto-Negotiation Interval Timers	Time Duration
Transmit burst interval	16 ms
Transmit pulse interval	68 µs
FLP detect minimum time	17.2 µs
FLP detect maximum time	185 µs
Receive minimum burst interval	6.8 ms
Receive maximum burst interval	112 ms
Data detect minimum interval	35.4 µs
Data detect maximum interval	95 µs
NLP test minimum interval	4.5 ms
NLP test maximum interval	30 ms
Link loss time	52 ms
Break link time	1480 ms
Parallel detection wait time	830 ms
Link enable wait time	1000 ms

Table 2. Auto-Negotiation Timers

RGMII Interface

The Reduced Gigabit Media Independent Interface (RGMII) supports on-chip data-to-clock delay timing according to the RGMII Version 2.0 Specification, with programming options for external delay timing and to adjust and correct TX and RX timing paths.

RGMII provides a common interface between RGMII PHYs and MACs, and has the following key characteristics:

- Pin count is reduced from 24 pins for the IEEE Gigabit Media Independent Interface (GMII) to 12 pins for RGMII.
- All speeds (10Mbps, 100Mbps, and 1000Mbps) are supported at both half- and full-duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each four bits wide, a nibble.

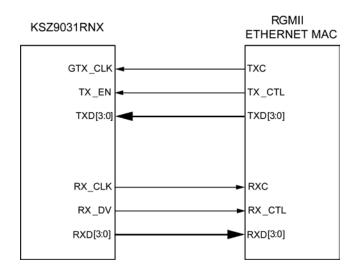
In RGMII operation, the RGMII pins function as follows:

- The MAC sources the transmit reference clock, TXC, at 125MHz for 1000Mbps, 25MHz for 100Mbps, and 2.5MHz for 10Mbps.
- The PHY recovers and sources the receive reference clock, RXC, at 125MHz for 1000Mbps, 25MHz for 100Mbps, and 2.5MHz for 10Mbps..
- For 1000Base-T, the transmit data, TXD[3:0], is presented on both edges of TXC, and the received data, RXD[3:0], is clocked out on both edges of the recovered 125MHz clock, RXC.
- For 10Base-T/100Base-TX, the MAC holds TX_CTL low until both PHY and MAC operate at the same speed. During the speed transition, the receive clock is stretched on either a positive or negative pulse to ensure that no clock glitch is presented to the MAC.
- TX_ER and RX_ER are combined with TX_EN and RX_DV, respectively, to form TX_CTL and RX_CTL. These two RGMII control signals are valid at the falling clock edge.

After power-up or reset, the KSZ9031RNX is configured to RGMII mode if the MODE[3:0] strap-in pins are set to one of the RGMII mode capability options. See the "Strapping Options" section for available options.

The KSZ9031RNX has the option to output a 125MHz reference clock on the CLK125_NDO pin. This clock provides a lower-cost reference clock alternative for RGMII MACs that require a 125MHz crystal or oscillator. The 125MHz clock output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high.

RGMII Signal Definition


Table 3 describes the RGMII signals. Refer to the RGMII Version 2.0 Specification for more detailed information.

RGMII Signal Name (per spec)	RGMII Signal Name (per KSZ9031RNX)	Pin Type (with respect to PHY)	Pin Type (with respect to MAC)	Description
TXC	GTX_CLK	Input	Output	Transmit Reference Clock
				(125MHz for 1000Mbps, 25MHz for 100Mbps, 2.5MHz for 100Mbps)
TX_CTL	TX_EN	Input	Output	Transmit Control
TXD[3:0]	TXD[3:0]	Input	Output	Transmit Data[3:0]
RXC	RX_CLK	Output	Input	Receive Reference Clock
				(125MHz for 1000Mbps, 25MHz for 100Mbps, 2.5MHz for 100Mbps)
RX_CTL	RX_DV	Output	Input	Receive Control
RXD[3:0]	RXD[3:0]	Output	Input	Receive Data[3:0]

Table 3. RGMII Signal Definition

RGMII Signal Diagram

The KSZ9031RNX RGMII pin connections to the MAC are shown in Figure 4.

RGMII Pad Skew Registers

Pad skew registers are available for all RGMII pins (clocks, control signals, and data bits) to provide programming options to adjust or correct the timing relationship for each RGMII pin. Because RGMII is a source-synchronous bus interface, the timing relationship needs to be maintained only within the RGMII pin's respective timing group.

- RGMII transmit timing group pins: GTX_CLK, TX_EN, TXD[3:0]
- RGMII receive timing group pins: RX_CLK, RX_DV, RXD[3:0]

Address	Name	Description	Mode	Default	
MMD Addre	ss 2h, Register 4	h – RGMII Control Signal Pad Skew			
2.4.15:8	Reserved	Reserved	RW	0000_0000	
2.4.7:4	RX_DV Pad Skew	RGMII RX_CTL output pad skew control (0.06ns/step)	RW	0111	
2.4.3:0	TX_EN Pad Skew	RGMII TX_CTL input pad skew control (0.06ns/step)	RW	0111	
MMD Addre	ss 2h, Register 5	h – RGMII RX Data Pad Skew			
2.5.15:12	RXD3 Pad Skew	RGMII RXD3 output pad skew control (0.06ns/step)	RW	0111	
2.5.11:8	RXD2 Pad Skew	RGMII RXD2 output pad skew control (0.06ns/step)	RW	0111	
2.5.7:4	RXD1 Pad Skew	RGMII RXD1 output pad skew control (0.06ns/step)	RW	0111	
2.5.3:0	RXD0 Pad Skew	RGMII RXD0 output pad skew control (0.06ns/step)	RW	0111	
MMD Addre	ss 2h, Register 6	h – RGMII TX Data Pad Skew			
2.6.15:12	TXD3 Pad Skew	RGMII TXD3 output pad skew control (0.06ns/step)	RW	0111	
2.6.11:8	TXD2 Pad Skew	RGMII TXD2 output pad skew control (0.06ns/step)	RW	0111	
2.6.7:4	TXD1 Pad Skew	RGMII TXD1 output pad skew control (0.06ns/step)	RW	0111	
2.6.3:0	TXD0 Pad Skew	RGMII TXD0 output pad skew control (0.06ns/step)	RW	0111	
MMD Addre	ss 2h, Register 8	h – RGMII Clock Pad Skew			
2.8.15:10	Reserved	Reserved	RW	0000_00	
2.8.9:5	GTX_CLK Pad Skew	RGMII GTX_CLK input pad skew control (0.06ns/step)			
2.8.4:0	RX_CLK Pad Skew	RGMII RX_CLK output pad skew control (0.06ns/step)	RW	0_1111	

The following four registers located at MMD Address 2h are provided for pad skew programming.

Table 4. RGMII Pad Skew Registers

The RGMII control signals and data bits have 4-bit skew settings, while the RGMII clocks have 5-bit skew settings.

Each register bit is approximately a 0.06ns step change. A single-bit decrement decreases the delay by approximately 0.06ns, while a single-bit increment increases the delay by approximately 0.06ns.

Table 5 and Table 6 list the approximate absolute delay for each pad skew (value) setting.

Pad Skew (value)	Delay (ns)
0_000	-0.90
0_0001	-0.84
0_0010	-0.78
0_0011	-0.72
0_0100	-0.66
0_0101	-0.60
0_0110	-0.54
0_0111	-0.48
0_1000	-0.42
0_1001	-0.36
0_1010	-0.30
0_1011	-0.24
0_1100	-0.18
0_1101	-0.12
0_1110	-0.06
0_1111	No delay adjustment (default value)
1_0000	+0.06
1_0001	+0.12
1_0010	+0.18
1_0011	+0.24
1_0100	+0.30
1_0101	+0.36
1_0110	+0.42
1_0111	+0.48
1_1000	+0.54
1_1001	+0.60
1_1010	+0.66
1_1011	+0.72
1_1100	+0.78
1_1101	+0.84
1_1110	+0.90
1_1111	+0.96

Table 5. Absolute Delay for 5-bit Pad Skew Setting

Pad Skew (value)	Delay (ns)
0000	-0.42
0001	-0.36
0010	-0.30
0011	-0.24
0100	-0.18
0101	-0.12
0110	-0.06
0111	No delay adjustment (default value)
1000	+0.06
1001	+0.12
1010	+0.18
1011	+0.24
1100	+0.30
1101	+0.36
1110	+0.42
1111	+0.48

Table 6. Absolute Delay for 4-bit Pad Skew Setting

When computing the RGMII timing relationships, delays along the entire data path must be aggregated to determine the total delay to be used for comparison between RGMII pins within their respective timing group. For the transmit data path, total delay includes MAC output delay, MAC-to-PHY PCB routing delay, and PHY (KSZ9031RNX) input delay and skew setting (if any). For the receive data path, the total delay includes PHY (KSZ9031RNX) output delay, PHY-to-MAC PCB routing delay, and MAC input delay and skew setting (if any).

After power-up or reset, the KSZ9031RNX defaults to the following timings at its RGMII I/O pins to support on-chip datato-clock skew timing according to the RGMII Version 2.0 Specification:

- Transmit Inputs: GTX_CLK clock is in sync within ±500ps of TX_EN and TXD[3:0]
- Receive outputs: RX_CLK is delayed about 1.2ns with respect to RX_DV and RXD[3:0]

The above default RGMII timings imply:

- RX_CLK clock skew is set by the KSZ9031RNX default register settings.
- GTX_CLK clock skew is provided by the MAC.
- No PCB delay is required for GTX_CLK and RX_CLK clocks.

The following examples show how to read/write to MMD Address 2h, Register 8h for the RGMII GTX_CLK and RX_CLK skew settings. MMD register access is through the direct portal registers Dh and Eh. For more programming details, refer to the "MMD Registers – Descriptions" section.

- Read back value of MMD Address 2h, Register 8h.
 - Write register 0xD = 0x0002 // Select MMD Device Address 2h
 - Write register 0xE = 0x0008 // Select register 8h of MMD Device Address 2h
 - Write register 0xD = 0x4002 // Select register data for MMD Device Address 2h, register 8h
 - Read register 0xE // Read value of MMD Device Address 2h, Register 8h

- Write value 0x03FF (delay GTX_CLK and RX_CLK pad skews to their maximum values) to MMD Address 2h, register 8h
 - Write register 0xD = 0x0002
- xD = 0x0002 // Select MMD Device Address 2h
 - Write register 0xE = 0x0008 // Select register 8h of MMD Device Address 2h
 - Write register 0xD = 0x4002 // Select register data for MMD Device Address 2h, register 8h
 - Write register 0xE = 0x03FF // Write value 0x03FF to MMD Device Address 2h, register 8h

RGMII In-Band Status

_

The KSZ9031RNX provides in-band status to the MAC during the inter-frame gap when RX_DV is de-asserted. RGMII inband status is always enabled after power-up.

The in-band status is sent to the MAC using the RXD[3:0] data pins, and is described in Table 7.

RX_DV	RXD3	RXD[2:1]	RXD0
0	Duplex Status	RX_CLK clock speed	Link Status
(valid only when RX_DV	0 = Half-duplex	00 = 2.5MHz (10Mbps)	0 = Link down
is low)	1 = Full-duplex	01 = 25MHz (100Mbps)	1 = Link up
		10 = 125MHz (1000Mbps)	
		11 = Reserved	

Table 7. RGMII In-Band Status

MII Management (MIIM) Interface

The KSZ9031RNX supports the IEEE 802.3 MII Management interface, also known as the Management Data Input/ Output (MDIO) interface. This interface allows upper-layer devices to monitor and control the state of the KSZ9031RNX. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.

The MIIM interface consists of the following:

- A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- A specific protocol that operates across the physical connection mentioned earlier, which allows an external controller to communicate with one or more KSZ9031RNX devices. Each KSZ9031RNX device is assigned a unique PHY address between 0h and 7h by the PHYAD[2:0] strapping pins.
- A 32-register address space for direct access to IEEE-defined registers and vendor-specific registers, and for indirect access to MMD addresses and registers. See the "Register Map" section.

PHY address 0h is supported as the unique PHY address only; it is not supported as the broadcast PHY address, which allows for a single write command to simultaneously program an identical PHY register for two or more PHY devices (for example, using PHY address 0h to set register 0h to a value of 0x1940 to set bit [11] to a value of one to enable software power-down). Instead, separate write commands are used to program each PHY device.

 Table 8 shows the MII Management frame format for the KSZ9031RNX.

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits [4:0]	REG Address Bits [4:0]	ТА	Data Bits [15:0]	ldle
Read	32 1's	01	10	00AAA	RRRRR	Z0	DDDDDDDD_DDDDDDD	Z
Write	32 1's	01	01	00AAA	RRRRR	10	DDDDDDDD_DDDDDDD	Z

Table 8. Mll Management Frame Format for the KSZ9031RNX

Interrupt (INT_N)

The INT_N pin is an optional interrupt signal that is used to inform the external controller that there has been a status update in the KSZ9031RNX PHY register. Bits [15:8] of register 1Bh are the interrupt control bits that enable and disable the conditions for asserting the INT_N signal. Bits [7:0] of register 1Bh are the interrupt status bits that indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.

Bit [14] of register 1Fh sets the interrupt level to active high or active low. The default is active low.

The MII Management bus option gives the MAC processor complete access to the KSZ9031RNX control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.

LED Mode

The KSZ9031RNX provides two programmable LED output pins, LED2 and LED1, which are configurable to support two LED modes. The LED mode is configured by the LED_MODE strap-in (pin 41). It is latched at power-up/reset and is defined as follows:

- Pull-up: Single-LED mode
- Pull-down: Tri-color dual-LED mode

Single-LED Mode

In single-LED mode, the LED2 pin indicates the link status while the LED1 pin indicates the activity status, as shown in Table 9.

LED Pin	Pin State	LED Definition	Link/Activity
LED2	Н	OFF	Link off
LLDZ	L	ON	Link on (any speed)
LED1	Н	OFF	No activity
LEDI	Toggle	Blinking	Activity (RX, TX)

 Table 9. Single-LED Mode – Pin Definition

Tri-color Dual-LED Mode

In tri-color dual-LED mode, the link and activity status are indicated by the LED2 pin for 1000Base-T; by the LED1 pin for 100Base-TX; and by both LED2 and LED1 pins, working in conjunction, for 10Base-T. This is summarized in Table 10.

LED Pin (State)		LED Pin (Definition)		Link/Activity	
LED2	LED1	LED2	LED1		
Н	Н	OFF	OFF	Link off	
L	Н	ON	OFF	1000 Link / No activity	
Toggle	Н	Blinking	OFF	1000 Link / Activity (RX, TX)	
Н	L	OFF	ON	100 Link / No activity	
Н	Toggle	OFF	Blinking	100 Link / Activity (RX, TX)	
L	L	ON	ON	10 Link / No activity	
Toggle	Toggle	Blinking	Blinking	10 Link / Activity (RX, TX)	

Table 10. Tri-color Dual-LED Mode – Pin Definition

Each LED output pin can directly drive an LED with a series resistor (typically 220Ω to 470Ω).

Loopback Mode

The KSZ9031RNX supports the following loopback operations to verify analog and/or digital data paths.

- Local (digital) loopback •
- Remote (analog) loopback •

Local (Digital) Loopback

This loopback mode checks the RGMII transmit and receive data paths between KSZ9031RNX and external MAC, and is supported for all three speeds (10/100/1000Mbps) at full-duplex.

The loopback data path is shown in Figure 5.

- RGMII MAC transmits frames to KSZ9031RNX.
- 2. Frames are wrapped around inside KSZ9031RNX.
- KSZ9031RNX transmits frames back to RGMII MAC.

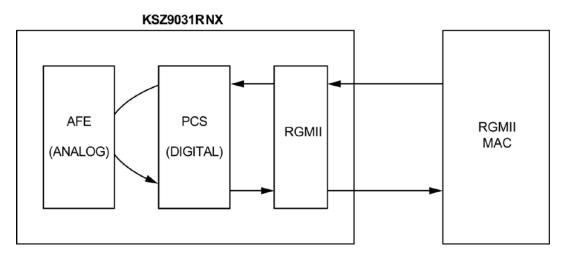


Figure 5. Local (Digital) Loopback

// Enable master-slave manual configuration

// Select slave configuration (required for loopback mode)

The following programming steps and register settings are used for local loopback mode.

For 1000Mbps loopback,

- 1. Set register 0h,
 - Bit [14] = 1 // Enable local loopback mode •
 - Bits [6, 13] = 10 // Select 1000Mbps speed •
 - Bit [12] = 0 // Disable auto-negotiation
 - // Select full-duplex mode
- 2. Set register 9h,
 - Bit [12] = 1 •

Bit [8] = 1

Bit [11] = 0

For 10/100Mbps loopback,

•

- 1. Set register 0h,
 - Bit [14] = 1
 - // Enable local loopback mode
 - Bits [6, 13] = 00 / 01// Select 10Mbps/100Mbps speed
 - Bit [12] = 0 // Disable auto-negotiation
 - Bit [8] = 1 // Select full-duplex mode

Remote (Analog) Loopback

This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive data paths between KSZ9031RNX and its link partner, and is supported for 1000Base-T full-duplex mode only.

The loopback data path is shown in Figure 6.

- 1. The Gigabit PHY link partner transmits frames to KSZ9031RNX.
- 2. Frames are wrapped around inside KSZ9031RNX.
- 3. KSZ9031RNX transmits frames back to the Gigabit PHY link partner.

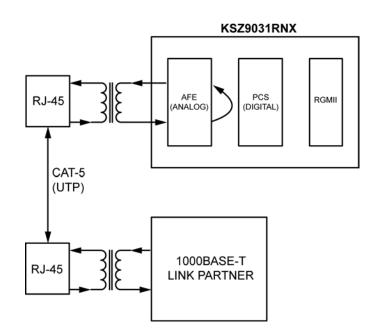


Figure 6. Remote (Analog) Loopback

The following programming steps and register settings are used for remote loopback mode.

- 1. Set register 0h,
 - Bits [6, 13] = 10 // Select 1000Mbps speed
 - Bit [12] = 0 // Disable auto-negotiation
 - Bit [8] = 1 // Select full-duplex mode

Or just auto-negotiate and link up at 1000Base-T full-duplex mode with link partner.

- 2. Set Register 11h,
 - Bit [8] = 1 // Enable remote loopback mode

LinkMD[®] Cable Diagnostic

The LinkMD function uses time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems, such as open circuits, short circuits, and impedance mismatches.

LinkMD operates by sending a pulse of known amplitude and duration down the selected differential pair, then analyzing the polarity and shape of the reflected signal to determine the type of fault: open circuit for a positive/non-inverted amplitude reflection and short circuit for a negative/inverted amplitude reflection. The time duration for the reflected signal to return provides the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a numerical value that can be translated to a cable distance.

LinkMD is initiated by accessing register 12h, the LinkMD – Cable Diagnostic register, in conjunction with register 1Ch, the Auto MDI/MDI-X register. The latter register is needed to disable the Auto MDI/MDI-X function before running the LinkMD test. Additionally, a software reset (Reg. 0h, bit [15] = 1) should be performed before and after running the LinkMD test. The reset helps to ensure the KSZ9031RNX is in the normal operating state before and after the test.

NAND Tree Support

The KSZ9031RNX provides parametric NAND tree support for fault detection between chip I/Os and board. NAND tree mode is enabled at power-up/reset with the MODE[3:0] strap-in pins set to '0100'.

Table 11 lists the NAND tree pin order.

Pin	Description
LED2	Input
LED1/PME_N1	Input
TXD0	Input
TXD1	Input
TXD2	Input
TXD3	Input
GTX_CLK	Input
TX_EN	Input
RX_DV	Input
RX_CLK	Input
INT_N/PME_N2	Input
MDC	Input
MDIO	Input
CLK125_NDO	Output

Table 11. NAND Tree Test Pin Order for KSZ9031RNX

Power Management

The KSZ9031RNX incorporates a number of power-management modes and features that provide methods to consume less energy. These are discussed in the following sections.

Energy-Detect Power-Down Mode

Energy-detect power-down (EDPD) mode is used to further reduce the transceiver power consumption when the cable is unplugged. It is enabled by writing a one to MMD address 1Ch, register 23h, bit [0], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).

In EDPD Mode, the KSZ9031RNX shuts down all transceiver blocks, except for the transmitter and energy detect circuits. Power can be reduced further by extending the time interval between the transmissions of link pulses to check for the presence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ9031RNX and its link partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the cable is connected between them. By default, EDPD mode is disabled after power-up.

Software Power-Down Mode

This mode is used to power down the KSZ9031RNX device when it is not in use after power-up. Software power-down (SPD) mode is enabled by writing a one to register 0h, bit [11]. In the SPD state, the KSZ9031RNX disables all internal functions, except for the MII management interface. The KSZ9031RNX exits the SPD state after a zero is written to register 0h, bit [11].

Chip Power-Down Mode

This mode provides the lowest power state for the KSZ9031RNX device when it is mounted on the board but not in use. Chip power-down (CPD) mode is enabled after power-up/reset with the MODE[3:0] strap-in pins set to '0111'. The KSZ9031RNX exits CPD mode after a hardware reset is applied to the RESET_N pin (pin 42) with the MODE[3:0] strap-in pins set to an operating mode other than CPD.

Energy Efficient Ethernet (EEE)

The KSZ9031RNX implements Energy Efficient Ethernet (EEE) as described in IEEE Standard 802.3az for line signaling by the four differential pairs (analog side) and according to the multisource agreement (MSA) of collaborating Gigabit Ethernet chip vendors for the RGMII (digital side). This agreement is based on the IEEE Standard's EEE implementation for GMII (1000Mbps) and MII (100Mbps). The specification is defined around an EEE-compliant MAC on the host side and an EEE-compliant link partner on the line side that support the special signaling associated with EEE. EEE saves power by keeping the AC signal on the copper Ethernet cable at approximately 0V peak-to-peak as often as possible during periods of no traffic activity, while maintaining the link-up status. This is referred to as low-power idle (LPI) mode or state.

During LPI mode, the copper link responds automatically when it receives traffic and resumes normal PHY operation immediately, without blockage of traffic or loss of packet. This involves exiting LPI mode and returning to normal 100/1000Mbps operating mode. Wake-up times are <16µs for 1000Base-T and <30µs for 100Base-TX.

The LPI state is controlled independently for transmit and receive paths, allowing the LPI state to be active (enabled) for:

- Transmit cable path only
- Receive cable path only
- Both transmit and receive cable paths

The KSZ9031RNX has the EEE function disabled as the power-up default setting. The EEE function is enabled by setting the following EEE advertisement bits at MMD address 7h, register 3Ch, followed by restarting auto-negotiation (writing a '1' to register 0h, bit [9]):

- Bit [2] = 1 // Enable 1000Mbps EEE mode
- Bit [1] = 1 // Enable 100Mbps EEE mode

For standard (non-EEE) 10Base-T mode, normal link pulses (NLPs) with long periods of no AC signal transmission are used to maintain the link during the idle period when there is no traffic activity. To save more power, the KSZ9031RNX provides the option to enable 10Base-Te mode, which saves additional power by reducing the transmitted signal amplitude from 2.5V to 1.75V. To enable 10Base-Te mode, write a '1' to MMD address 1Ch, register 4h, bit [10].

During LPI mode, refresh transmissions are used to maintain the link; power savings occur in quiet periods. Approximately every 20 to 22 milliseconds, a refresh transmission of 200 to 220 microseconds is sent to the link partner. The refresh transmissions and quiet periods are shown in Figure 7.

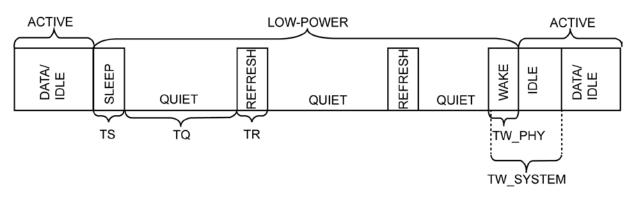
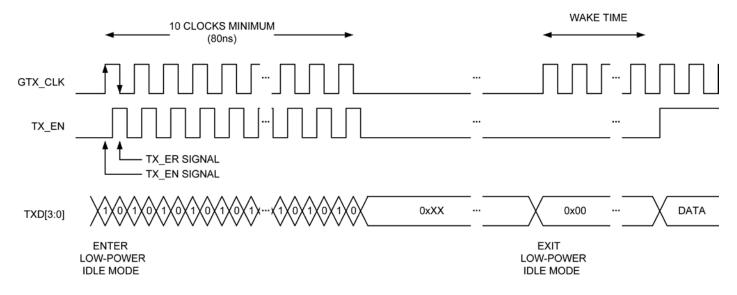


Figure 7. LPI Mode (Refresh Transmissions and Quiet Periods)


Transmit Direction Control (MAC-to-PHY)

RGMII 1000Mbps transmission from MAC-to-PHY uses both rising and falling edges of the GTX_CLK clock. The KSZ9031RNX uses the TX_EN pin as the RGMII transmit control signal (TX_CTL) to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling edge. It also uses the TXD[3:0] pins to clock in the TX data low nibble bits [3:0] on the rising edge and the TX data high nibble bits [7:4] on the falling edge.

The KSZ9031RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high on the falling edge), and sets TX data bits [7:0] to 0000_0001 (TXD[3:0] pins output 0001 on the rising edge and 0000 on the falling edge). The KSZ9031RNX remains in the 1000Mbps transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9031RNX exits the LPI transmit state.

To save more power, the MAC can stop the GTX_CLK clock after the RGMII signals for the LPI state have been asserted for 10 or more GTX_CLK clock cycles.

Figure 8 shows the LPI transition for RGMII transmit in 1000Mbps mode.

RGMII 100Mbps transmission from MAC-to-PHY uses both rising and falling edges of the GTX_CLK clock. The KSZ9031RNX uses the TX_EN pin as the RGMII transmit control signal (TX_CTL) to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling edge. It also uses the TXD[3:0] pins to clock in the TX data bits [3:0] on the rising edge.

The KSZ9031RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high on the falling edge), and sets TX data bits [3:0] to 0001 (the TXD[3:0] pins output 0001). The KSZ9031RNX remains in the 100Mbps transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9031RNX exits the LPI transmit state.

To save more power, the MAC can stop the GTX_CLK clock after the RGMII signals for the LPI state have been asserted for 10 or more GTX_CLK clock cycles.

Figure 9 shows the LPI transition for RGMII transmit in 100Mbps mode.

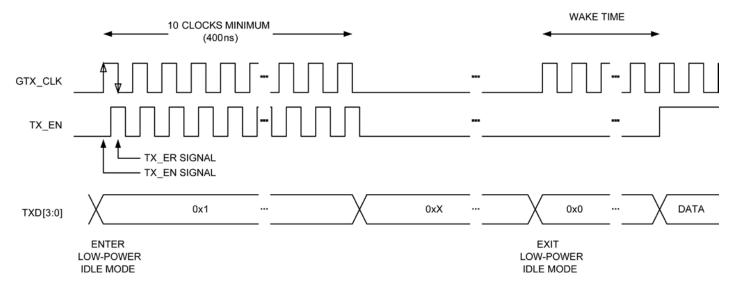


Figure 9. LPI Transition – RGMII (100Mbps) Transmit

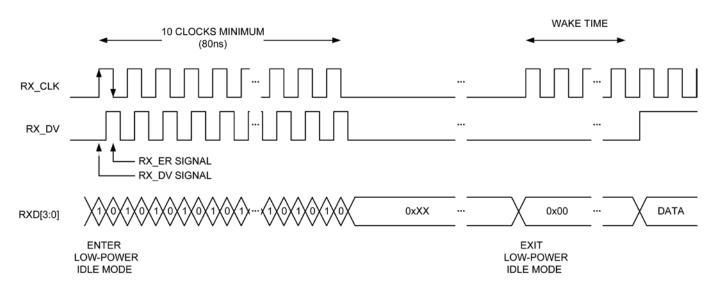
Receive Direction Control (PHY-to-MAC)

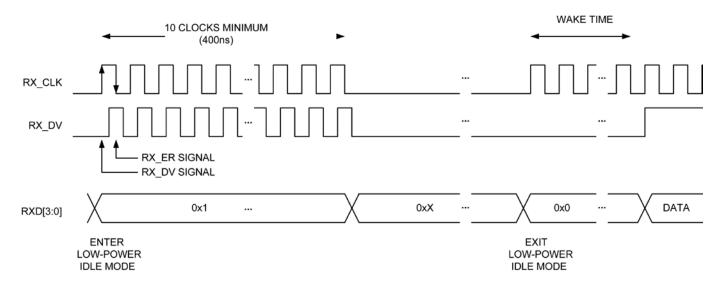
RGMII 1000Mbps transmission from PHY-to-MAC uses both rising and falling edges of the RX_CLK clock. The KSZ9031RNX uses the RX_DV pin as the RGMII receive control signal (RX_CTL) to clock out the RX_DV signal on the rising edge and the RX_ER signal on the falling edge It also uses the RXD[3:0] pins to clock out the RX data low nibble bits [3:0] on the rising edge and the RX data high nibble bits [7:4] on the falling edge.

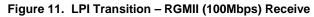
The KSZ9031RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh) from its EEE-compliant link partner. It then drives the RX_DV pin low on the rising clock edge and high on the falling clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0] pins are driven to 0001 on the rising clock edge and 0000 on the falling clock edge to set the RX data bits [7:0] to 0000_0001. The KSZ9031RNX remains in the 1000Mbps receive LPI state while it continues to receive the refresh from its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output pins to inform the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9031RNX receives a non /P/ code bit pattern (non Refresh), it exits the receive LPI state and sets the RX_DV and RXD[3:0] output pins accordingly for a normal frame or normal idle.

To save more power, the KSZ9031RNX stops the RX_CLK clock output to the MAC after 10 or more RX_CLK clock cycles have occurred in the receive LPI state.

Figure 10 shows the LPI transition for RGMII receive in 1000Mbps mode.




Figure 10. LPI Transition – RGMII (1000Mbps) Receive


RGMII 100Mbps transmission from PHY-to-MAC uses both rising and falling edges of the RX_CLK clock. The KSZ9031RNX uses the RX_DV pin as the RGMII receive control signal (RX_CTL) to clock out the RX_DV signal on the rising edge and the RX_ER signal on the falling edge. It also uses the RXD[3:0] pins to clock out the RX data bits [3:0] on the rising edge.

The KSZ9031RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh) from its EEE-compliant link partner. It then drives the RX_DV pin low on the rising clock edge and high on the falling clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0] pins are driven to 0001. The KSZ9031RNX remains in the 100Mbps receive LPI state while it continues to receive the refresh from its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output pins to inform the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9031RNX receives a non /P/ code bit pattern (non-refresh), it exits the receive LPI state and sets the RX_DV and RXD[3:0] output pins accordingly for a normal frame or normal idle.

The KSZ9031RNX stops the RX_CLK clock output to the MAC after 10 or more RX_CLK clock cycles have occurred in the receive LPI state to save more power.

Figure 11 shows the LPI transition for RGMII receive in 100Mbps mode.

Registers Associated with EEE

The following MMD registers are provided for EEE configuration and management:

- MMD address 3h, register 0h PCS EEE Control register
- MMD address 3h, register 1h PCS EEE Status register
- MMD address 7h, register 3Ch EEE Advertisement register
- MMD address 7h, register 3Dh EEE Link Partner Advertisement register

Wake-On-LAN

Wake-On-LAN (WOL) is normally a MAC-based function to wake up a host system (for example, an Ethernet end device, such as a PC) that is in standby power mode. Wake-up is triggered by receiving and detecting a special packet (commonly referred to as the "magic packet") that is sent by the remote link partner. The KSZ9031RNX can perform the same WOL function if the MAC address of its associated MAC device is entered into the KSZ9031RNX PHY registers for magic-packet detection. When the KSZ9031RNX detects the magic packet, it wakes up the host by driving its power management event (PME) output pin low.

By default, the WOL function is disabled. It is enabled by setting the enabling bit and configuring the associated registers for the selected PME wake-up detection method.

The KSZ9031RNX provides three methods to trigger a PME wake-up:

- Magic-packet detection
- Customized-packet detection
- Link status change detection

Magic-Packet Detection

The magic packet's frame format starts with 6 bytes of 0xFFh and is followed by 16 repetitions of the MAC address of its associated MAC device (local MAC device).

When the magic packet is detected from its link partner, the KSZ9031RNX asserts its PME output pin low.

The following MMD address 2h registers are provided for magic-packet detection:

- Magic-packet detection is enabled by writing a '1' to MMD address 2h, register 10h, bit [6]
- The MAC address (for the local MAC device) is written to and stored in MMD address 2h, registers 11h 13h

The KSZ9031RNX does not generate the magic packet. The magic packet must be provided by the external system.

Customized-Packet Detection

The customized packet has associated register/bit masks to select which byte, or bytes, of the first 64 bytes of the packet to use in the CRC calculation. After the KSZ9031RNX receives the packet from its link partner, the selected bytes for the received packet are used to calculate the CRC. The calculated CRC is compared to the expected CRC value that was previously written to and stored in the KSZ9031RNX PHY registers. If there is a match, the KSZ9031RNX asserts its PME output pin low.

Four customized packets are provided to support four types of wake-up scenarios. A dedicated set of registers is used to configure and enable each customized packet.

The following MMD registers are provided for customized-packet detection:

- Each of the four customized packets is enabled via MMD address 2h, register 10h,
 - Bit [2] // For customized packets, type 0
 - Bit [3] // For customized packets, type 1
 - Bit [4] // For customized packets, type 2
 - Bit [5] // For customized packets, type 3

- 32-bit expected CRCs are written to and stored in:
 - MMD address 2h, registers 14h 15h // For customized packets, type 0
 - MMD address 2h, registers 16h 17h // For customized packets, type 1
 - MMD address 2h, registers 18h 19h // For customized packets, type 2
 - MMD address 2h, registers 1Ah 1Bh // For customized packets, type 3
- Masks to indicate which of the first 64-bytes to use in the CRC calculation are set in:
 - MMD address 2h, registers 1Ch 1Fh // For customized packets, type 0
 - MMD address 2h, registers 20h 23h // For customized packets, type 1
 - MMD address 2h, registers 24h 27h // For customized packets, type 2
 - MMD address 2h, registers 28h 2Bh // For customized packets, type 3
- 32-bit calculated CRCs (of receive packet) are stored in:
 - MMD address 2h, registers 30h 31h // For customized packets, type 0
 - MMD address 2h, registers 32h 33h // For customized packets, type 1
 - MMD address 2h, registers 34h 35h // For customized packets, type 2
 - MMD address 2h, registers 36h 37h // For customized packets, type 3

Link Status Change Detection

If link status change detection is enabled, the KSZ9031RNX asserts its PME output pin low whenever there is a link status change, using the following MMD address 2h register bits and their enabled (1) or disabled (0) settings:

- MMD address 2h, register 10h, bit [0] // For link-up detection
- MMD address 2h, register 10h, bit [1] // For link-down detection

The PME output signal is available on either LED1/PME_N1 (pin 17) or INT_N/PME_N2 (pin 38), and is selected and enabled using MMD address 2h, register 2h, bits [8] and [10], respectively. Additionally, MMD address 2h, register 10h, bits [15:14] defines the output functions for pins 17 and 38.

The PME output is active low and requires a $1k\Omega$ pull-up to the VDDIO supply. When asserted, the PME output is cleared by disabling the register bit that enabled the PME trigger source (magic packet, customized packet, link status change).

Typical Current/Power Consumption

Table 12 through Table 15 show the typical current consumption by the core (DVDDL, AVDDL, AVDDL_PLL), transceiver (AVDDH) and digital I/O (DVDDH) supply pins, and the total typical power for the entire KSZ9031RNX device for various nominal operating voltage combinations.

Transceiver (3.3V), Digital I/Os (3.3V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	3.3V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T link-up (no traffic)	210	67.4	19.5	538
1000Base-T full-duplex @ 100% utilization	221	66.3	41.5	621
100Base-TX link-up (no traffic)	63.6	28.7	13.9	217
100Base-TX full-duplex @ 100% utilization	63.8	28.6	17.2	228
10Base-T link-up (no traffic)	7.1	15.9	11.5	99
10Base-T full-duplex @ 100% utilization	7.7	28.6	13.7	149
EEE Mode – 1000Mbps	43.5	5.7	30.6	172
EEE Mode – 100Mbps (TX and RX in LPI)	25.6	5.3	18.1	108
Software power-down mode (Reg. 0h.11 = 1)	1.0	4.2	9.3	46

Table 12. Typical Current/Power Consumption – Transceiver (3.3V), Digital I/Os (3.3V)

Transceiver (3.3V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	3.3V Transceiver (AVDDH)	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T link-up (no traffic)	210	67.4	11.2	494
1000Base-T full-duplex @ 100% utilization	221	66.3	23.6	526
100Base-TX link-up (no traffic)	63.6	28.7	8.4	186
100Base-TX full-duplex @ 100% utilization	63.8	28.6	9.8	189
10Base-T link-up (no traffic)	7.1	15.9	3.6	67
10Base-T full-duplex @ 100% utilization	7.7	28.6	5.6	114
EEE Mode – 1000Mbps	43.5	5.7	15.9	100
EEE Mode – 100Mbps (TX and RX in LPI)	25.6	5.3	9.1	65
Software power-down mode (Reg. 0h.11 = 1)	1.0	4.2	5.5	25

 Table 13. Typical Current/Power Consumption – Transceiver (3.3V), Digital I/Os (1.8V)

Transceiver (2.5V), Digital I/Os (2.5V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver ⁽¹⁾ (AVDDH – commercial temp only)	2.5V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T link-up (no traffic)	210	58.8	14.7	435
1000Base-T full-duplex @ 100% utilization	221	57.9	31.5	488
100Base-TX link-up (no traffic)	63.6	24.9	10.5	165
100Base-TX full-duplex @ 100% utilization	63.8	24.9	13.0	171
10Base-T link-up (no traffic)	7.1	11.5	6.3	53
10Base-T full-duplex @ 100% utilization	7.7	25.3	9.0	95
EEE Mode – 1000Mbps	43.5	4.5	23.6	122
EEE Mode – 100Mbps (TX and RX in LPI)	25.6	4.1	13.8	75
Software power-down mode (Reg. 0h.11 = 1)	1.0	3.1	6.7	26

Table 14. Typical Current/Power Consumption – Transceiver (2.5V), Digital I/Os (2.5V)

Transceiver (2.5V), Digital I/Os (1.8V)

Condition	1.2V Core (DVDDL, AVDDL, AVDDL_PLL)	2.5V Transceiver ⁽¹⁾ (AVDDH – commercial temp only)	1.8V Digital I/Os (DVDDH)	Total Chip Power
	mA	mA	mA	mW
1000Base-T link-up (no traffic)	210	58.8	11.2	419
1000Base-T full-duplex @ 100% utilization	221	57.9	23.6	452
100Base-TX link-up (no traffic)	63.6	24.9	8.4	154
100Base-TX full-duplex @ 100% utilization	63.8	24.9	9.8	156
10Base-T link-up (no traffic)	7.1	11.5	3.6	44
10Base-T full-duplex @ 100% utilization	7.7	25.3	5.6	83
EEE Mode – 1000Mbps	43.5	4.5	15.9	92
EEE Mode – 100Mbps (TX and RX in LPI)	25.6	4.1	9.1	57
Software power-down mode (Reg. 0h.11 = 1)	1.0	3.1	5.5	19

Table 15. Typical Current/Power Consumption – Transceiver (2.5V), Digital I/Os (1.8V)

Note:

1. 2.5V AVDDH is recommended for commercial temperature range (0°C to +70°C) operation only.

Register Map

The register space within the KSZ9031RNX consists of two distinct areas.

- Standard registers // Direct register access
- MDIO manageable device (MMD) registers // Indirect register access

The KSZ9031RNX supports the following standard registers.

Register Number (Hex)	Description
IEEE-Defined Registers	
0h	Basic Control
1h	Basic Status
2h	PHY Identifier 1
3h	PHY Identifier 2
4h	Auto-Negotiation Advertisement
5h	Auto-Negotiation Link Partner Ability
6h	Auto-Negotiation Expansion
7h	Auto-Negotiation Next Page
8h	Auto-Negotiation Link Partner Next Page Ability
9h	1000Base-T Control
Ah	1000Base-T Status
Bh – Ch	Reserved
Dh	MMD Access – Control
Eh	MMD Access – Register/Data
Fh	Extended Status
Vendor-Specific Registers	
10h	Reserved
11h	Remote Loopback
12h	LinkMD Cable Diagnostic
13h	Digital PMA/PCS Status
14h	Reserved
15h	RXER Counter
16h – 1Ah	Reserved
1Bh	Interrupt Control/Status
1Ch	Auto MDI/MDI-X
1Dh – 1Eh	Reserved
1Fh	PHY Control

Table 16. Standard Registers Supported by KSZ9031RNX

The KSZ9031RNX supports the following MMD device addresses and their associated register addresses, which make up the indirect MMD registers.

Device Address (Hex)	Register Address (Hex)	Description
1h	5Ah	1000Base-T Link-Up Time Control
2h	Oh	Common Control
	1h	Strap Status
	2h	Operation Mode Strap Override
	3h	Operation Mode Strap Status
	4h	RGMII Control Signal Pad Skew
	5h	RGMII RX Data Pad Skew
	6h	RGMII TX Data Pad Skew
	8h	RGMII Clock Pad Skew
	10h	Wake-On-LAN – Control
	11h	Wake-On-LAN – Magic Packet, MAC-DA-0
	12h	Wake-On-LAN – Magic Packet, MAC-DA-1
	13h	Wake-On-LAN – Magic Packet, MAC-DA-2
	14h	Wake-On-LAN – Customized Packet, Type 0, Expected CRC 0
	15h	Wake-On-LAN – Customized Packet, Type 0, Expected CRC 1
	16h	Wake-On-LAN – Customized Packet, Type 1, Expected CRC 0
	17h	Wake-On-LAN – Customized Packet, Type 1, Expected CRC 1
	18h	Wake-On-LAN – Customized Packet, Type 2, Expected CRC 0
	19h	Wake-On-LAN – Customized Packet, Type 2, Expected CRC 1
	1Ah	Wake-On-LAN – Customized Packet, Type 3, Expected CRC 0
	1Bh	Wake-On-LAN – Customized Packet, Type 3, Expected CRC 1
	1Ch	Wake-On-LAN – Customized Packet, Type 0, Mask 0
	1Dh	Wake-On-LAN – Customized Packet, Type 0, Mask 1
	1Eh	Wake-On-LAN – Customized Packet, Type 0, Mask 2
	1Fh	Wake-On-LAN – Customized Packet, Type 0, Mask 3
	20h	Wake-On-LAN – Customized Packet, Type 1, Mask 0
	21h	Wake-On-LAN – Customized Packet, Type 1, Mask 1
	22h	Wake-On-LAN – Customized Packet, Type 1, Mask 2
	23h	Wake-On-LAN – Customized Packet, Type 1, Mask 3
	24h	Wake-On-LAN – Customized Packet, Type 2, Mask 0
	25h	Wake-On-LAN – Customized Packet, Type 2, Mask 1
	26h	Wake-On-LAN – Customized Packet, Type 2, Mask 2
	27h	Wake-On-LAN – Customized Packet, Type 2, Mask 3
	28h	Wake-On-LAN – Customized Packet, Type 3, Mask 0
	29h	Wake-On-LAN – Customized Packet, Type 3, Mask 1
	2Ah	Wake-On-LAN – Customized Packet, Type 3, Mask 2
	2Bh	Wake-On-LAN – Customized Packet, Type 3, Mask 3
3h	Oh	PCS EEE – Control
	1h	PCS EEE – Status
7h	3Ch	EEE Advertisement
	3Dh	EEE Link Partner Advertisement
1Ch	4h	Analog Control 4
	23h	EDPD Control

Standard Registers

Standard registers provide direct read/write access to a 32-register address space, as defined in Clause 22 of the IEEE 802.3 Specification. Within this address space, the first 16 registers (registers 0h to Fh) are defined according to the IEEE specification, while the remaining 16 registers (registers 10h to 1Fh) are defined specific to the PHY vendor.

IEEE Defined Registers	- Descriptions
-------------------------------	----------------

Address	Name	Description	Mode ⁽¹⁾	Default
Register 0h	n – Basic Control			
0.15	Reset	1 = Software PHY reset	RW/SC	0
		0 = Normal operation		
		This bit is self-cleared after a '1' is written to it.		
0.14	Loopback	1 = Loopback mode	RW	0
		0 = Normal operation		
0.13	Speed Select	[0.6, 0.13]	RW	0
	(LSB)	[1,1] = Reserved		
		[1,0] = 1000Mbps		
		[0,1] = 100Mbps		
		[0,0] = 10Mbps		
		This bit is ignored if auto-negotiation is enabled (Reg. $0.12 = 1$).		
0.12	Auto-	1 = Enable auto-negotiation process	RW	1
	Negotiation Enable	0 = Disable auto-negotiation process		
Enable	LIIdble	If enabled, auto-negotiation result overrides settings in Reg. 0.13, 0.8 and 0.6.		
0.11	Power-Down	1 = Power-down mode	RW	0
		0 = Normal operation		
0.10	Isolate	1 = Electrical isolation of PHY from RGMII	RW	0
		0 = Normal operation		
0.9	Restart Auto-	1 = Restart auto-negotiation process	RW/SC	0
	Negotiation	0 = Normal operation		
		This bit is self-cleared after a '1' is written to it.		
0.8	Duplex Mode	1 = Full-duplex	RW	1
		0 = Half-duplex		
0.7	Reserved	Reserved	RW	0
0.6	Speed Select	[0.6, 0.13]	RW	Set by MODE[3:0] strapping
	(MSB)	[1,1] = Reserved		pins.
		[1,0] = 1000Mbps		See the "Strapping Options" section for details.
		[0,1] = 100Mbps		
		[0,0] = 10Mbps		
		This bit is ignored if auto-negotiation is enabled (Reg. $0.12 = 1$).		
0.5:0	Reserved	Reserved	RO	00_000

Address	Name	Description	Mode ⁽¹⁾	Default
Register 1h	– Basic Status			
1.15	100Base-T4	1 = T4 capable	RO	0
		0 = Not T4 capable		
1.14 100Base-TX Full-Duplex		1 = Capable of 100Mbps full-duplex	RO	1
	0 = Not capable of 100Mbps full-duplex			
1.13	100Base-TX	1 = Capable of 100Mbps half-duplex	RO	1
	Half-Duplex	0 = Not capable of 100Mbps half-duplex		
1.12	10Base-T	1 = Capable of 10Mbps full-duplex	RO	1
	Full-Duplex	0 = Not capable of 10Mbps full-duplex		
1.11	10Base-T	1 = Capable of 10Mbps half-duplex	RO	1
	Half-Duplex	0 = Not capable of 10Mbps half-duplex		
1.10:9	Reserved	Reserved	RO	00
1.8	Extended	1 = Extended status info in Reg. 15h.	RO	1
	Status	0 = No extended status info in Reg. 15h.		
1.7	Reserved	Reserved	RO	0
1.6	No Preamble	1 = Preamble suppression	RO	1
		0 = Normal preamble		
1.5	Auto-	1 = Auto-negotiation process completed	RO	0
Negotiation Complete	0 = Auto-negotiation process not completed			
	Remote Fault	1 = Remote fault	RO/LH	0
		0 = No remote fault		
1.3	Auto-	1 = Can perform auto-negotiation	RO	1
	Negotiation Ability	0 = Cannot perform auto-negotiation		
1.2	Link Status	1 = Link is up	RO/LL	0
		0 = Link is down		
1.1	Jabber Detect	1 = Jabber detected	RO/LH	0
		0 = Jabber not detected (default is low)		
1.0	Extended Capability	1 = Supports extended capability registers	RO	1
Register 2h	– PHY Identifier 1			
2.15:0	PHY ID Number	Assigned to bits [3:18] of the organizationally unique identifier (OUI). KENDIN Communication's OUI is 0010A1h.	RO	0022h
Register 3h	– PHY Identifier 2			
3.15:10	PHY ID	Assigned to bits [19:24] of the organizationally	RO	0001_01
	Number	unique identifier (OUI). KENDIN Communication's OUI is 0010A1h.		
3.9:4	Model Number	Six-bit manufacturer's model number	RO	10_0010
3.3:0	Revision Number	Four-bit manufacturer's revision number	RO	Indicates silicon revision
Register 4h	- Auto-Negotiatio	n Advertisement		
4.15	Next Page	1 = Next page capable	RW	0
		0 = No next page capability		

Address	Name	Description	Mode ⁽¹⁾	Default
4.14	Reserved	Reserved	RO	0
4.13	Remote Fault	1 = Remote fault supported	RW	0
		0 = No remote fault		
4.12	Reserved	Reserved	RO	0
4.11:10	Pause	[4.11, 4.10]	RW	00
		[0,0] = No pause		
		[1,0] = Asymmetric pause (link partner)		
		[0,1] = Symmetric pause		
		[1,1] = Symmetric and asymmetric pause (local device)		
4.9	100Base-T4	1 = T4 capable	RO	0
		0 = No T4 capability		
4.8	100Base-TX	1 = 100Mbps full-duplex capable	RW	1
	Full-Duplex	0 = No 100Mbps full-duplex capability		
4.7	100Base-TX	1 = 100Mbps half-duplex capable	RW	1
	Half-Duplex	0 = No 100Mbps half-duplex capability		
4.6	10Base-T	1 = 10Mbps full-duplex capable	RW	1
	Full-Duplex	0 = No 10Mbps full-duplex capability		
4.5	10Base-T	1 = 10Mbps half-duplex capable	RW	1
	Half-Duplex	0 = No 10Mbps half-duplex capability		
4.4:0	Selector Field	[00001] = IEEE 802.3	RW	0_0001
Register 5h	– Auto-Negotiatio	on Link Partner Ability		
5.15	Next Page	1 = Next page capable	RO	0
	-	0 = No next page capability		
5.14	Acknowledge	1 = Link code word received from partner	RO	0
		0 = Link code word not yet received		
5.13	Remote Fault	1 = Remote fault detected	RO	0
		0 = No remote fault		
5.12	Reserved	Reserved	RO	0
5.11:10	Pause	[5.11, 5.10]	RW	00
		[0,0] = No pause		
		[1,0] = Asymmetric pause (link partner)		
		[0,1] = Symmetric pause		
		[1,1] = Symmetric and asymmetric pause (local device)		
5.9	100Base-T4	1 = T4 capable	RO	0
		0 = No T4 capability		
5.8	100Base-TX	1 = 100Mbps full-duplex capable	RO	0
	Full-Duplex	0 = No 100Mbps full-duplex capability		
5.7	100Base-TX	1 = 100Mbps half-duplex capable	RO	0
	Half-Duplex	0 = No 100Mbps half-duplex capability		
5.6	10Base-T	1 = 10Mbps full-duplex capable	RO	0
	Full-Duplex	0 = No 10Mbps full-duplex capability		

Address	Name	Description	Mode ⁽¹⁾	Default
5.5	10Base-T	1 = 10Mbps half-duplex capable	RO	0
	Half-Duplex	0 = No 10Mbps half-duplex capability		
5.4:0	Selector Field	[00001] = IEEE 802.3	RO	0_000
Register 6h	– Auto-Negotiatio	n Expansion		
6.15:5	Reserved	Reserved	RO	0000_0000_000
6.4	Parallel	1 = Fault detected by parallel detection	RO/LH	0
	Detection Fault	0 = No fault detected by parallel detection		
6.3	Link Partner	1 = Link partner has next page capability	RO	0
	Next Page Able	0 = Link partner does not have next page capability		
6.2	Next Page	1 = Local device has next page capability	RO	1
	Able	0 = Local device does not have next page capability		
6.1	Page Received	1 = New page received	RO/LH	0
		0 = New page not received		
6.0	Link Partner	1 = Link partner has auto-negotiation capability	RO	0
	Auto- Negotiation Able	0 = Link partner does not have auto-negotiation capability		
Register 7h	- Auto-Negotiatio	n Next Page		
7.15	Next Page	1 = Additional next pages will follow	RW	0
		0 = Last page		
7.14	Reserved	Reserved	RO	0
7.13	Message Page	1 = Message page	RW	1
		0 = Unformatted page		
7.12	Acknowledge2	1 = Will comply with message	RW	0
		0 = Cannot comply with message		
7.11	Toggle	1 = Previous value of the transmitted link code word equaled logic one	RO	0
		0 = Logic zero		
7.10:0	Message Field	11-bit wide field to encode 2048 messages	RW	000_0000_0001
Register 8h	– Auto-Negotiatio	n Link Partner Next Page Ability		
8.15	Next Page	1 = Additional next pages will follow	RO	0
		0 = Last page		
8.14	Acknowledge	1 = Successful receipt of link word	RO	0
		0 = No successful receipt of link word		
8.13	Message Page	1 = Message page	RO	0
		0 = Unformatted page		
8.12	Acknowledge2	1 = Able to act on the information	RO	0
		0 = Not able to act on the information		
8.11	Toggle	1 = Previous value of transmitted link code word equal to logic zero	RO	0
		0 = Previous value of transmitted link code word equal to logic one		
8.10:0	Message Field		RO	000_0000_0000

Address	Name	Descriptio	n	Mode ⁽¹⁾	Default
Register 9h	– 1000Base-T Cor	trol			
9.15:13	Test Mode Bits	Transmitter	test mode operations	RW	000
		[9.15:13]	Mode		
		[000]	Normal operation		
		[001]	Test mode 1 –Transmit waveform test		
		[010]	Test mode 2 –Transmit jitter test in master mode		
		[011]	Test mode 3 –Transmit jitter test in slave mode		
		[100]	Test mode 4 –Transmitter distortion test		
		[101]	Reserved, operations not identified		
		[110]	Reserved, operations not identified		
		[111]	Reserved, operations not identified		
9.12	Master-Slave Manual	1 = Enable value	master-slave manual configuration	RW	0
	Configuration Enable	0 = Disable value	master-slave manual configuration		
9.11	Master-Slave Manual Configuration Value		re PHY as master during master- egotiation	RW	0
			re PHY as slave during master- egotiation		
		This bit is ig configuration	gnored if master-slave manual on is disabled (Reg. 9.12 = 0).		
9.10	Port Type		e the preference to operate as ort device (master)	RW	0
			the preference to operate as single- vice (slave)		
			alid only if master-slave manual on is disabled (Reg. 9.12 = 0).		
9.9	1000Base-T Full-Duplex	1 = Advertis capable	se PHY is 1000Base-T full-duplex e	RW	1
			se PHY is not 1000Base-T full- capable		
9.8	1000Base-T Half-Duplex	1 = Advertis capable	se PHY is 1000Base-T half-duplex e	RW	Set by MODE[3:0] strapping pins.
			se PHY is not 1000Base-T half- capable		See the "Strapping Options" section for details.
9.7:0	Reserved	Write as 0,	ignore on read	RO	-
Register Ah	– 1000Base-T Sta	tus			
A.15	Master-Slave	1 = Master-	slave configuration fault detected	RO/LH/SC	0
	Configuration Fault	0 = No mas detecte	ter-slave configuration fault d		

Address	Name	Description	Mode ⁽¹⁾	Default
A.14	Master-Slave Configuration Resolution	 1 = Local PHY configuration resolved to master 0 = Local PHY configuration resolved to slave 	RO	0
A.13	Local Receiver Status	1 = Local receiver OK (loc_rcvr_status = 1) 0 = Local receiver not OK (loc_rcvr_status = 0)	RO	0
A.12	Remote Receiver Status	1 = Remote receiver OK (rem_rcvr_status = 1) 0 = Remote receiver not OK (rem_rcvr_status = 0)	RO	0
A.11	Link Partner 1000Base-T Full-Duplex Capability	 1 = Link partner is capable of 1000Base-T full- duplex 0 = Link partner is not capable of 1000Base-T full-duplex 	RO	0
A.10	Link Partner 1000Base-T Half-Duplex Capability	 1 = Link partner is capable of 1000Base-T half- duplex 0 = Link Partner is not capable of 1000Base-T half-duplex 	RO	0
A.9:8	Reserved	Reserved	RO	00
A.7:0	Idle Error Count	Cumulative count of errors detected when receiver is receiving idles and PMA_TXMODE.indicate = SEND_N.	RO/SC	0000_0000
		The counter is incremented every symbol period that rxerror_status = ERROR.		
Register Dh	– MMD Access –	Control		
D.15:14	MMD – Operation Mode	For the selected MMD device address (bits [4:0] of this register), these two bits select one of the following register or data operations and the usage for MMD Access – Register/Data (Reg. Eh).	RW	00
		00 = Register		
		01 = Data, no post increment		
		10 = Data, post increment on reads and writes		
		11 = Data, post increment on writes only		
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD – Device Address	These five bits set the MMD device address.	RW	0_000
Register Eh	– MMD Access –	Register/Data		
E.15:0	MMD – Register/Data	For the selected MMD device address (Reg. Dh, bits [4:0]), When Reg. Dh, bits [15:14] = 00, this register contains the read/write register address for the MMD device address.	RW	0000_0000_0000_0000
		Otherwise, this register contains the read/write data value for the MMD device address and its selected register address.		
		See also Reg. Dh, bits [15:14], for descriptions of post increment reads and writes of this register for data operation.		

Address	Name	Description	Mode ⁽¹⁾	Default		
Register Fh – Extended Status						
F.15	1000Base-X Full-Duplex	1 = PHY can perform 1000Base-X full-duplex	RO	0		
		0 = PHY cannot perform 1000Base-X full- duplex				
F.14	1000Base-X Half-Duplex	1 = PHY can perform 1000Base-X half-duplex	RO	0		
		0 = PHY cannot perform 1000Base-X half-duplex				
F.13	1000Base-T Full-Duplex	1 = PHY can perform 1000Base-T full-duplex	RO	1		
		0 = PHY cannot perform 1000Base-T full-duplex				
F.12	1000Base-T	1 = PHY can perform 1000Base-T half-duplex	RO	1		
	Half-Duplex	0 = PHY cannot perform 1000Base-T half-duplex				
F.11:0	Reserved	Ignore when read	RO	-		

Note:

- 1. RW = Read/Write.
 - RO = Read only.

SC = Self-cleared.

LH = Latch high.

LL = Latch low.

Vendor-Specific Registers – Descriptions

Address	Name	Description	Mode ⁽¹⁾	Default
Register 11	h – Remote Loop	back		
11.15:9	Reserved	Reserved	RW	0000_000
11.8	Remote	1 = Enable remote loopback	RW	0
	Loopback	0 = Disable remote loopback		
11.7:1	Reserved	Reserved	RW	1111_010
11.0	Reserved	Reserved	RO	0
Register 12	h – LinkMD – Cab	le Diagnostic	·	
12.15	Cable	Write value:	RW/SC	0
	Diagnostic Test Enable	1 = Enable cable diagnostic test. After test has completed, this bit is self-cleared.		
		0 = Disable cable diagnostic test.		
		Read value:		
		1 = Cable diagnostic test is in progress.		
		0 = Indicates cable diagnostic test (if enabled) has completed and the status information is valid for read.		
12.14	Reserved	This bit should always be set to '0'.	RW	0

Address	Name	Description	Mode ⁽¹⁾	Default
12.13:12	Cable Diagnostic	These two bits select the differential pair for testing:	RW	00
	Test Pair	00 = Differential pair A (pins 2, 3)		
		01 = Differential pair B (pins 5, 6)		
		10 = Differential pair C (pins 7, 8)		
		11 = Differential pair D (pins 10, 11)		
12.11:10	Reserved	These two bits should always be set to '00'.	RW	00
12.9:8	Cable Diagnostic Status	These two bits represent the test result for the selected differential pair in bits [13:12] of this register.	RO	00
		00 = Normal cable condition (no fault detected)		
		01 = Open cable fault detected		
		10 = Short cable fault detected		
		11 = Reserved		
12.7:0	Cable Diagnostic Fault Data	For the open or short cable fault detected in bits [9:8] of this register, this 8-bit value represents the distance to the cable fault.	RO	0000_0000
Register 13h	n – Digital PMA/PC	S Status		
13.15:3	Reserved	Reserved	RO/LH	0000_0000_0000_0
13.2	1000Base-T Link Status	1000Base-T link status	RO	0
		1 = Link status is OK		
		0 = Link status is not OK		
13.1	100Base-TX Link Status	100Base-TX link status	RO	0
		1 = Link status is OK		
		0 = Link status is not OK		
13.0	Reserved	Reserved	RO	0
Register 15h	n – RXER Counter			
15.15:0	RXER Counter	Receive error counter for symbol error frames	RO/RC	0000_0000_0000_0000
Register 1B	h – Interrupt Contr	ol/Status		
1B.15	Jabber	1 = Enable jabber interrupt	RW	0
	Interrupt	0 = Disable jabber interrupt		
	Enable			
1B.14	Receive Error Interrupt	1 = Enable receive error interrupt	RW	0
	Enable	0 = Disable receive error interrupt		
1B.13	Page Received	1 = Enable page received interrupt	RW	0
	Interrupt Enable	0 = Disable page received interrupt		
1B.12	Parallel Detect	1 = Enable parallel detect fault interrupt	RW	0
	Fault Interrupt Enable	0 = Disable parallel detect fault interrupt		
1B.11	Link Partner Acknowledge	1 = Enable link partner acknowledge interrupt0 = Disable link partner acknowledge interrupt	RW	0
	Interrupt Enable			
1B.10	Link-Down	1 = Enable link-down interrupt	RW	0
-	Interrupt	0 = Disable link-down interrupt		
	Enable			

Address	Name	Description	Mode ⁽¹⁾	Default
1B.9	Remote Fault	1 = Enable remote fault interrupt	RW	0
	Interrupt Enable	0 = Disable remote fault interrupt		
1B.8	Link-Up	1 = Enable link-up interrupt	RW	0
	Interrupt Enable	0 = Disable link-up interrupt		
1B.7	Jabber	1 = Jabber occurred	RO/RC	0
	Interrupt	0 = Jabber did not occur		
1B.6	Receive Error	1 = Receive error occurred	RO/RC	0
	Interrupt	0 = Receive error did not occur		
1B.5	Page Receive	1 = Page receive occurred	RO/RC	0
	Interrupt	0 = Page receive did not occur		
1B.4	Parallel Detect	1 = Parallel detect fault occurred	RO/RC	0
	Fault Interrupt	0 = Parallel detect fault did not occur		
1B.3	Link Partner	1 = Link partner acknowledge occurred	RO/RC	0
	Acknowledge Interrupt	0 = Link partner acknowledge did not occur		
1B.2	Link-Down	1 = Link-down occurred	RO/RC	0
	Interrupt	0 = Link-down did not occur		
1B.1	Remote Fault	1 = Remote fault occurred	RO/RC	0
	Interrupt	0 = Remote fault did not occur		
1B.0	Link-Up	1 = Link-up occurred	RO/RC	0
	Interrupt	0 = Link-up did not occur		
Register 1C	h – Auto MDI/MDI-	x		
1C.15:8	Reserved	Reserved	RW	0000_0000
1C.7	MDI Set	When Swap-Off (bit [6] of this register) is asserted (1),	RW	0
		1 = PHY is set to operate as MDI mode		
		0 = PHY is set to operate as MDI-X mode		
		This bit has no function when Swap-Off is de- asserted (0).		
1C.6	Swap-Off	1 = Disable Auto MDI/MDI-X function	RW	0
		0 = Enable Auto MDI/MDI-X function		
1C.5:0	Reserved	Reserved	RW	00_0000
Register 1F	h – PHY Control			
1F.15	Reserved	Reserved	RW	0
1F.14	Interrupt Level	1 = Interrupt pin active high	RW	0
		0 = Interrupt pin active low		
1F.13:12	Reserved	Reserved	RW	00
1F.11:10	Reserved	Reserved	RO/LH/RC	00
1F.9	Enable Jabber	1 = Enable jabber counter	RW	1
		0 = Disable jabber counter		
1F.8:7	Reserved	Reserved	RW	00
1F.6	Speed Status 1000Base-T	1 = Indicate chip final speed status at 1000Base-T	RO	0

Address	Name	Description	Mode ⁽¹⁾	Default
1F.5	Speed Status 100Base-TX	1 = Indicate chip final speed status at 100Base-TX	RO	0
1F.4	Speed Status 10Base-T	1 = Indicate chip final speed status at 10Base-T	RO	0
1F.3	Duplex Status	Indicate chip duplex status 1 = Full-duplex	RO	0
		0 = Half-duplex		
1F.2	1000Base-T Master/Slave	Indicate chip master/slave status	RO	0
	Status	1 = 1000Base-T master mode		
		0 = 1000Base-T slave mode		
1F.1	Reserved	Reserved	RW	0
1F.0	Link Status	1 = Fail	RO	0
	Check Fail	0 = Not failing		

Note:

RC = Read-cleared

RO = Read only.

SC = Self-cleared.

LH = Latch high.

MMD Registers

MMD registers provide indirect read/write access to up to 32 MMD Device Addresses with each device supporting up to 65,536 16-bit registers, as defined in Clause 22 of the IEEE 802.3 Specification. The KSZ9031RNX, however, uses only a small fraction of the available registers. See the "Register Map" section for a list of supported MMD device addresses and their associated register addresses.

The following two standard registers serve as the portal registers to access the indirect MMD registers.

- Standard register Dh MMD Access Control
- Standard register Eh MMD Access Register/Data

Address	Name	Description	Mode	Default
Register Dh	– MMD Access –	Control		
D.15:14	MMD – Operation Mode	For the selected MMD device address (bits [4:0] of this register), these two bits select one of the following register or data operations and the usage for MMD Access – Register/Data (Reg. Eh).	RW	00
		00 = Register		
		01 = Data, no post increment		
		10 = Data, post increment on reads and writes		
		11 = Data, post increment on writes only		
D.13:5	Reserved	Reserved	RW	00_0000_000
D.4:0	MMD – Device Address	These five bits set the MMD device address.	RW	0_0000
Register Eh	– MMD Access –	Register/Data		
E.15:0	MMD – Register/Data	For the selected MMD device address (Reg. Dh, bits [4:0]),	RW	0000_0000_0000_0000
		When Reg. Dh, bits [15:14] = 00, this register contains the read/write register address for the MMD device address.		
		Otherwise, this register contains the read/write data value for the MMD device address and its selected register address.		
		See also Register Dh, bits [15:14] descriptions for post increment reads and writes of this register for data operation.		

Table 18. Portal Registers (Access to Indirect MMD Registers)

Examples:

MMD Register Write

Write MMD – Device Address 2h, Register 10h = 0001h to enable link-up detection to trigger PME for WOL.

- 1. Write register Dh with 0002h
- // Set up register address for MMD Device Address 2h.// Select register 10h of MMD Device Address 2h.
- Write register Eh with 0010h
 Write register Dh with 4002h
 - // Select register data for MMD Device Address 2h, Register 10h.
- 4. Write register Eh with 0001h // Write value 0001h to MMD Device Address 2h, Register 10h.

• MMD Register Read

Read MMD – Device Address 2h, Register 11h – 13h for the magic packet's MAC address

- 1. Write register Dh with 0002h
- // Set up register address for MMD Device Address 2h.
- 2. Write register Eh with 0011h
- // Select register 11h of MMD Device Address 2h.// Select register data for MMD Device Address 2h, Register 11h.
- 3. Write register Dh with 8002h // Select
- 4. Read register Eh
- // Read data in MMD Device Address 2h, Register 11h.
- 5. Read register Eh
- 6. Read register Eh
- // Read data in MMD Device Address 2h, Register 12h.
 // Read data in MMD Device Address 2h, Register 13h.

MMD Registers – Descriptions

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	ss 1h, Register 5A	Ah – 1000Base-T Link-Up Time Control		
1.5A.15:9	Reserved	Reserved	RO	0000_000
1.5A.8:4	Reserved	Reserved	RW	1_0000
1.5A.3:1	1000Base-T Link-Up Time	When the link partner is another KSZ9031 device, the 1000Base-T link-up time can be long. These three bits provide an optional setting to reduce the 1000Base-T link-up time.	RW	100
		100 = Default power-up setting		
		011 = Optional setting to reduce link-up time when the link partner is a KSZ9031 device.		
		All other settings are reserved and should not be used.		
		The optional setting is safe to use with any link partner.		
		Note : Read/Write access to this register bit is available only when Reg. 0h is set to 0x2100 to disable auto-negotiation and force 100Base-TX mode.		
1.5A.0	Reserved	Reserved	RW	0
MMD Addres	ss 2h, Register 0h	- Common Control		·
2.0.15:4	Reserved	Reserved	RW	0000_0000_0000
2.0.3	LED Mode	Override strap-in for LED_MODE 1 = Single-LED mode	RW	Set by LED_MODE strapping pin.
		0 = Bi-color dual-LED mode		See the "Strapping Options" section for details.
2.0.2	Reserved	Reserved	RW	0
2.0.1	CLK125_EN Status	Override strap-in for CLK125_EN 1 = CLK125_EN strap-in is enabled	RW	Set by CLK125_EN strapping pin.
		0 = CLK125_EN strap-in is disabled		See the "Strapping Options" section for details.
2.0.0	Reserved	Reserved	RW	0
MMD Addres	ss 2h, Register 1h	n – Strap Status		
2.1.15:8	Reserved	Reserved	RO	0000_0000

Address	Name	Description	Mode ⁽¹⁾	Default
2.1.7	LED_MODE	Strap to	RO	Set by LED_MODE strapping
	Strap-In Status	1 = Single-LED mode		pin.
		0 = Bi-color dual-LED mode		See the "Strapping Options" section for details.
2.1.6	Reserved	Reserved	RO	0
2.1.5	CLK125_EN	Strap to	RO	Set by CLK125_EN strapping
	Strap-In Status	1 = CLK125_EN strap-in is enabled		pin.
		0 = CLK125_EN strap-in is disabled		See the "Strapping Options" section for details.
2.1.4:3	Reserved	Reserved	RO	00
2.1.2:0	PHYAD[2:0]	Strap-in value for PHY address	RO	Set by PHYAD[2:0] strapping pin
	Strap-In Value	Bits [4:3] of PHY address are always set to '00'.		See the "Strapping Options" section for details.
MMD Addres	s 2h, Register 2h	 Operation Mode Strap Override 		
2.2.15	RGMII All	1 = Override strap-in for RGMII to advertise all	RW	Set by MODE[3:0] strapping pin.
	Capabilities	capabilities		See the "Strapping Options"
0.0.4.4	Override	4. Or consider stress in the DOMILter school is all	DW	section for details.
2.2.14	RGMII No 1000BT_HD Override	1 = Override strap-in for RGMII to advertise all capabilities except 1000Base-T half-duplex	RW	
2.2.13	RGMII	1 = Override strap-in for RGMII to advertise	RW	_
	1000BT_H/FD Only Override	1000Base-T full- and half-duplex only		
2.2.12	RGMII 1000BT_FD	1 = Override strap-in for RGMII to advertise	RW	
	Only Override	1000Base-T full-duplex only		
2.2.11	Reserved	Reserved	RW	0
2.2.10	PME_N2	For INT_N/PME_N2 (pin 38),	RW	0
	Output Enable	1 = Enable PME output		
		0 = Disable PME output		
		This bit works in conjunction with MMD Address		
		2h, Reg. 10h, Bits [15:14] to define the output for pin 38.		
2.2.9	Reserved	Reserved	RW	0
2.2.8	PME_N1	For LED1/PME_N1 (pin 17),	RW	0
	Output Enable	1 = Enable PME output		
		0 = Disable PME output		
		This bit works in conjunction with MMD Address		
		2h, Reg. 10h, Bits [15:14] to define the output for pin 17.		
2.2.7	Chip Power-	1 = Override strap-in for chip power-down mode	RW	Set by MODE[3:0] strapping pin.
	Down Override			See the "Strapping Options" section for details.
2.2.6:5	Reserved	Reserved	RW	00
2.2.4	NAND Tree	1 = Override strap-in for NAND Tree mode	RW	Set by MODE[3:0] strapping pin.
	Override			See the "Strapping Options" section for details.
2.2.3:0	Reserved	Reserved	RW	0000

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	ss 2h, Register 3h	– Operation Mode Strap Status		
2.3.15	RGMII All Capabilities Strap-In Status	1 = Strap to RGMII to advertise all capabilities	RO	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.3.14	RGMII No 1000BT_HD Strap-In Status	1 = Strap to RGMII to advertise all capabilities except 1000Base-T half-duplex	RO	
2.3.13	RGMII Only 1000BT_H/FD Strap-In Status	1 = Strap to RGMII to advertise 1000Base-T full-and half-duplex only	RO	
2.3.12	RGMII Only 1000BT_FD Strap-In Status	1 = Strap to RGMII to advertise 1000Base-T full-duplex only	RO	
2.3.11:8	Reserved	Reserved	RO	0000
2.3.7	Chip Power- Down Strap-In Status	1 = Strap to chip power-down mode	RO	Set by MODE[3:0] strapping pin. See the "Strapping Options" section for details.
2.3.6:5	Reserved	Reserved	RO	
2.3.4	NAND Tree	1 = Strap to NAND Tree mode	RO	Set by MODE[3:0] strapping pin.
2.0.1	Strap-In Status			See the "Strapping Options" section for details.
2.3.3:0	Reserved	Reserved	RO	0000
MMD Addres	s 2h, Register 4h	– RGMII Control Signal Pad Skew		
2.4.15:8	Reserved	Reserved	RW	0000_0000
2.4.7:4	RX_DV Pad Skew	RGMII RX_CTL output pad skew control (0.06ns/step)	RW	0111
2.4.3:0	TX_EN Pad Skew	RGMII TX_CTL input pad skew control (0.06ns/step)	RW	0111
MMD Addres	s 2h, Register 5h	– RGMII RX Data Pad Skew		
2.5.15:12	RXD3 Pad Skew	RGMII RXD3 output pad skew control (0.06ns/step)	RW	0111
2.5.11:8	RXD2 Pad Skew	RGMII RXD2 output pad skew control (0.06ns/step)	RW	0111
2.5.7:4	RXD1 Pad Skew	RGMII RXD1 output pad skew control (0.06ns/step)	RW	0111
2.5.3:0	RXD0 Pad Skew	RGMII RXD0 output pad skew control (0.06ns/step)	RW	0111
MMD Addres	s 2h, Register 6h	– RGMII TX Data Pad Skew		
2.6.15:12	TXD3 Pad Skew	RGMII TXD3 output pad skew control (0.06ns/step)	RW	0111
2.6.11:8	TXD2 Pad Skew	RGMII TXD2 output pad skew control (0.06ns/step)	RW	0111
2.6.7:4	TXD1 Pad Skew	RGMII TXD1 output pad skew control (0.06ns/step)	RW	0111
2.6.3:0	TXD0 Pad Skew	RGMII TXD0 output pad skew control (0.06ns/step)	RW	0111

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	ss 2h, Register 8h	– RGMII Clock Pad Skew		
2.8.15:10	Reserved	Reserved	RW	0000_00
2.8.9:5	GTX_CLK Pad Skew	RGMII GTX_CLK input pad skew control (0.06ns/step)	RW	01_111
2.8.4:0	RX_CLK Pad Skew	RGMII RX_CLK output pad skew control (0.06ns/step)	RW	0_1111
MMD Addres	ss 2h, Register 10	h – Wake-On-LAN – Control		
2.10.15:14	PME Output Select	These two bits work in conjunction with MMD Address 2h, Reg. 2h, Bits [8] and [10] for PME_N1 and PME_N2 enable, to define the output for pins 17 and 38, respectively.	RW	00
		LED1/PME_N1 (pin 17)		
		00 = PME_N1 output only		
		01 = LED1 output only		
		10 = LED1 and PME_N1 output		
		11 = Reserved		
		INT_N/PME_N2 (pin 38)		
		00 = PME_N2 output only		
		01 = INT_N output only		
		10 = INT_N and PME_N2 output		
0.40.40.7	Decembed	11 = Reserved		00,0000,0
2.10.13:7	Reserved	Reserved	RW	00_0000_0
2.10.6	Magic Packet Detect Enable	1 = Enable magic-packet detection	RW	0
0.40.5	Quatan	0 = Disable magic-packet detection	DW	
2.10.5	Custom- Packet Type 3 Detect Enable	1 = Enable custom-packet, Type 3 detection0 = Disable custom-packet, Type 3 detection	RW	0
2.10.4	Custom- Packet Type 2 Detect Enable	1 = Enable custom-packet, Type 2 detection0 = Disable custom-packet, Type 2 detection	RW	0
2.10.3	Custom- Packet Type 1 Detect Enable	1 = Enable custom-packet, Type 1 detection 0 = Disable custom-packet, Type 1 detection	RW	0
2.10.2	Custom- Packet Type 0 Detect Enable	1 = Enable custom-packet, Type 0 detection0 = Disable custom-packet, Type 0 detection	RW	0
2.10.1	Link-Down Detect Enable	1 = Enable link-down detection0 = Disable link-down detection	RW	0
2.10.0	Link-Up Detect Enable	1 = Enable link-up detection0 = Disable link-up detection	RW	0

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	s 2h, Register 11	h – Wake-On-LAN – Magic Packet, MAC-DA-0		
2.11.15:0	Magic Packet MAC-DA-0	This register stores the lower two bytes of the destination MAC address for the magic packet.	RW	0000_0000_0000_0000
		Bit [15:8] = Byte 2 (MAC Address [15:8])		
		Bit [7:0] = Byte 1 (MAC Address [7:0])		
		The upper four bytes of the destination MAC address are stored in the following two registers.		
MMD Addres	s 2h, Register 12	h – Wake-On-LAN – Magic Packet, MAC-DA-1		
2.12.15:0	Magic Packet MAC-DA-1	This register stores the middle two bytes of the destination MAC address for the magic packet.	RW	0000_0000_0000_0000
		Bit [15:8] = Byte 4 (MAC Address [31:24])		
		Bit [7:0] = Byte 3 (MAC Address [23:16])		
		The lower two bytes and upper two bytes of the destination MAC address are stored in the previous and following registers, respectively.		
MMD Addres	s 2h, Register 13	h – Wake-On-LAN – Magic Packet, MAC-DA-2		·
2.13.15:0	Magic Packet MAC-DA-2	This register stores the upper two bytes of the destination MAC address for the magic packet.	RW	0000_0000_0000_0000
		Bit [15:8] = Byte 6 (MAC Address [47:40])		
		Bit [7:0] = Byte 5 (MAC Address [39:32])		
		The lower four bytes of the destination MAC address are stored in the previous two registers.		
MMD Addres	s 2h, Register 14	h – Wake-On-LAN – Customized Packet, Type 0	Expected C	RC 0
MMD Addres	s 2h, Register 16	h – Wake-On-LAN – Customized Packet, Type 1	, Expected C	RC 0
MMD Addres	s 2h, Register 18	h – Wake-On-LAN – Customized Packet, Type 2	, Expected C	RC 0
MMD Addres	s 2h, Register 1A	h – Wake-On-LAN – Customized Packet, Type 3	, Expected C	RC 0
2.14.15:0 2.16.15:0	Custom Packet Type X	This register stores the lower two bytes for the expected CRC.	RW	0000_0000_0000_0000
2.18.15:0	CRC 0	Bit [15:8] = Byte 2 (CRC [15:8])		
2.10.15:0		Bit [7:0] = Byte 1 (CRC [7:0])		
2.17.10.0		The upper two bytes for the expected CRC are stored in the following register.		
MMD Addres	s 2h, Register 15	h – Wake-On-LAN – Customized Packet, Type 0	, Expected C	RC 1
MMD Addres	s 2h, Register 17	h – Wake-On-LAN – Customized Packet, Type 1	, Expected C	RC 1
MMD Addres	s 2h, Register 19	h – Wake-On-LAN – Customized Packet, Type 2	, Expected C	RC 1
MMD Addres	s 2h, Register 1B	h – Wake-On-LAN – Customized Packet, Type 3	, Expected C	RC 1
2.15.15:0	Custom Packet	This register stores the upper two bytes for the	RW	0000_0000_0000_0000
2.17.15:0	Type X CRC 1	expected CRC.		
2.19.15:0		Bit [15:8] = Byte 4 (CRC [31:24])		
2.1B.15:0		Bit [7:0] = Byte 3 (CRC [23:16])		
		The lower two bytes for the expected CRC are stored in the previous register.		

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	s 2h, Register 1C	h – Wake-On-LAN – Customized Packet, Type 0	, Mask 0	
MMD Addres	s 2h, Register 20l	n – Wake-On-LAN – Customized Packet, Type 1,	Mask 0	
MMD Addres	s 2h, Register 24l	n – Wake-On-LAN – Customized Packet, Type 2,	Mask 0	
MMD Addres	s 2h, Register 28l	n – Wake-On-LAN – Customized Packet, Type 3,	Mask 0	
2.1C.15:0	Custom Packet	This register selects the bytes in the first 16	RW	0000_0000_0000_0000
2.20.15:0	Type X Mask 0	bytes of the packet (bytes 1 thru 16) that will be used for CRC calculation.		
2.24.15:0	Mask o	For each bit in this register,		
2.28.15:0		1 = Byte is selected for CRC calculation		
		0 = Byte is not selected for CRC calculation		
		The register-bit to packet-byte mapping is as		
		follows:		
		Bit [15] : Byte 16		
		:		
		Bit [2] : Byte 2		
		Bit [0] : Byte 1		
MMD Addres	s 2h, Register 1D	h – Wake-On-LAN – Customized Packet, Type 0	, Mask 1	
MMD Addres	s 2h, Register 21I	n – Wake-On-LAN – Customized Packet, Type 1,	Mask 1	
MMD Addres	s 2h, Register 25l	n – Wake-On-LAN – Customized Packet, Type 2,	Mask 1	
MMD Addres	s 2h, Register 29I	n – Wake-On-LAN – Customized Packet, Type 3,	Mask 1	
2.1D.15:0	Custom Packet	This register selects the bytes in the second 16	RW	0000_0000_0000_0000
2.21.15:0	Type X Mask 1	bytes of the packet (bytes 17 thru 32) that will be used for CRC calculation.		
2.25.15:0	WIDSK 1	For each bit in this register,		
2.29.15:0		1 = Byte is selected for CRC calculation		
		-		
		I 0 = Byte is not selected for CRC calculation		
		0 = Byte is not selected for CRC calculation The register-bit to packet-byte mapping is as follows:		
		The register-bit to packet-byte mapping is as		
		The register-bit to packet-byte mapping is as follows:		
		The register-bit to packet-byte mapping is as follows: Bit [15] : Byte 32		

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	s 2h, Register 22	h – Wake-On-LAN – Customized Packet, Type 0 h – Wake-On-LAN – Customized Packet, Type 1 h – Wake-On-LAN – Customized Packet, Type 2	, Mask 2	
		h – Wake-On-LAN – Customized Packet, Type 3		
2.1E.15:0 2.22.15:0	Custom Packet Type X	This register selects the bytes in the third 16 bytes of the packet (bytes 33 thru 48) that will	RW	0000_0000_0000_0000
2.26.15:0	Mask 2	be used for CRC calculation. For each bit in this register,		
2.2A.15:0		1 = Byte is selected for CRC calculation		
		0 = Byte is not selected for CRC calculation		
		The register-bit to packet-byte mapping is as follows:		
		Bit [15] : Byte 48		
		Bit [2] : Byte 34 Bit [0] : Byte 33		
MMD Addres MMD Addres MMD Addres	ss 2h, Register 23l ss 2h, Register 27l ss 2h, Register 2B	h – Wake-On-LAN – Customized Packet, Type 0 h – Wake-On-LAN – Customized Packet, Type 1 h – Wake-On-LAN – Customized Packet, Type 2 h – Wake-On-LAN – Customized Packet, Type 3	, Mask 3 , Mask 3 , Mask 3	
2.1F.15:0 2.23.15:0	Custom Packet Type X Mask 3	This register selects the bytes in the fourth 16 bytes of the packet (bytes 49 thru 64) that will be used for CRC calculation.	RW	0000_0000_0000_0000
2.27.15:0 2.2B.15:0		For each bit in this register,		
2.20.15.0		1 = Byte is selected for CRC calculation		
		0 = Byte is not selected for CRC calculation		
		The register-bit to packet-byte mapping is as follows:		
		Bit [15] : Byte 64		
		Bit [2] : Byte 50		
MMD Addres	s 3h Register 0h	Bit [0] : Byte 49 - PCS EEE - Control		
3.0.15:12	Reserved	Reserved	RW	0000
3.0.11	1000Base-T Force LPI	1 = Force 1000Base-T low-power idle transmission	RW	0
		0 = Normal operation		
3.0.10	100Base-TX	During receive lower-power idle mode,	RW	0
	RX_CLK Stoppable	1 = RX_CLK stoppable for 100Base-TX		
	5.00000	0 = RX_CLK not stoppable for 100Base-TX		
	Reserved			

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Addres	s 3h, Register 1h	– PCS EEE – Status	•	
3.1.15:12	Reserved	Reserved	RO	0000
3.1.11	Transmit Low- Power Idle Received	1 = Transmit PCS has received low-power idle 0 = Low-power idle not received	RO/LH	0
3.1.10	Receive Low- Power Idle Received	1 = Receive PCS has received low-power idle 0 = Low-power idle not received	RO/LH	0
3.1.9	Transmit Low- Power Idle Indication	 1 = Transmit PCS is currently receiving low- power idle 0 = Transmit PCS is not currently receiving low- power idle 	RO	
3.1.8	Receive Low- Power Idle Indication	 1 = Receive PCS is currently receiving low- power idle 0 = Receive PCS is not currently receiving low- power idle 	RO	
3.1.7:0	Reserved	Reserved	RO	0000_0000
MMD Addres	s 7h, Register 3C	h – EEE Advertisement		
7.3C.15:3	Reserved	Reserved	RW	0000_0000_0000_0
7.3C.2	1000Base-T EEE	 1 = 1000Mbps EEE capable 0 = No 1000Mbps EEE capability This bit is set to '0' as the default after power-up or reset. Set this bit to '1' to enable 1000Mbps EEE mode. 	RW	0
7.3C.1	100Base-TX EEE	1 = 100Mbps EEE capable 0 = No 100Mbps EEE capability This bit is set to '0' as the default after power-up or reset. Set this bit to '1' to enable 100Mbps EEE mode.	RW	0
7.3C.0	Reserved	Reserved	RW	0
MMD Addres	s 7h, Register 3D	h – EEE Link Partner Advertisement		
7.3D.15:3	Reserved	Reserved	RO	0000_0000_0000_0
7.3D.2	1000Base-T EEE	1 = 1000Mbps EEE capable 0 = No 1000Mbps EEE capability	RO	0
7.3D.1	100Base-TX EEE	1 = 100Mbps EEE capable 0 = No 100Mbps EEE capability	RO	0
7.3D.0	Reserved	Reserved	RO	0
MMD Addres	s 1Ch, Register 4	h – Analog Control 4		-
1C.4.15:11	Reserved	Reserved	RW	0000_0
1C.4.10	10Base-Te Mode	1 = EEE 10Base-Te (1.75V TX amplitude) 0 = Standard 10Base-T (2.5V TX amplitude)	RW	0
1C.4.9:0	Reserved	Reserved	RW	00_1111_111

Address	Name	Description	Mode ⁽¹⁾	Default
MMD Address 1Ch, Register 23h – EDPD Control				
1C.23.15:1	Reserved	Reserved	RW	0000_0000_0000_000
1C.23.0	EDPD Mode	Energy-detect power-down mode	RW	0
	Enable	1 = Enable		
		0 = Disable		

Note:

1. RW = Read/Write.

RO = Read only.

LH = Latch high.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{IN})	
(DVDDL, AVDDL, AVDDL_PLL)	–0.5V to +1.8V
(AVDDH)	–0.5V to +5.0V
(DVDDH)	–0.5V to +5.0V
Input Voltage (all inputs)	–0.5V to +5.0V
Output Voltage (all outputs)	–0.5V to +5.0V
Lead Temperature (soldering, 10sec.).	
Storage Temperature (T _s)	–55°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage	
(DVDDL, AVDDL, AVDDL_PLL)	+1.140V to +1.260V
(AVDDH @ 3.3V)	+3.135V to +3.465V
(AVDDH @ 2.5V, C-temp only)	+2.375V to +2.625V
(DVDDH @ 3.3V)	+3.135V to +3.465V
(DVDDH @ 2.5V)	+2.375V to +2.625V
(DVDDH @ 1.8V)	+1.710V to +1.890V
Ambient Temperature	
(T _A Commercial: KSZ9031RNXC)	0°C to +70°C
(T _A Industrial: KSZ9031RNXI)	40°C to +85°C
Maximum Junction Temperature (T _J M	1ax) 125°C
Thermal Resistance (θ_{JA})	36.34°C/W
Thermal Resistance (θ_{JC})	9.47°C/W

Electrical Characteristics⁽³⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Supply C	urrent – Core / Digital I/Os					
		1000Base-T link-up (no traffic)		210		mA
		1000Base-T full-duplex @ 100% utilization		221		mA
	1.2V Total of:	100Base-TX link-up (no traffic)		63.6		mA
	DVDDL (digital core) +	100Base-TX full-duplex @ 100% utilization		63.8		mA
ICORE	AVDDL (analog core) +	10Base-T link-up (no traffic)		7.1		mA
	AVDDL_PLL (PLL)	10Base-T full-duplex @ 100% utilization		7.7		mA
		Software power-down mode (Reg. 0.11 = 1)		1.0		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.7		mA
		1000Base-T link-up (no traffic)		11.2		mA
		1000Base-T full-duplex @ 100% utilization		23.6		mA
		100Base-TX link-up (no traffic)		8.4		mA
	1.8V for Digital I/Os	100Base-TX full-duplex @ 100% utilization		9.8		mA
DVDDH_1.8	(RGMII operating @ 1.8V)	10Base-T link-up (no traffic)		3.6		mA
		10Base-T full-duplex @ 100% utilization		5.6		mA
		Software power-down mode (Reg. 0.11 = 1)		5.5		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.3		mA

Notes:

1. Exceeding the absolute maximum rating can damage the device. Stresses greater than the absolute maximum rating can cause permanent damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

2. The device is not guaranteed to function outside its operating rating.

3. $T_A = 25^{\circ}C$. Specification is for packaged product only.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		1000Base-T link-up (no traffic)		14.7		mA
IDVDDH_2.5		1000Base-T full-duplex @ 100% utilization		31.5		mA
		100Base-TX link-up (no traffic)		10.5		mA
	2.5V for Digital I/Os	100Base-TX full-duplex @ 100% utilization		13.0		mA
I _{DVDDH_2.5}	(RGMII operating @ 2.5V)	10Base-T link-up (no traffic)		6.3		mA
		10Base-T full-duplex @ 100% utilization		9.0		mA
		Software power-down mode (Reg. 0.11 = 1)		6.7		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.7		mA
		1000Base-T link-up (no traffic)		19.5		mA
		1000Base-T full-duplex @ 100% utilization		41.5		mA
		100Base-TX link-up (no traffic)		13.9		mA
	3.3V for Digital I/Os	100Base-TX full-duplex @ 100% utilization		17.2		mA
I _{DVDDH_3.3}	(RGMII operating @ 3.3V)	10Base-T link-up (no traffic)		11.5		mA
		10Base-T full-duplex @ 100% utilization		13.7		mA
		Software power-down mode (Reg. 0.11 = 1)		9.3		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		2.2		mA
	urrent – Transceiver (equivalent to ode transmit drivers)	current draw through external transformer center	taps for P	1	ceivers wit	
		1000Base-T link-up (no traffic)		58.8		mA
		1000Base-T full-duplex @ 100% utilization		57.9		mA
		100Base-TX link-up (no traffic)		24.9		mA
	2.5V for Transceiver	100Base-TX full-duplex @ 100% utilization		24.9		mA
I _{AVDDH_2.5}	(Recommended for commercial temperature range operation	10Base-T link-up (no traffic)	_	11.5		mA
	only)	10Base-T full-duplex @ 100% utilization		25.3		mA
		Software power-down mode (Reg. 0h, bit 11 = 1)		3.1		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.02		mA
		1000Base-T link-up (no traffic)		67.4		mA
		1000Base-T full-duplex @ 100% utilization		66.3		mA
		100Base-TX link-up (no traffic)		28.7		mA
		100Base-TX full-duplex @ 100% utilization		28.6		mA
AVDDH_3.3	3.3V for Transceiver	10Base-T link-up (no traffic)		15.9		mA
		10Base-T full-duplex @ 100% utilization		28.6		mA
		Software power-down mode (Reg. 0h, bit 11 = 1)		4.2		mA
		Chip power-down mode (strap-in pins MODE[3:0] = 0111)		0.02		mA
CMOS Inp	outs		<i>.</i>			
		DVDDH (digital I/Os) = 3.3V	2.0			V
VIH	Input High Voltage	DVDDH (digital I/Os) = 2.5V	1.5			V
		DVDDH (digital I/Os) = 1.8V	1.1			V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		DVDDH (digital I/Os) = 3.3V			1.3	V
VIL	Input Low Voltage	DVDDH (digital I/Os) = 2.5V			1.0	V
		DVDDH (digital I/Os) = 1.8V			0.7	V
I _{IN}	Input Current	$V_{IN} = GND \sim V_{DDIO}$			10	μA
CMOS Ou	itputs		-			
	I	DVDDH (digital I/Os) = 3.3V	2.7			V
V _{OH}	Output High Voltage	DVDDH (digital I/Os) = 2.5V	2.0			V
		DVDDH (digital I/Os) = 1.8V	1.5			V
		DVDDH (digital I/Os) = 3.3V			0.3	V
V _{OL}	Output Low Voltage	DVDDH (digital I/Os) = 2.5V			0.3	V
		DVDDH (digital I/Os) = 1.8V			0.3	V
l _{oz}	Output Tri-State Leakage				10	μA
LED Outp	uts				1	<u> </u>
	Output Drive Current	Each LED pin (LED1, LED2)		8		mA
Pull-Up P	ins					<u> </u>
<u>p</u> .		DVDDH (digital I/Os) = 3.3V	13	22	31	kΩ
pu	Internal Pull-Up Resistance	DVDDH (digital I/Os) = 2.5V	16	28	39	kΩ
	(MDC, MDIO, RESET_N pins)	DVDDH (digital I/Os) = 1.8V	26	44	62	kΩ
100Base-	TX Transmit (measured differentia		_		-	
Vo	Peak Differential Output Voltage	100Ω termination across differential output	0.95		1.05	V
V _{IMB}	Output Voltage Imbalance	100Ω termination across differential output			2	%
t _r , t _f	Rise/Fall Time		3		5	ns
., .	Rise/Fall Time Imbalance		0		0.5	ns
	Duty Cycle Distortion				±0.25	ns
	Overshoot				5	%
	Output Jitter	Peak-to-peak		0.7		ns
10Base-T	Transmit (measured differentially	vafter 1:1 transformer)				<u>.</u>
VP	Peak Differential Output Voltage	100Ω termination across differential output	2.2		2.8	V
- 1	Jitter Added	Peak-to-peak			3.5	ns
	Harmonic Rejection	Transmit all-one signal sequence		-31		dB
10Base-T	-					
V _{SQ}	Squelch Threshold	5MHz square wave	300	400		mV
	er – Drive Setting					
V _{SET}	Reference Voltage of I _{SET}	$R(I_{SET}) = 12.1 k\Omega$		1.2		V
	troller – Drive Range					<u> </u>
200 0011		AVDDH = 3.3V for MOSFET source voltage	0.85		2.8	V
V_{LDO_O}	Output Drive Range for LDO_O (pin 43) to Gate Input of P-Channel MOSFET	AVDDH = 2.5V for MOSFET source voltage (recommended for commercial temperature range operation only)	0.85		2.0	v

Timing Diagrams

RGMII Timing

The KSZ9031RNX RGMII timing conforms to the timing requirements in the RGMII Version 2.0 Specification.

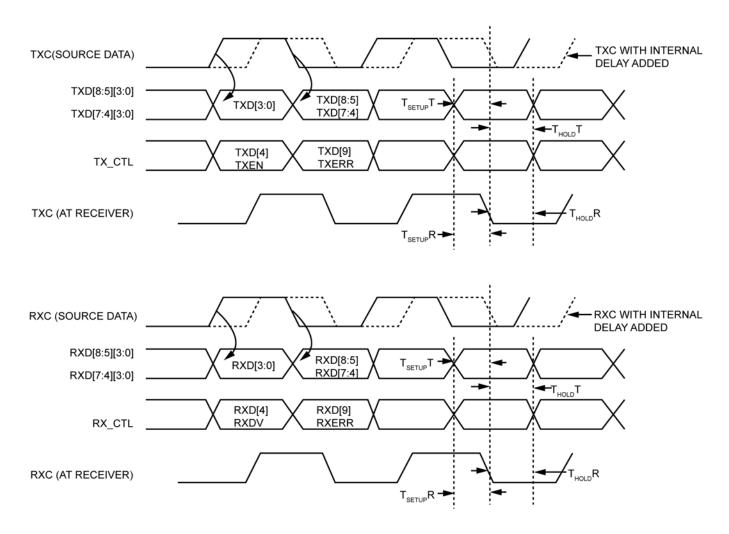


Figure 12. RGMII v2.0 Specification (Figure 3 – Multiplexing and Timing Diagram)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
TskewT	Data to clock output skew (at transmitter)	-500		500	ps
TskewR	Data to clock input skew (at receiver)	1.0		2.6	ns
Tcyc (1000Base-T)	Clock cycle duration for 1000Base-T	7.2	8	8.8	ns
Tcyc (100Base-TX)	Clock cycle duration for 100Base-TX	36	40	44	ns
Tcyc (10Base-T)	Clock cycle duration for 10Base-T	360	400	440	ns

Table 19. RGMII v2.0 Specification (Timing Specifics from Table 2)

Auto-Negotiation Timing

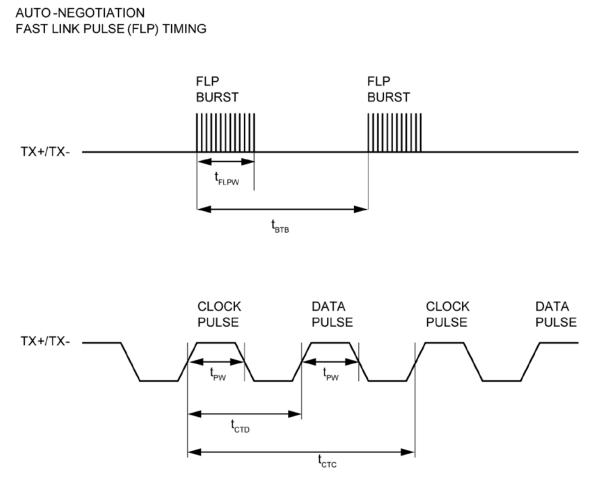
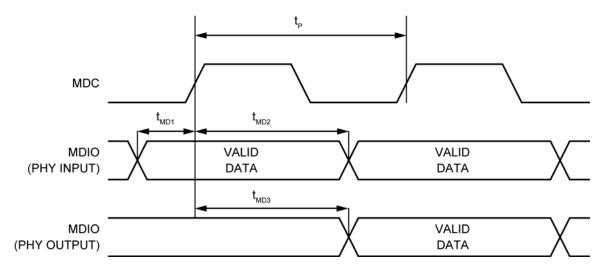



Figure 13. Auto-Negotiation Fast Link Pulse (FLP) Timing

Timing Parameter	Description	Min.	Тур.	Max.	Units
t _{втв}	FLP burst to FLP burst	8	16	24	ms
t _{FLPW}	FLP burst width		2		ms
t _{PW}	Clock/Data pulse width		100		ns
t _{CTD}	Clock pulse to data pulse	55.5	64	69.5	μs
t _{CTC}	Clock pulse to clock pulse	111	128	139	μs
	Number of clock/data pulses per FLP burst	17		33	

Table 20. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters

MDC/MDIO Timing

Timing Parameter	Description	Min.	Тур.	Max.	Unit
tP	MDC period		400		ns
t _{1MD1}	MDIO (PHY input) setup to rising edge of MDC	10			ns
t _{MD2}	MDIO (PHY input) hold from rising edge of MDC	10			ns
t _{MD3}	MDIO (PHY output) delay from rising edge of MDC	0			ns

Table 21.	MDC/MDIO	Timing	Parameters
-----------	----------	--------	------------

Power-Up/Power-Down/Reset Timing

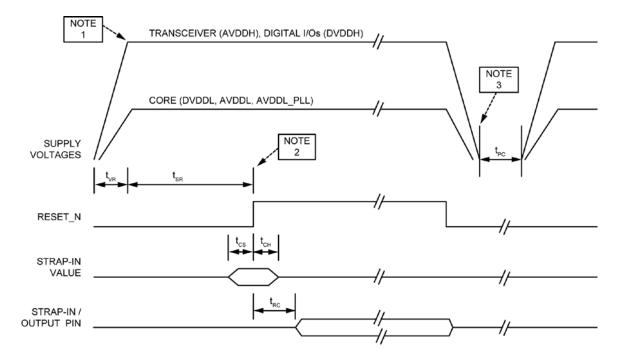


Figure 15. Power-Up/Power-Down/Reset Timing

Parameter	Description	Min	Max	Units
t _{VR}	Supply voltages rise time (must be monotonic)	200		μs
t _{SR}	Stable supply voltages to de-assertion of reset	10		ms
t _{CS}	Strap-in pin configuration setup time	5		ns
t _{CH}	Strap-in pin configuration hold time	5		ns
t _{RC}	De-assertion of reset to strap-in pin output	6		ns
t _{PC}	Supply voltages cycle off-to-on time	150		ms

Table 22. Power-Up/Power-Down/Reset Timing Parameters

NOTE 1: The recommended power-up sequence is to have the transceiver (AVDDH) and digital I/O (DVDDH) voltages power up before the 1.2V core (DVDDL, AVDDL, AVDDL_PLL) voltage. If the 1.2V core must power up first, the maximum lead time for the 1.2V core voltage with respect to the transceiver and digital I/O voltages should be 200µs.

There is no power sequence requirement between transceiver (AVDDH) and digital I/O (DVDDH) power rails.

The power-up waveforms should be monotonic for all supply voltages to the KSZ9031RNX.

NOTE 2: After the de-assertion of reset, wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) interface.

NOTE 3: The recommended power-down sequence is to have the 1.2V core voltage power down before powering down the transceiver and digital I/O voltages.

Before the next power-up cycle, all supply voltages to the KSZ9031RNX should reach 0V and there should be a minimum wait time of 150ms from power-off to power-on.

Reset Circuit

The following reset circuit is recommended for powering up the KSZ9031RNX if reset is triggered by the power supply.

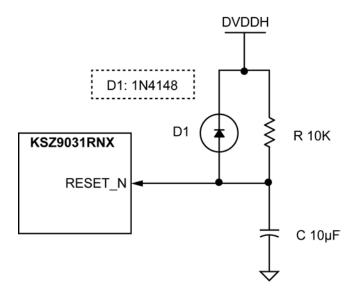


Figure 16. Recommended Reset Circuit

The following reset circuit is recommended for applications where reset is driven by another device (for example, the CPU or an FPGA). At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the KSZ9031RNX device. The RST_OUT_N from the CPU/FPGA provides the warm reset after power-up.

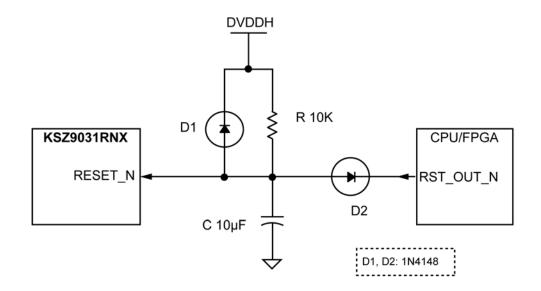


Figure 17. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Reference Circuits – LED Strap-In Pins

The pull-up and pull-down reference circuits for the LED2/PHYAD1 and LED1/PHYAD0 strapping pins are shown in Figure 18 for 3.3V and 2.5V DVDDH.

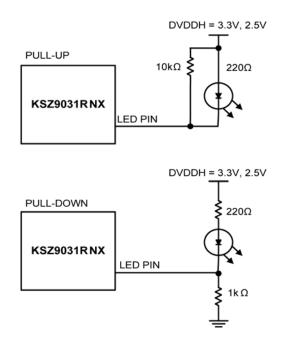


Figure 18. Reference Circuits for LED Strapping Pins

For 1.8V DVDDH, LED indication support is not recommended due to the low voltage. Without the LED indicator, the PHYAD1 and PHYAD0 strapping pins are functional with $10k\Omega$ pull-up to 1.8V DVDDH for a value of 1, and with $1.0k\Omega$ pull-down to ground for a value of 0.

Reference Clock – Connection and Selection

A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ9031RNX. The reference clock is 25MHz for all operating modes of the KSZ9031RNX.

Figure 19 and Table 23 shows the reference clock connection to XI and XO of the KSZ9031RNX, and the reference clock selection criteria.

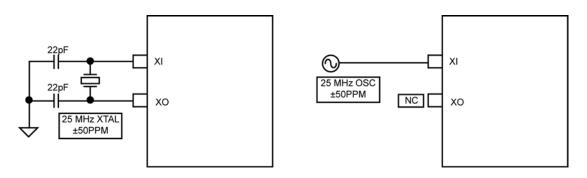


Figure 19. 25MHz Crystal/Oscillator Reference Clock Connection

Characteristics	Value	Units
Frequency	25	MHz
Frequency tolerance (max)	±50	ppm

Table 23. Reference Crystal/Clock Selection Criteria

Magnetic – Connection and Selection

A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs exceeding FCC requirements. An optional auto-transformer stage following the chokes provides additional common-mode noise and signal attenuation.

The KSZ9031RNX design incorporates voltage-mode transmit drivers and on-chip terminations.

With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the four differential pairs. Therefore, the four transformer center tap pins on the KSZ9031RNX side should not be connected to any power supply source on the board; rather, the center tap pins should be separated from one another and connected through separate 0.1µF common-mode capacitors to ground. Separation is required because the common-mode voltage could be different between the four differential pairs, depending on the connected speed mode.

Figure 20 shows the typical gigabit magnetic interface circuit for the KSZ9031RNX.

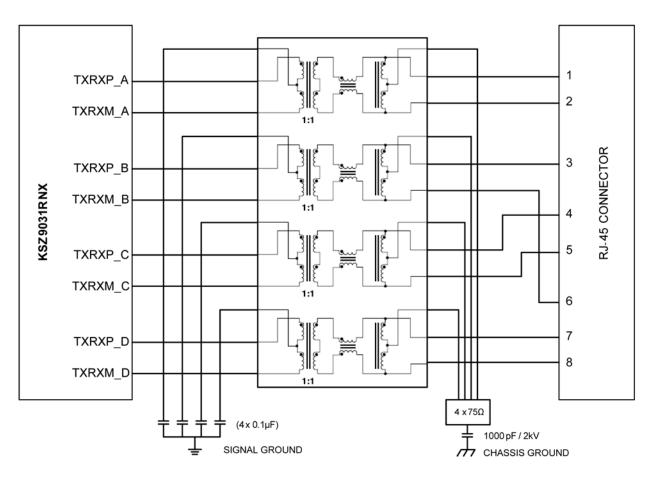


Figure 20. Typical Gigabit Magnetic Interface Circuit

Table 24 lists recommended magnetic characteristics.

Parameter	Value	Test Condition
Turns ratio	1 CT : 1 CT	
Open-circuit inductance (min.)	350µH	100mV, 100kHz, 8mA
Insertion loss (max.)	1.0dB	0MHz to 100MHz
HIPOT (min.)	1500Vrms	

Table 24. Magnetics Selection Criteria

Table 25 is a list of compatible single-port magnetics with separated transformer center tap pins on the G-PHY chip side that can be used with the KSZ9031RNX.

Manufacturer	Part Number	Auto- Transformer	Temperature Range	Magnetic + RJ-45
Bel Fuse	0826-1G1T-23-F	Yes	0°C to 70°C	Yes
HALO	TG1G-E001NZRL	No	–40°C to 85°C	No
HALO	TG1G-S001NZRL	No	0°C to 70°C	No
HALO	TG1G-S002NZRL	Yes	0°C to 70°C	No
Pulse	H5007NL	Yes	0°C to 70°C	No
Pulse	H5062NL	Yes	0°C to 70°C	No
Pulse	HX5008NL	Yes	–40°C to 85°C	No
Pulse	JK0654219NL	Yes	0°C to 70°C	Yes
Pulse	JK0-0136NL	No	0°C to 70°C	Yes
TDK	TLA-7T101LF	No	0°C to 70°C	No
Wurth/Midcom	000-7093-37R-LF1	Yes	0°C to 70°C	No

Table 25. Compatible Single-Port 10/100/1000 Magnetics

Recommended Land Pattern

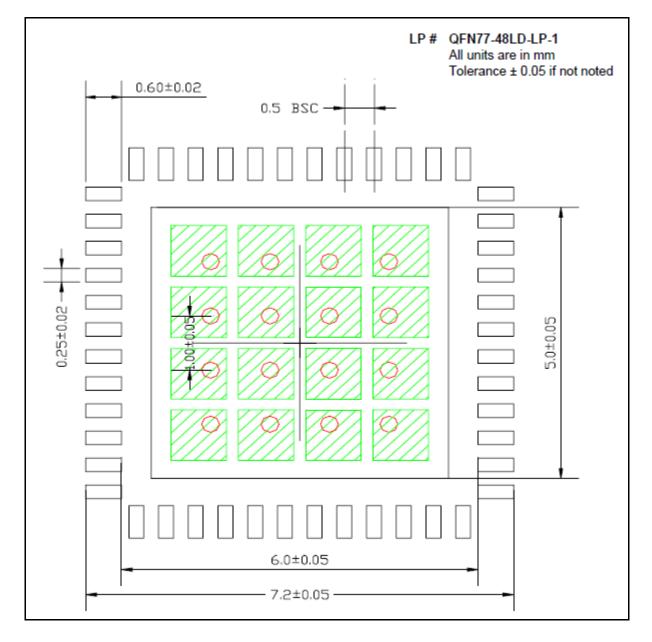
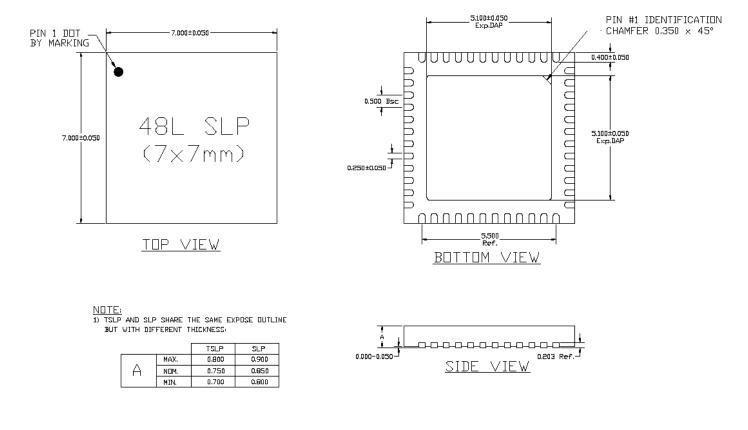



Figure 21. Recommended Land Pattern, 48-Pin (7mm x 7mm) QFN

Red circles indicate thermal vias. They should be 0.350mm in diameter and be connected to the GND plane for maximum thermal performance.

Green rectangles (with shaded area) indicate solder stencil openings on the exposed pad area. They should be 0.93x0.93mm in size, 1.13mm pitch.

Package Information

48-Pin (7mm x 7mm) QFN

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2012 Micrel, Incorporated.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.