

Data Sheet

FEATURES

2.3 V to 5.5 V input voltage range Output voltage levels (V_{DDA} and V_{DDB} to V_{SS} ≤ 35 V) Low output voltage levels: down to -24.2 V High output voltage levels: up to +35 V Rise/fall time: 12 ns/19.5 ns typical Propagation delay: 80 ns typical Operating frequency: 100 kHz typical Ultralow quiescent current: 65 µA typical 20-lead, Pb-free, TSSOP package

APPLICATIONS

Low voltage to high voltage translation TFT-LCD panels Piezoelectric motor drivers

GENERAL DESCRIPTION

The ADG3123 is an 8-channel, noninverting CMOS to high voltage level translator. Fabricated on an enhanced LC²MOS process, the device is capable of operating at high supply voltages while maintaining ultralow power consumption.

The internal architecture of the device ensures compatibility with logic circuits running from supply voltages within the 2.3 V to 5.5 V range. The voltages applied to Pin V_{DDA} , Pin V_{DDB} , and Pin V_{SS} set the logic levels available at the outputs on the Y side of the device. Pin V_{DDA} and Pin V_{DDB} set the high output level for Pin Y1 to Pin Y6 and for Pin Y7 to Pin Y8, respectively. The V_{SS} pin sets the low output level for all channels. The ADG3123 can provide output voltages levels down to -24.2 V for a low input level and up to +35 V for a high input logic level. For proper operation, V_{DDB} must always be greater than or equal to V_{DDA} and the voltage between the Pin V_{DDB} and Pin V_{SS} should not exceed 35 V.

The low output impedance of the channels guarantees fast rise and fall times even for significant capacitive loads. This feature, combined with low propagation delay and low power consumption, makes the ADG3123 an ideal driver for TFT-LCD panel applications.

8-Channel CMOS Logic to High Voltage Level Translator

ADG3123

FUNCTIONAL BLOCK DIAGRAM

The ADG3123 is guaranteed to operate over the -40°C to +85°C temperature range and is available in a compact, 20-lead TSSOP, Pb-free package.

PRODUCT HIGHLIGHTS

- 1. Compatible with a wide range of CMOS logic levels.
- 2. High output voltage levels.
- 3. Fast rise and fall times coupled with low propagation delay.
- 4. Ultralow power consumption.
- 5. Compact, 20-lead TSSOP, RoHS-compliant package.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5

REVISION HISTORY

1/13-Rev. A to Rev. B

Changes to Features Section and General Description Section 1
Changes to Ordering Guide12

5/06—Rev. 0 to Rev. A

Changes to Features Section, General Description Section, and
Product Highlights Section1
Changes to Specifications
Changes to Figure 4 through Figure 9
Changes to Figure 14 and Figure 157
Changes to Theory of Operations Section and Power Supplies
Section

9/05—Revision 0: Initial Version

Typical Performance Characteristics	6
Terminology	9
Theory of Operation	10
Input Driving Requirements	10
Output Load Requirements	10
Power Supplies	10
Applications Information	11
Outline Dimensions	12
Ordering Guide	12

SPECIFICATIONS

 $V_{DDA} = V_{DDB} = 27 \text{ V}, V_{SS} = -7 \text{ V}, \text{GND} = 0 \text{ V}, \text{ unless otherwise noted}.$ Temperature range for B version is -40° C to $+85^{\circ}$ C.

Table 1.						
Parameter	Symbol	Min	Typ ¹	Max	Unit	Test Conditions/Comments
DIGITAL INPUTS (Pin A1 to Pin A8)						$V_{AX} = 0 V \text{ to } 5.5 V$
Input High Voltage	VIH	1.7			v	
Input Low Voltage	VIL			0.8	V	
Leakage Current	hı.		±0.03	±1	μΑ	
Capacitance ²	Cı		1		pF	
ANALOG INPUTS (Pin VDDA)						
Input Voltage Range	VDDA	0		VDDB	v	
DIGITAL OUTPUTS (Pin Y1 to Pin Y8)						$\label{eq:VDDA} \begin{split} V_{DDA} = V_{DDB} = 25 \ V \ to \ 30 \ V, \ V_{SS} = -5 \ V \ to \ -7 \ V, \\ V_{DDA} \ and \ V_{DDB} \ to \ V_{SS} \leq 35 V \end{split}$
Output High Voltage (Pin Y1 to Pin Y6)	V _{OH}	$V_{DDA} - 1$			V	$I_{OH} = -10 \text{ mA}$
Output High Voltage (Pin Y7 to Pin Y8)	Vон	$V_{\text{DDB}} - 1$			V	I _{он} = -10 mA
Output Low Voltage	V _{OL}			$V_{ss} + 1$	V	$I_{OL} = +10 \text{ mA}$
Output Impedance	R ₀		30		Ω	$V_{DDA} = V_{DDB} = +27 \text{ V}, V_{SS} = -7 \text{ V}$
SWITCHING CHARACTERISTICS ²						See Figure 2
Propagation Delay						
Low to High Transition	t _{PLH}		76	125	ns	
High to Low Transition	t _{PHL}		80	125	ns	
Rise Time	t _R		12	20	ns	
Fall Time	tF		19.5	32	ns	
Maximum Operating Frequency	F ₀	50	100		kHz	100 pF load, all channels, see Figure 2
POWER REQUIREMENTS						
Quiescent Power Supply Current	IDDA		0.03	1	μΑ	$V_{AX} = 0 V \text{ or } 5.5 V$, no load, $V_{DDA} \leq V_{DDB}$
	IDDB		65	150	μΑ	
	lss		0.03	1	μΑ	
Power Supply Voltages						
V _{DDB} to V _{SS}		10.8		35	V	
VDDB tO GND	V _{DDB}	10.8		35	v	V_{DDB} to $V_{SS} \le 35 V$
Vss to GND	Vss	-24.2		0	v	V_{DDB} to $V_{SS} \le 35 \text{ V}$

¹ Typical values are specified at 25°C. ² Guaranteed by design; not subject to production testing.

Figure 2. Switching Characteristics Test Circuit

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 2.

Parameter	Rating		
V _{DDA} /V _{DDB} to V _{SS}	44 V		
V _{DDB} to GND	–0.3 V to +32 V		
V _{DDA} to GND	–0.3 V to V _{DDB}		
Vss to GND	+0.3 V to -32 V		
Digital Inputs ¹	V _{SS} – 0.3 V to V _{DDB} + 0.3 V or 20 mA, whichever occurs first		
Load Current Per Device			
Average	15 mA at 25°C		
	8 mA at 85°C		
Peak Current ²	150 mA at 25°C		
	80 mA at 85°C		
Operating Temperature Range			
Industrial (B Version)	–40°C to +85°C		
Storage Temperature Range	–65°C to +125°C		
Junction Temperature	150°C		
Thermal Impedance, θ _{JA}	78°C/W ³		
Reflow Soldering (Pb-Free)			
Peak Temperature	260 (+0/–5)°C		
Time at Peak Temperature	10 seconds to 40 seconds		

¹ Overvoltage at Pin A1 to Pin A8 is clamped by internal diodes. Limit the current to the maximum ratings given.

 2 Pulsed at 100 kHz; 10% duty cycle maximum with the load shown in Figure 2.

³ Guaranteed when the device is soldered on a 4-layer board.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	GND	Ground Reference (0 V).
2 to 9	A1 to A8	Level Translator CMOS Inputs.
10	Vss	Most Negative Power Supply. Use the Vss pin to generate the output low level for Output Y1 to Output Y8.
11	VDDB	Positive Power Supply. Use the V _{DDB} pin to generate the output high level for Output Y7 and Output Y8.
12 to 19	Y8 to Y1	Level Translator High Voltage Outputs.
20	Vdda	Analog Input. Use the V_{DDA} pin to generate the output high level for Output Y1 to Output Y6 ($V_{DDA} \leq V_{DDB}$).

ADG3123

Figure 5. Supply Current (IDDA) vs. Frequency

Figure 6. Supply Current (Iss) vs. Frequency

Data Sheet

ADG3123

ADG3123

TERMINOLOGY

VIH

Logic input high voltage at Pin A1 to Pin A8.

V_{IL} Logic input low voltage at Pin A1 to Pin A8.

I_{IL} Leakage current at Pin A1 to Pin A8.

C_I Capacitance measured at Pin A1 to Pin A8.

 $V_{\mathbf{O}H}$

Logic output high voltage at Pin Y1 to Pin Y8.

Vol Logic output low voltage at Pin Y1 to Pin Y8.

Ro Output impedance.

t_{PLH}

Propagation delay through the part measured between the input signal applied to any one channel and its corresponding output for a low-to-high transition (see Figure 2).

t_{phl}

Propagation delay through the part measured between the input signal applied to any one channel and its corresponding output for a high-to-low transition (see Figure 2).

t_R

Rise time of the output signal at Pin Y1 to Pin Y8 (see Figure 2).

t_F

Fall time of the output signal at the Pin Y1 to Pin Y8 (see Figure 2).

Fo Frequency of the signal applied to the A1 to A8 input pins.

 V_{DDA} Input voltage used to generate the high logic levels for Y1 to Y6 outputs.

V_{DDB} Positive power supply voltage. Also used to generate the high logic levels for Y7 to Y8 outputs.

Vss Negative power supply voltage. It is used to generate the low logic level for Y1 to Y8 outputs.

GND Ground (0 V) reference.

 I_{DDA} Supply current at the V_{DDA} pin.

 I_{DDB} Supply current at the V_{DDB} pin.

 I_{ss} Supply current at the V_{ss} pin.

THEORY OF OPERATION

The ADG3123 is an 8-channel, noninverting CMOS to high voltage level translator. Fabricated on an enhanced LC²MOS process, the device is capable of operating at high supply voltages while maintaining ultralow power consumption.

The device requires a dual-supply voltage, V_{DDB} and V_{SS} , which sets the low logic levels for all outputs and the high logic levels for the Y7 and Y8 outputs. The V_{DDA} pin acts as an analog input. The voltage applied to the V_{DDA} pin sets the output high logic level for the Y1 to Y6 outputs.

The device translates the CMOS logic levels applied to the A1 to A8 inputs into high voltage bipolar levels available on the Y side of the device at Pin Y1 to Pin Y8.

To ensure proper operation, V_{DDB} must always be greater than or equal to V_{DDA} and the voltage between the Pin V_{DDB} and Pin V_{SS} should not exceed 35 V.

INPUT DRIVING REQUIREMENTS

The ADG3123 design ensures low input capacitance and leakage current thereby reducing the loading of the circuit that drives the input pins (Pin A1 to Pin A8) to a minimum. Its input threshold levels are compliant with JEDEC standards for drivers operated from supply voltages between 2.3 V and 5.5 V. It is recommended that the inputs of any unused channel be tied to a stable logic level (low or high).

OUTPUT LOAD REQUIREMENTS

The low output impedance of the ADG3123 allows each channel to drive both resistive and capacitive loads. The maximum load current is limited by the current carrying capability of any given channel. If more channels are used, the maximum load current per channel is reduced accordingly. Note that the sum of the load currents on all channels should never exceed the absolute maximum ratings specifications.

The average load current on each channel, $I_{CHANNEL}$, can be determined using the formulas shown in the Capacitive Loads and the Resistive Loads sections.

Capacitive Loads

 $I_{CHANNEL}(\mathbf{A}) = F_O \times C_L \times (V_{DDX} + |V_{SS}|)$

where:

 F_0 is the frequency of the signal applied to the channel in Hz. C_L is the load capacitance in farads.

 V_{SS} is the voltage applied to the V_{SS} pin.

 $\mathit{V}_{\textit{DDX}}$ is $V_{\textit{DDA}}$ for Y1 to Y6 outputs, and $V_{\textit{DDB}}$ for Y7 to Y8 outputs.

Resistive Loads

$$I_{CHANNEL}(A) = \frac{D \times V_{DDX} + (1 - D) \times \left| V_{SS} \right|}{R_{t}}$$

where:

D is the duty cycle of the input signal. *D* is defined as the ratio between the high state duration of the signal and its period. R_L is the load resistor in Ω .

 V_{ss} is the voltage applied to the V_{ss} pin.

 V_{DDX} is V_{DDA} for Y1 to Y6 outputs, and V_{DDB} for Y7 to Y8 outputs.

POWER SUPPLIES

The ADG3123 operates from a dual-supply voltage. As good design practice for all CMOS devices dictates, power up the ADG3123 first (V_{DDB} and V_{SS}) before applying the signals to its inputs (A1 to A8 and V_{DDA}). To ensure correct operation of the ADG3123, the voltage applied to the V_{DDB} pin must always be greater than or equal to V_{DDA} and the voltage between the Pin V_{DDB} and Pin V_{SS} should not exceed 35 V.

To ensure optimum performance, use decoupling capacitors on all power supply pins. Furthermore, good engineering and layout practice suggests placing these capacitors as close as possible to the package supply pins.

APPLICATIONS INFORMATION

The high voltage operation coupled with high current driving capability and the wide range of CMOS levels accepted by the ADG3123, make the device ideal for LCD-TFT panel applications. In this type of application, the controllers that generate the timing signals required to control the pixel scanning process inside the panel are usually low voltage CMOS devices.

Most LCD-TFT panels operate at high supply voltages; therefore, the timing signals generated by the controller require level translation to drive the panel. Figure 18 shows a typical application circuit where the ADG3123 translates eight timing signals provided by the timing controller into high voltage logic levels required to drive the panel.

ADG3123

OUTLINE DIMENSIONS

Figure 19. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹ Temperature Range		Package Description	Package Option
ADG3123BRUZ	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG3123BRUZ-REEL7	-40°C to +85°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20

 1 Z = RoHS Compliant Part.

©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05655-0-1/13(B)

www.analog.com

Rev. B | Page 12 of 12

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.