

FEATURES

- UL Rated Isolated RS485: 2500V_{RMS} UL Recognized St File #E151738
- Eliminates Ground Loops
- 250kBd Maximum Data Rate
- Self-Powered with 420kHz Converter
- Half- or Full-Duplex
- Fail-Safe Output High for Open or Shorted Receiver Inputs
- Short-Circuit Current Limit
- Slow Slew Rate Control
- 68kΩ Input Impedance Allows Up to 128 Nodes
- Thermal Shutdown
- 8kV ESD Protection On Driver Outputs and Receiver Inputs
- Available in 28-Lead SW Package

APPLICATIONS

- Isolated RS485 Receiver/Driver
- RS485 with Large Common Mode Voltage
- Breaking RS485 Ground Loops
- Multiple Unterminated Line Taps

Isolated RS485 Transceiver

LTC1535

DESCRIPTION

The LTC[®]1535 is an isolated RS485 full-duplex differential line transceiver. Isolated RS485 is ideal for systems where the ground loop is broken to allow for much larger common mode voltage ranges. An internal capacitive isolation barrier provides $2500V_{RMS}$ of isolation between the line transceiver and the logic level interface. The powered side contains a 420kHz push-pull converter to power the isolated RS485 transceiver. Internal full-duplex communication occurs through the capacitive isolation barrier. The transceiver meets RS485 and RS422 requirements.

The driver and receiver feature three-state outputs, with the driver maintaining high impedance over the entire common mode range. The drivers have short-circuit current limits in both directions and a slow slew rate select to minimize EMI or reflections. The $68k\Omega$ receiver input allows up to 128 node connections. A fail-safe feature defaults to a high output state when the receiver inputs are open or shorted.

Δ, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

V _{CC} to GND6V V _{CC2} to GND28V
Control Input Voltage to GND $-0.3V$ to (V _{CC} + 0.3V)
Driver Input Voltage to GND0.3V to (V _{CC} + 0.3V)
Driver Output Voltage
(Driver Disabled) to GND2 $(V_{CC2} - 13V)$ to 13V
Driver Output Voltage
(Driver Enabled) to GND2 $(V_{CC2} - 13V)$ to 10V
Receiver Input Voltage to GND2±14V
Receiver Output Voltage0.3V to (V _{CC} + 0.3V)
Operating Temperature Range
$LTC1535C \dots 0^{\circ}C \leq T_A \leq 70^{\circ}C$
$LTC1535I \dots -40^{\circ}C \le T_A \le 85^{\circ}C$
Storage Temperature Range–65°C to 150°C
Lead Temperature (Soldering, 10 sec)

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC1535CSW#PBF	LTC1535CSW#TRPBF	1535	28-Lead Plastic SO	0°C to 70°C
LTC1535ISW#PBF	LTC1535ISW#TRPBF	1535	28-Lead Plastic SO	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 5V, V_{CC2} = 5V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS				MIN	ТҮР	MAX	UNITS
V _{CC}	V _{CC} Supply Range				•	4.5		5.5	V
V _{CC2}	V _{CC2} Supply Range				•	4.5		7.5	V
I _{CC}	V _{CC} Supply Current	Transformer Not Driv	ven (Note 10))	•		13	28	mA
I _{CC2}	V _{CC2} Supply Current	R = 27Ω, Figure 2 No Load			•		63 7	73 12	mA mA
V _{OD1}	Differential Driver Output	No Load			•			5	V
V _{OD2}	Differential Driver Output	R = 50Ω (RS422) (N R = 27Ω(RS485), Fig			•	2 1.5	2		V V
V _{OC}	Driver Output Common Mode Voltage	DC Level, $R = 50\Omega$, F	igure 2		•	2.0	2.5	3.0	V
I _{OSD1}	Driver Short-Circuit Current V _{OUT} = HIGH V _{OUT} = LOW	$\begin{array}{l} \mbox{Driver Enabled (DE =} \\ -7V \leq V_{CM} \leq 10V \\ -7V \leq V_{CM} \leq 10V \end{array}$: 1)		•	60 60	100 100	150 150	mA mA
V _{IH}	Logic Input High Voltage	<u>DE,</u> DI, RE SLO			•	2 4	1.7 2.2		V V
V _{IL}	Logic Input Low Voltage	DE, DI, RE SLO			•		1.7 1.8	0.8 1	V V
I _{IN}	Input Current (A, B)	(Note 3)		V _{IN} = 12V	٠			0.25	mA
				$V_{IN} = -7V$	٠			-0.20	mA
V _{TH}	Receiver Input Threshold	$-7V \le V_{CM} \le 12V$, (N	ote 4)		٠	-200	-90	-10	mV
ΔV_{TH}	Receiver Input Hysteresis	$-7V \le V_{CM} \le 12V$	$0^{\circ}C \leq T_{A}$	≤ 70°C	•	10	30	70	mV
			$-40^{\circ}C \le$	$T_A \le 85^{\circ}C$	•	5	30	70	mV
R _{IN}	Receiver Input Impedance				•	50	68	100	kΩ
V _{IOC}	Receiver Input Open Circuit Voltage						3.4		V
V _{OH}	RO Output High Voltage	$I_{RO} = -4mA, V_{CC} = 4$.5V		•	3.7	4.0		V
V _{OL}	RO Output Low Voltage	$I_{RO} = 4mA, V_{CC} = 4.5$	5V		•		0.4	0.8	V
I _{OZ}	Driver Output Leakage	Driver Disabled (DE	= 0)				1		μA
V _{OH2}	RO2 Output High Voltage	I _{R02} = -4mA, V _{CC} =	4.5V		•	3.7	3.9		V
V _{OL2}	RO2 Output Low Voltage	I _{R02} = 4mA, V _{CC} = 4	.5V		•		0.4	0.8	V
f _{SW}	DC Converter Frequency				•	290	420	590	kHz
R _{SWH}	DC Converter Impedance High				•		4	6	Ω
R _{SWL}	DC Converter Impedance Low				•		2.5	5	Ω
I _{REL}	RE Output Low Current	RE Sink Current, Fault = 0		•	-40	-50	-80	μA	
I _{REH}	RE Output High Current	RE Source Current, Fault = 1		•	80	100	130	μA	
V _{UVL}	Undervoltage Low Threshold	RE Fault = 1, (Note 5	i)		•	3.70	4.00	4.25	V
V _{UVH}	Undervoltage High Threshold	RE Fault = 0, (Note 5	j)		•	4.05	4.20	4.40	V
V _{ISO}	Isolation Voltage	1 Minute, (Note 6) 1 Second				2500 3000			V _{RMS} V _{RMS}

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 5V, V_{CC2} = 5V, R = 27 Ω (RS485) unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
t _{SJ}	Data Sample Jitter	Figure 8, (Note 7)			250	285	ns
f _{MAX}	Max Baud Rate	Jitter = 10% Max, \overline{SLO} = 1, (Note 8)	•	250	410		kBd
t _{PLH}	Driver Input to Output	$DE = 1$, $\overline{SLO} = 1$, Figure 4, Figure 6 $DE = 1$, $\overline{SLO} = 0$, Figure 4, Figure 6	•		600 1300	855 1560	ns ns
t _{PHL}	Driver Input to Output	DE = 1, \overline{SLO} = 1, Figure 4, Figure 6 DE = 1, \overline{SLO} = 1, Figure 4, Figure 6	•		600 1300	855 1560	ns ns
t _r , t _f	Driver Rise or Fall Time	$\begin{array}{l} DE = 1, \ \overline{SLO} = 1, \ Figure \ 4, \ Figure \ 6 \\ DE = 1, \ \overline{SLO} = 0, \ V_{CC} = V_{CC2} = 4.5 V \end{array}$	•	150	20 500	100 1000	ns ns
t _{ZH}	Driver Enable to Output	$DI = 1, \overline{SLO} = 1, Figure 5, Figure 7$	•		1000	1400	ns
t _{ZL}	Driver Enable to Output	$DI = 0$, $\overline{SLO} = 1$, Figure 5, Figure 7	•		1000	1400	ns
t _{LZ}	Driver Disable to Output	$DI = 0, \overline{SLO} = 1, Figure 5, Figure 7$	•		700	1300	ns
t _{HZ}	Driver Disable to Output	$DI = 1, \overline{SLO} = 1, Figure 5, Figure 7$	•		700	1300	ns
t _{PLH}	Receiver Input to RO	RE = 0, Figure 3, Figure 8	•		600	855	ns
t _{PHL}	Receiver Input to RO	RE = 0, Figure 3, Figure 8	•		600	855	ns
t _{PLH}	Receiver Input to R02	RE = 0, Figure 3, Figure 8			30		ns
t _{PHL}	Receiver Input to RO2	RE = 0, Figure 3, Figure 8			30		ns
t _r , t _f	Receiver Rise or Fall Time	RE = 0, Figure 3, Figure 8			20		ns
t _{LZ}	Receiver Disable to Output	Figure 3, Figure 9			30		ns
t _{HZ}	Receiver Disable to Output	Figure 3, Figure 9			30		ns
t _{START}	Initial Start-Up Time	(Note 9)			1200		ns
t _{TOF}	Data Time-Out Fault	(Note 9)			1200		ns
	ST1, ST2 Duty Cycle	$\begin{array}{l} 0^{\circ}C \leq T_A \leq 70^{\circ}C \\ -40^{\circ}C \leq T_A \leq 85^{\circ}C \end{array}$	•			56 57	%

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: RS422 50 Ω specification based on RS485 27 Ω test.

Note 3: I_{IN} is tested at V_{CC2} = 5V, guaranteed by design from $GND2 \le V_{CC2} \le 5.25V.$

Note 4: Input fault conditions on the RS485 receiver are detected with a fixed receiver offset. The offset is such that an input short or open will result in a high data output.

Note 5: The low voltage detect faults when $V_{CC2} \text{ or } V_{CC} \text{ drops below}$ V_{UVL} and reenables when greater than V_{UVH} . The fault can be monitored through the weak driver output on \overline{RE} .

Note 6: Value derived from 1 second test.

Note 7: The input signals are internally sampled and encoded. The internal sample rate determines the data output jitter since the internal sampling is asynchronous with respect to the external data. Nominally, a 4MHz internal sample rate gives 250ns of sampling uncertainty in the input signals.

Note 8: The maximum baud rate is 250kBd with 10% sampling jitter. Lower baud rates have lower jitter.

Note 9: Start-up time is the time for communication to recover after a fault condition. Data time-out is the time a fault is indicated on RE after data communication has stopped.

Note 10: I_{CC} measured with no load, ST1 and ST2 floating.

125 150

TYPICAL PERFORMANCE CHARACTERISTICS

Maximum Baud Rate vs Temperature

Driver Differential Output Rise/Fall Time vs Temperature

Driver Differential Output Voltage vs Temperature

V_{CC2} Supply Voltage vs Temperature 6.56.0 $R_L = OPEN, V_{CC} = 5V$ 6.0 $R_L = 54\Omega, V_{CC} = 5V$ 5.56.0 $R_L = 54\Omega, V_{CC} = 4.5V$ 5.0COOPERCTX02-14659TRANSFORMER 4.5

TEMPERATURE (°C)

-50 -25 0 25 50 75 100

Rise/Fall Time vs Temperature

Receiver Output Low Voltage vs Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

POWER SIDE

 V_{CC} (Pin 1): 5V Supply. Bypass to GND with 10µF capacitor.

ST1 (Pin 2): DC Converter Output 1 to DC Transformer.

ST2 (Pin 3): DC Converter Output 2 to DC Transformer.

GND (Pin 4): Ground.

DI (Pin 25): Transmit Data TTL Input to the Isolated Side RS485 Driver. Do not float.

DE (Pin 26): Transmit Enable TTL Input to the Isolated Side RS485 Driver. A high level enables the driver. Do not float.

RE (Pin 27): Receive Data Output Enable TTL Input. A low level enables the receiver. This pin also provides a fault output signal. (See Figure 11.)

R0 (Pin 28): Receive Data TTL Output.

ISOLATED SIDE

GND2 (Pin 11): Isolated Side Power Ground.

Z (Pin 12): Differential Driver Inverting Output.

Y (Pin 13): Differential Driver Noninverting Output.

 V_{CC2} (Pin 14): 5V to 7.5V Supply from DC Transformer. Bypass to GND2 with 10 μF capacitor.

B (Pin 15): Differential Receiver Inverting Input.

A (Pin 16): Differential Receiver Noninverting Input.

R02 (Pin 17): Isolated Side Receiver TTL Output. This output is always enabled and is unaffected by $\overline{\text{RE}}$.

SLO (Pin 18): Slow Slew Rate Control of RS485 Driver. A low level forces the driver outputs into slow slew rate mode.

TEST CIRCUIT

Figure 1. Self-Oscillation at Maximum Data Rate (Test Configuration for the First Six Typical Performance Characteristics Curves)

Figure 2. Driver DC Test Load

Figure 4. Driver Timing Test Circuit

Figure 3. Receiver Timing Test Load

Figure 5. Driver Timing Test Load

SWITCHING TIME WAVEFORMS

Figure 6. Driver Propagation Delays

Figure 7. Driver Enable and Disable Times

Q

Isolation Barrier and Sampled Communication

The LTC1535 uses the SW-28 isolated lead frame package to provide capacitive isolation barrier between the logic interface and the RS485 driver/receiver pair. The barrier provides 2500V_{RMS} of isolation. Communication between the two sides uses the isolation capacitors in a multiplexed way to communicate full-duplex data across this barrier (see Figure 20 and Block Diagram). The data is sampled and encoded before transmitting across the isolation barrier, which will add sampling jitter and delay to the signals (see Figures 13 and 14). The sampling jitter is approximately 250ns with a nominal delay of 600ns. At 250kBd rate, this represents 6.2% total jitter. The nominal DE signal to the driver output delay is 875ns ±125ns, which is longer due to the encoding. Communication start-up time is approximately 1µs to 2µs. A time-out fault will occur if communication from the isolated side fails. Faults can be monitored on the \overline{RE} pin.

The maximum baud rate can be determined by connecting in self-oscillation mode as shown in Figure 1. In this configuration, with $\overline{SLO} = V_{CC2}$, the oscillation frequency is set by the internal sample rate. With $\overline{SLO} = 0V$, the frequency is reduced by the slower output rise and fall times.

Push-Pull DC/DC Converter

The powered side contains a full-bridge open-loop driver, optimized for use with a single primary and center-tapped secondary transformer. Figure 10 shows the DC/DC converter in a configuration that can deliver up to 100mA of current to the isolated side using a Cooper CTX02-14659 transformer.

Because the DC/DC converter is open-loop, care in choosing low impedance parts is important for good regulation. Care must also be taken to not exceed the V_{CC2} recommended maximum voltage of 7.5V when there is very light loading. The isolated side contains a low voltage detect circuit to ensure that communication across the barrier will only occur when there is sufficient isolated supply voltage. If the output of the DC/DC converter is overloaded, the supply voltage will trip the low voltage detection at 4.2V. For higher voltage stand-off, the Cooper CTX02-14608 transformer may be used.

V_{CC2} vs I_{LOAD} 8 6 V_{CC} = 5.5V V_{CC2} (V) $V_{CC} = 5V$ 4 $V_{CC} = 4.5V$ 2 0 100 0 50 150 TOTAL LOAD CURRENT, ILOAD (mA) 1535 F10a

Figure 10

Driver Output and Slow Slew Rate Control

The LTC1535 uses a proprietary driver output stage that allows a common mode voltage range that extends beyond the power supplies. Thus, the high impedance state is maintained over the full RS485 common mode range. The output stage provides 100mA of short-circuit current limiting in both the positive and negative directions. Thus, even under short-circuit conditions, the supply voltage from the open-loop DC converter will remain high enough for proper communication across the isolation barrier. The driver output will be disabled in the event of a thermal shutdown and a fault condition will be indicated through the \overline{RE} weak output.

The CMOS level \overline{SLO} pin selects slow or fast slew rates on the RS485 driver output (see Figures 15, 16, 17, 18 for typical waveforms). The \overline{SLO} input has an internal 100k pull-up resistor. When \overline{SLO} is low, the driver outputs are slew rate limited to reduce high frequency edges. Left open or tied high, \overline{SLO} defaults to fast edges. The part draws more current during slow slew rate edges.

Monitoring Faults on RE

The \overline{RE} pin can be used to monitor the following fault conditions: low supply voltages, thermal shutdown or a time-out fault when there is no data communication across the barrier. During a fault, the receiver output, RO, defaults to a high state (see Table 2). Open circuit or short-circuit conditions on the twisted pair do not cause a fault indication. However, the RS485 receiver defaults to a high output state when the receiver input is open or short-circuited.

The $\overline{\text{RE}}$ pin has a weak current drive output mode for indicating fault conditions. This fault state can be polled using a bidirectional microcontroller I/O line or by using the circuit in Figure 11, where the control to $\overline{\text{RE}}$ is threestated and the fault condition read back from the $\overline{\text{RE}}$ pin. The weak drive has 100µA pull-up current to indicate a fault and 50µA pull-down current for no fault. This allows the $\overline{\text{RE}}$ pin to be polled without disabling $\overline{\text{RE}}$ on nonfault conditions.

Both sides contain a low voltage detect circuit. A voltage less than 4.2V on the isolated side disables communication.

Figure 11. Detecting Fault Conditions

		DC ISOLATION	
MANUFACTURER	PART NUMBER	VOLTAGE (1 SECOND)	PHONE NUMBER
Cooper	CTX02-14659	500V	(888) 414-2645
Cooper	CTX02-14608	3.75kVAC	(888) 414-2645
Epcos AG (Germany) (USA)	B78304-A1477-A3	500V	(0 89) 636-2 80 00 (800) 888-7724
Midcom	31160R	1.25kV	(605) 886-4385
Minntronix	4810796R	3kVAC	(605) 884-0195
Pulse FEE (France)	P1597	500V	(33) 3 84 35 04 04
Sumida (Japan)	S-167-5779	100V	03-3667-3320
Transpower	TTI7780-SM	500V	(775) 852-0140

Table 1. List of Transformers Designed for LTC1535

Table 2. Fault Mode Behavior

FUNCTION (PINS)		V _{CC} > V _{UVH} V _{CC2} > V _{UVH}	V _{CC} < V _{UVL} V _{CC2} > V _{UVH}	V _{CC} > V _{UVH} V _{CC2} < V _{UVL}	V _{CC} < V _{UVL} V _{CC2} > V _{UVL}	THERMAL Shutdown
DC/DC Conv	/erter (2, 3)	On	On	On	On	Off
R0 (28)	$\overline{\text{RE}} = 0\text{V}$	Active	Forced-High	Forced-High	Forced High	Forced-High
	$\overline{\text{RE}} = V_{CC}$	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
	RE = Floating	Active	Hi-Z	Hi-Z	Hi-Z	Hi-Z
R02 (17)	•	Active	Active	Active	Active	Active
Driver Outp Y and Z (13		Active	Hi-Z	Hi-Z	Hi-Z	Hi-Z
Communiac Isolation Ba	tions Across rrier	Active	Disabled	Disabled	Disabled	Disabled
Fault Indicat	tor on RE (27)	Low	High	High	High	High

Table 3. Driver Function Table

INPUTS			OUTI	PUTS
RE	DE	DI	Y	Z
Х	1	1	1	0
Х	1	0	0	1
Х	0	Х	Z	2

Note: Z = high impedance, X = don't care

Table 4. Receiver Function Table

INPUTS			OUT	PUTS
RE	DE	A-B	RO	R02
0	Х	$\geq V_{TH(MAX)}$	1	1
0	Х	$\leq V_{TH(MIN)}$	0	0
0	Х	Inputs Open	1	1
0	Х	Inputs Shorted	1	1
1	Х	$\geq V_{TH(MAX)}$	Z	1
1	Х	$\leq V_{TH(MIN)}$	Z	0
1	Х	Inputs Open	Z	1
1	Х	Inputs Shorted	Z	1

Note: Z = high impedance, X = don't care

High Voltage Considerations

The LTC1535 eliminates ground loops on data communication lines. However, such isolation can bring potentially dangerous voltages onto the circuit board. An example would be accidental faulting to 117V AC at some point on the cable which is then conducted to the PC board. Figure 12 shows how to detect and warn the user or installer that a voltage fault condition exists on the twisted pair or its shield. A small (3.2mm) glow lamp is connected between GND2 (the isolated ground) and the equipment's safety "earth" ground. If a potential of more than 75V AC is present on the twisted pair or shield, B1 will light, indicating a wiring fault. Resistors R3 and R4 are used to ballast the current in B1. Two resistors are necessary because they can only stand off 200V each, as well as for power dissipation. As shown, the circuit can withstand a direct fault to a 440V 3-phase system.

Other problems introduced by floating the twisted pair include the collection of static charge on the twisted pair, its shield and the attached circuitry. Resistors R1 and R2 provide a path to shunt static charge safely to ground. Again, two resisitors are necessary to withstand high voltage faults. Electrostatic spikes, electromagnetically induced transients and radio frequency pickup are shunted by addition capacitor C1.

Receiver Inputs Fail-Safe

The LTC1535 features an input common mode range covering the entire RS485 specified range of -7V to 12V. Differential signals of greater than ±200mV within the specified input common mode range will be converted to TTL compatible signals at the receiver outputs, RO and RO2. A small amount of input hyteresis is included to minimize the effects of noise on the line signals. If the receiver inputs are floating or shorted, a designed-in receiver offset guarantees a fail-safe logic high at the receiver outputs. If a fail-safe logic low is desired, connect as shown in Figure 19.

Figure 12. Detecting Fault Conditions

Figure 13. Driver Propagation Delay with Sample Jitter. SLO = V_{CC2}

Figure 15. Driver Output. R = 27Ω , V_{CC2} = 5V, SLO = V_{CC2}

Figure 17. Driver Differential Output. R = 27 $\Omega,~V_{CC2}$ = 5V, \overline{SLO} = V_{CC2}

Figure 14. Driver Propagation Delay with Sample Jitter. SLO = OV

Figure 16. Driver Output. R = 27 Ω , V_{CC2} = 5V, SLO = 0V

Figure 18. Driver Differential Output. R = 27 $\Omega,~V_{CC2}$ = 5V, \overline{SLO} = 0V

TYPICAL APPLICATION

Figure 19. Fail-Safe Logic "0"

Figure 20. Configuring Receiver for TTL Level Input. Y and Z Outputs Are TTL Compatible with No Modification

PACKAGE DESCRIPTION

SW Package 28-Lead Plastic Small Outline Isolation Barrier (Wide .300 Inch) (Reference LTC DWG # 05-08-1690)

 PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .010" (0.254mm) PER SIDE

REVISION HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
В	12/09	Update Manufacturer's Information on Typical Application and Figure 10	1, 10
		Revise Receiver Input Hysteresis Conditions	3
		Revise Block Diagram	7
		Revise Figure 1.	8
		Update Tables 1 and 3	12

TYPICAL APPLICATION

Complete, Isolated 24-Bit Data Acquisition System

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1424-5	Isolated Flyback Switching Regulator	±5% Accurate with No Optoisolator Required
LTC1485	High Speed RS485 Transceiver	10Mbps, Pin Compatible with LTC485
LTC1531	Self-Powered Isolated Comparator 2.5V Isolated Reference, 3000V _{RMS} Isolatio	
LT1785/LT1791 ±60V Fault Protected RS485 Transceiver, Half/Full-Duplex ±15kV ESD Protection, Industry Standar		±15kV ESD Protection, Industry Standard Pinout
LTC1690	Full-Duplex RS485 Transceiver	±15kV ESD Protection, Fail-Safe Receiver

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.