

SCBS300G-MARCH 1994-REVISED JANUARY 2006

FEATURES

FEATURES	SN54ABT16245AWD PACKAGE
 Members of the Texas Instruments	SN74ABT16245A DGG, DGV, OR DL PACKAGE
Widebus™ Family	(TOP VIEW)
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 	
 Typical V_{OLP} (Output Ground Bounce) <1 V at	1B1 2 47 1A1
V _{CC} = 5 V, T _A = 25°C	1B2 3 46 1A2
 High-Impedance State During Power Up and Power Down 	GND 4 45 GND 1B3 5 44 1A3 1B4 6 43 1A4
 Distributed V_{CC} and GND Pin Configuration	$V_{CC} \begin{bmatrix} 1 & 43 \\ 7 & 42 \end{bmatrix} V_{CC}$
Minimizes High-Speed Switching Noise	1B5 $\begin{bmatrix} 8 & 41 \end{bmatrix}$ 1A5
 Flow-Through Architecture Optimizes PCB	1B6 [] 9 40] 1A6
Layout	GND [] 10 39] GND
 High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL}) 	1B7 [11 38] 1A7
 Latch-Up Performance Exceeds 500 mA Per	1B8 0 12 37 0 1A8
JESD 70	2B1 0 13 36 0 2A1
 ESD Protection Exceeds 2000 V Per	2B2 14 35 2A2
MIL-STD-883, Method 3015; Exceeds 200 V	GND 15 34 GND
Using Machine Model (C = 200 pF, R = 0)	2B3 16 33 2A3
 Package Options Includes Plastic Thin Very Small-Outline (DGV), Shrink Small-Outline (DL), and Thin Shrink Small-Outline (DGG) 	2B4 0 17 32 0 2A4 V _{CC} 0 18 31 0 V _{CC} 2B5 0 19 30 0 2A5 2B6 0 20 29 0 2A6
Packages and 380-mil Fine-Pitch Ceramic	GND 21 28 GND
(WD) Flat Package Using 25-mil	2B7 22 27 2A7
Center-to-Center Spacings	2B8 23 26 2A8
	2DIR 24 25 2 0E

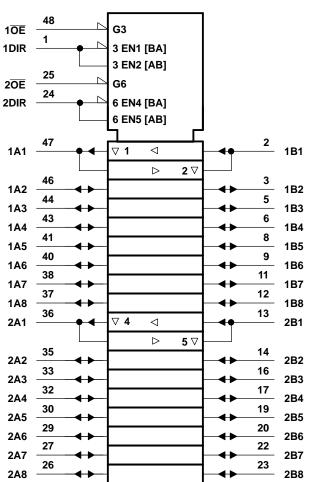
DESCRIPTION

The 'ABT16245A devices are 16-bit noninverting 3-state transceivers designed for synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

These devices can be used as two 8-bit transceviers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impendance state above 2.1 V, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16245A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16245A is characterized for operation from -40°C to 85°C.

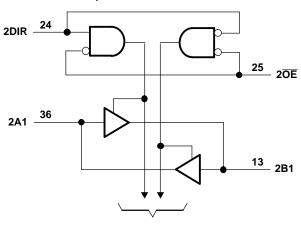

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC-IIB are trademarks of Texas Instruments.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

FUNCTION TABLE (EACH 8-BIT SECTION)

INP	UTS	OPERATION
OE	DIR	OFERATION
L	L	B data to A bus
L	Н	A data to B bus
н	Х	Isolation



LOGIC SYMBOL⁽¹⁾

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

1DIR 1 48 10E 1A1 47 1A1 47 To Seven Other Channels

To Seven Other Channels

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
VI	Input voltage range (except I/O ports) ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high c	r power-off state	-0.5	5.5	V
	Current into any output in the low state	SN54ABT16245A		96	~ ^
0		SN74ABT16245A		128	mA
I _{IK}	Input clamp current	V ₁ < 0		-18	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		89	
θ_{JA}	Package thermal impedance ⁽³⁾	DGV package		93	°C/W
	Input voltage range (except I/O ports) ⁽²⁾ Voltage range applied to any output in the high of Current into any output in the low state Input clamp current Output clamp current	DL package		94	
T _{stg}	Storage temperature range		-65	150	°C

LOGIC DIAGRAM (POSITIVE LOGIC)

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

Recommended Operating Conditions⁽¹⁾

			SN54ABT	16245A	SN74ABT	16245A	UNIT
			MIN MAX 4.5 5.5		MIN	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	V_{CC}	0	V_{CC}	V	
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS			T _A = 25°	0	SN54ABT	16245A	SN74ABT16245A		
PAR	AMETER	TEST CC	DITIONS	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	MIN	MAX	UNIT
V _{IK}		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2		-1.2		-1.2	V
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5		
		V _{CC} = 5 V,	3			3		3		v	
V _{OH}		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V
		$v_{\rm CC} = 4.5 \ v$	I _{OH} = -32 mA	2 ⁽²⁾					2		1
V			I _{OL} = 48 mA			0.55		0.55			v
V _{OL}		$V_{CC} = 4.5 V$	I _{OL} = 64 mA			0.55 ⁽²⁾				0.55	v
V _{hys}					100						mV
	Control inputs	V_{CC} = 0 to 5.5 V, V_{I} = V_{CC} or GND				±1		±1		±1	
I _I	A or B port	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$	I = V _{CC} or GND			±20 ⁽²⁾		±100		±20	μA
I _{OZPU}		V_{CC} = 0 to 2.1 V, V_{O} =	0.5 V to 2.7 V, OE = X			±50 ⁽³⁾		±50 ⁽³⁾		±50	μΑ
I _{OZPD}		V_{CC} = 2.1 V to 0, V_{O} =			±50 ⁽³⁾		±50 ⁽³⁾		±50	μΑ	
I _{OZH} ⁽⁴⁾		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$			10 ⁽⁵⁾		10		10 ⁽⁵⁾	μΑ	
I _{OZL} ⁽⁴⁾		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$	⁷ _O = 0.5 V, OE ≥ 2 V			-10 ⁽⁵⁾		-10		-10 ⁽⁵⁾	μΑ
I _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} \leq 5.5 \text{ V}$			±100				±100	μΑ
I _{CEX}		$V_{CC} = 5.5 V,$ $V_{O} = 5.5 V$	Outputs high			50		50		50	μA
I _O ⁽⁶⁾		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA
			Outputs high			2		2		2	
I _{CC}	A or B port	$V_{CC} = 5.5 \text{ V}, I_O = 0,$ $V_I = V_{CC} \text{ or GND}$	Outputs low			32		32		32	mA
	pon		Outputs disabled			2		2		2	
		$V_{\rm CC} = 5.5 \rm V,$	Outputs enabled			2		1.5		2	
$\Delta I_{CC}^{(7)}$	Data inputs	One inputs at 3.4 V, Other inputs at V_{CC} or GND	Outputs disabled			0.05		1		0.05	mA
	Control inputs	00 / 1				1.5		1.5		1.5	
Ci	Control inputs	V _I = 2.5 V or 0.5 V			3						pF
Co	A or B port	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			6						pF

(1)

(2)

All typical values are at V_{CC} = 5 V. On products compliant to MIL-PRF-38535, this parameter does not apply. On products compliant to MIL-PRF-38535, this parameter is not production tested. (3)

(4) The parameters I_{OZH} and I_{OZL} include the input leakage current.

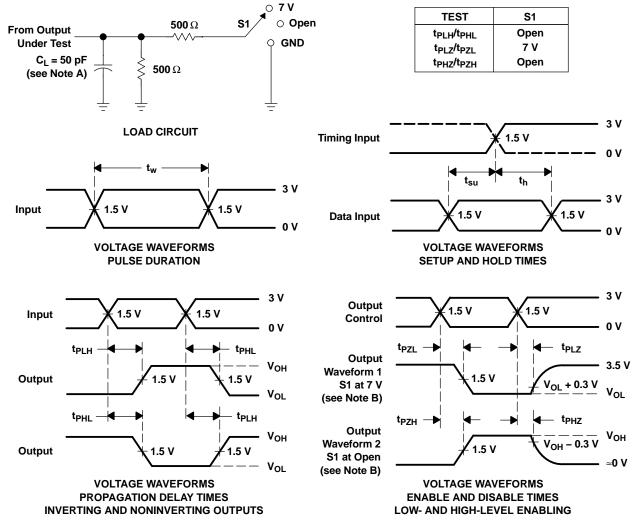
This limit may vary among suppliers. (5)

(6) Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

(7) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND. SCBS300G-MARCH 1994-REVISED JANUARY 2006

Switching Characteristics

over recommended operating ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


				SN54ABT16245A				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C T	$V_{CC} = 5 V,$ $T_A = 25^{\circ}C$			МАХ	UNIT
			MIN	TYP	MAX		4	
t _{PLH}	A or B	B or A	0.5	2.2	3.4	0.5	4	ns
t _{PHL}		BOIA	0.5	2.3	3.8	0.5	4.6	115
t _{PZH}	OE	B or A	0.8	3.6	5.2	0.8	5.5	ns
t _{PZL}	OL	BUIA	0.9	3.7	6.1	0.1	7.3	115
t _{PHZ}	OE	B or A	1.3	4.4	5.8	1.3	6.3	ns
t _{PLZ}	0L	BUX	1.4	3.3	4.7	1.4	5.5	115

Switching Characteristics

over recommended operating ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

			SN74ABT16245A					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	МАХ	UNIT
			MIN	TYP	MAX			
t _{PLH}	A or P	B or A	1	2.2	3.4	1	3.9	~~
t _{PHL}	A or B	D OF A	1	2.3	3.7	1	4.2	ns
t _{PZH}	OE	B or A	1	3.6	5.2	1	6.3	20
t _{PZL}	UE	BUIA	1	3.7	5.4	1	6.4	ns
t _{PHZ}	ŌĒ	B or A	2	4.4	5.8	2	6.3	ns
t _{PLZ}	OL	DUIA	1.5	3.3	4.7	1.5	5.2	115

SCBS300G-MARCH 1994-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com

5-Sep-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-9317501MXA	ACTIVE	CFP	WD	48	1	TBD	Call TI	Call TI	
74ABT16245ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74ABT16245ADGVRE4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
74ABT16245ADGVRG4	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74ABT16245ADLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SNJ54ABT16245AWD	ACTIVE	CFP	WD	48	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

www.ti.com

5-Sep-2011

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ABT16245A, SN74ABT16245A :

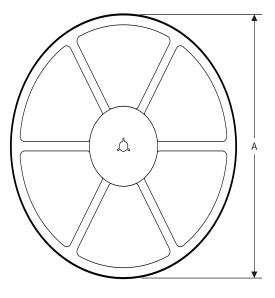
Catalog: SN74ABT16245A

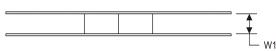
• Enhanced Product: SN74ABT16245A-EP, SN74ABT16245A-EP

• Military: SN54ABT16245A

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

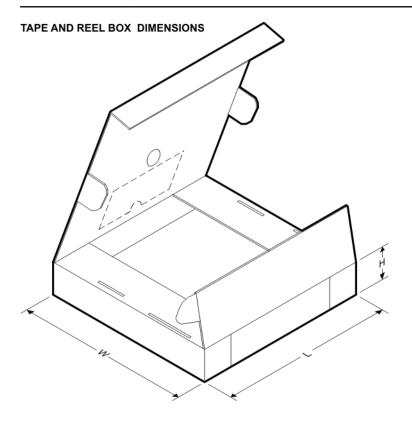
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

*All dimensions are nominal	

TAPE AND REEL INFORMATION


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT16245ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74ABT16245ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74ABT16245ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

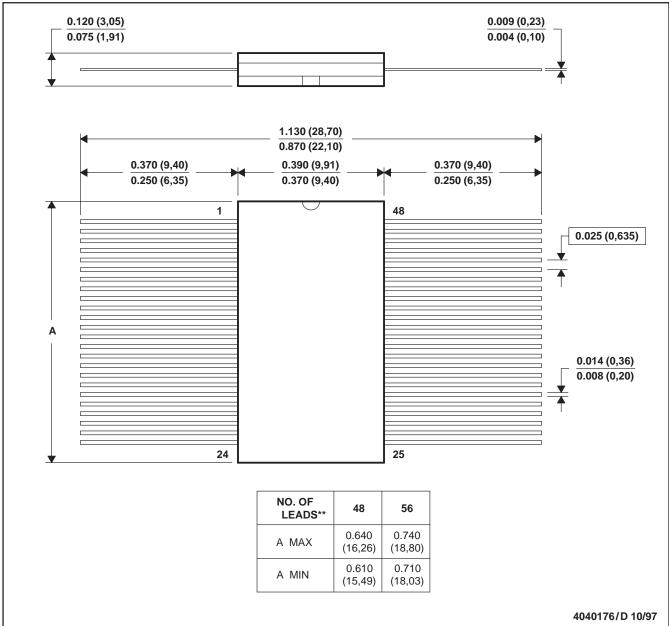
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT16245ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ABT16245ADGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74ABT16245ADLR	SSOP	DL	48	1000	367.0	367.0	55.0

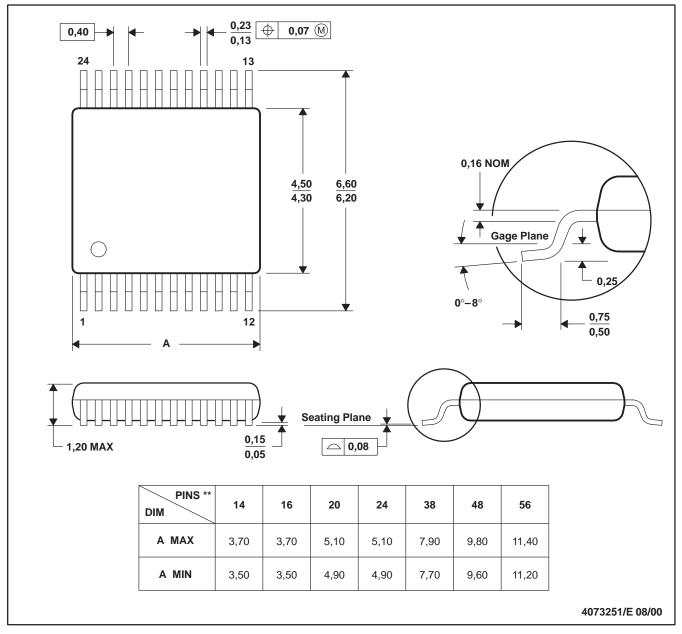
MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB



PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

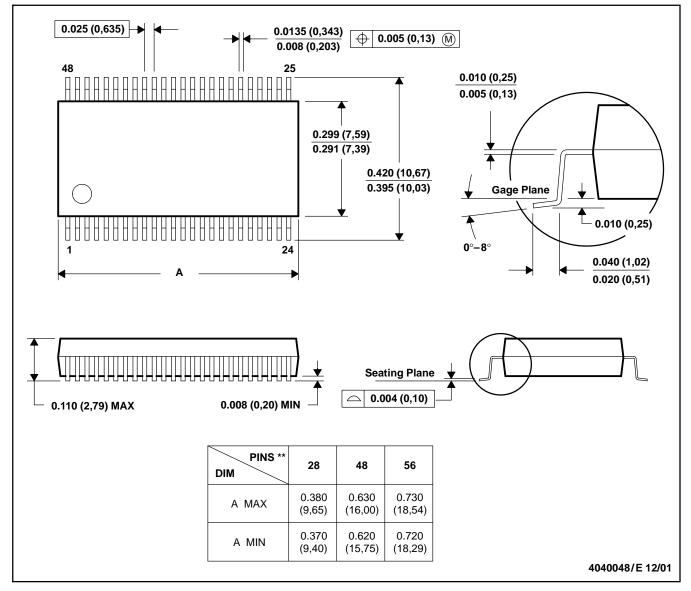
24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194



MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

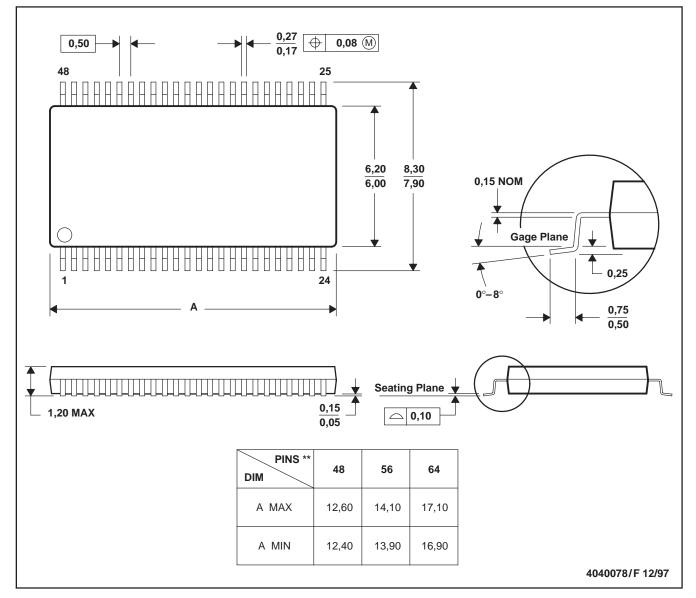
DL (R-PDSO-G**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118



MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.