Iil,CI USB pevice™

Universal Serial Bus Device Stack

User’s Manual
vV4.00

Micripm

For the Way Engineers Work

Micripm

1290 Weston Road, Suite 306
Weston, FL 33326

USA

Www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where Micripm Press is aware of a trademark claim, the product name appears in
initial capital letters, in all capital letters, or in accordance with the vendor’s capitalization
preference. Readers should contact the appropriate companies for more complete information
on trademarks and trademark registrations. All trademarks and registered trademarks in this
book are the property of their respective holders.

Copyright © 2012 by Micripm except where noted otherwise. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher; with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

The programs and code examples in this book are presented for instructional value. The
programs and examples have been carefully tested, but are not guaranteed to any particular
purpose. The publisher does not offer any warranties and does not guarantee the accuracy,
adequacy, or completeness of any information herein and is not responsible for any errors or
omissions. The publisher assumes no liability for damages resulting from the use of the
information in this book or for any infringement of the intellectual property rights of third parties
that would result from the use of this information.

Micripm

100-uC-USB-Device-001 For the Way Engineers Work

Chapter 1
1-1
1-1-1
1-1-2
1-1-3
1-2
1-2-1
1-2-2
1-2-3
1-3
1-3-1
1-3-2
1-4
1-4-1
1-4-2
1-4-3

Chapter 2
2-1

2-2

2-3

2-4

2-4-1
2-4-2
2-4-3
2-4-4

2-5

Table of Contents

Y o Yo LUy 1] = 15
[191 'e o [To31 o o T 15
= U = I o] o o [0 15
LT = 0 o T 16
USB DEVICE ..ceeeiiiiiiiiiicccccsmmcrenrsnr s ss s ss s sssms e e s e s ee s ss s s smmmnn e s s e s e eessnsnnn 16
(D71 = W o (o1 TV 1V, Lo o =Y O 17
=T | oo o) A SOt 17
o 7= 18
Transfer TYPEeS ... 18
Physical Interface and Power Managementccccccvveeeeeececennnnnnnnnnns 21
1S 01T T o PP 21
Power Distribution ... 22
Device Structure and Enumerationcccceeeeecmmencsseenesssseee e 22
USB Device Structure ... s e ee s 22
Device States ... s s 24
ENUMEration ... 25
Getting Started ... 27
Prerequisites ... e 28
Downloading the Source Code Filescceiiriiieeicccccciceerree e, 28
Installing the FileS ... 30
Building the Sample Application ... 31
Understanding Micrium Examplescccoiimiimimesssssecececssnnsssssnnnns 31
Copying and Modifying Template Filescccccoiiiiiicnniniciccnnniicceee, 33
Including USB Device Stack Source Codeceeeeecvvimmmmrrneernnensnnnnns 37
Modifying Application Configuration Filecccccceeeieiccccicceeenienneene. 38
Running the Sample Applicationccccccmmriiiiiisccccssseeee e 40

Table of Contents

Chapter 3
3-1

3-1-1
3-1-2

Chapter 4
4-1
4-1-1
4-1-2
4-1-3
4-1-4
4-1-5
4-1-6
4-1-7
4-1-8
4-2
4-2-1
4-2-2
4-2-3

Chapter 5
5-1
5-1-1
5-1-2
5-1-3
5-1-4
5-1-5
5-1-6
5-1-7
5-1-8
5-1-9
5-1-10
5-1-11
5-2
5-2-1
5-2-2
5-3
5-4

4

Host Operating Systems ... 45
Microsoft WINAOWS ... e 46
ADOUL INF FileS ... e 46
USING GUIDScoiiiiiiiicecccccemeccrrr e r s ss s sssmssss e e s ee s s mmnmmn e e e e e e e ee s s 51
ArChiteClure ... ———— 53
Modules Relationship ... e 55
/Y o o] [T 1 {To o 55
I o] = 7= 55
USB Class LaYErccicccccccrcemmerriiiieis s ssssssssssmseesssss s sssss s ssmsssssssssssssssnas 56
USB COre Layerccccciemiinisemsminssssinsssss s s sssssssss s s sssssssees 56
Endpoint Management Layerccccccceeerrrrrnrnrmmmseseesssssssesesssmssssssssssnes 56
Real-Time Operating System (RTOS) Abstraction Layer 57
Hardware Abstraction Layerccccocvvmmniniimnnnsssesss e 57
L0 U X T O RR 58
Task Model ... e s 58
Sending and Receiving Dataccccvemmiiniieenie s 59
Processing USB Requests and Bus Eventsccoccccevvcmeeernnennnnnnn. 61
Processing Debug EVENtscccccciiiiiiiii s e 63
(07001 1o 18] =11 o) ISR 65
Static Stack Configurationccccccceimiiiii e ——— 65
Generic Configuration ... 66
USB Device Configurationcccccccccvssmmmemmrenmnnnssssscssssssseessessesssssssssns 66
Interface Configurationccccceriiiiccccccsscecrr e 66
String Configuration ... —————— 67
Debug Configurationccccccceeieiiiicccccssssmeerrre s sss s sssssssees e e e e e eessnnsns 68
Communication Device Class (CDC) Configurationcccccccereeeennnn. 68
CDC Abstract Control Model (ACM) Serial Class Configuration 68
Human Interface Device (HID) Class Configurationcccccccevvieinnees 68
Mass Storage Class (MSC) Configurationcccccceevimmrrrnennneninnnes 69
Personal Healthcare Device Class (PHDC) Configuration 69
Vendor Class Configurationcccceevveemermrrinninssssscssscsssesessessssssssnnns 69
Application Specific Configurationcceeeeeiciiiiicer e 69
L= 51 G 2 (] 1 1= 69
Task StaCk SiZES ...cccccverirreirrirrrcerr e 70
Device and Device Controller Driver Configurationcccccceeernnn...e. 71
Configuration EXamplesccccocircnniiimnnsn s 71

5-4-1
5-4-2
5-4-3

Chapter 6
6-1
6-2
6-3
6-4
6-4-1
6-4-2
6-4-3
6-4-4
6-4-5
6-5
6-5-1
6-6
6-7
6-8
6-8-1
6-8-2
6-8-3
6-8-4
6-8-5

Chapter 7
7-1
7-2
7-3

Chapter 8
8-1

8-2

8-3

8-3-1

8-4

8-4-1

Simple Full-Speed USB deViCeccccciiiiiiiiccccccienecerrreene s sccemsneeens 72

Composite High-Speed USB devicecccccoommririiiiiiiicccceeeeeeeeeee 73
Complex Composite High-Speed USB deviceccceeevmmmeeerrneennnnns 74
Device Driver GUIAEcuceeeccccirririss e e s s e s ee e s s e s s 77
Device Driver ArchiteCtureccooviiiiiiieemninn s 77
Device Driver MOdel ... e s s e e s s s e e e s s 78
Device DrvVer APl ... s s s s s s s s e e e e s e s e e s e s e s s nnas 78
[[9Y =Y (] o) i F=T g o | 113V TR 81
Single USB ISR Vector with ISR Handler Argumentcccccceiinneee 81
Single USB ISR VECTOrceiiiiiieiiriinissrs s 82
Multiple USB ISR Vectors with ISR Handler Arguments 82
Multiple USB ISR VeCtors ... rcccsssesene e e e e 83
USBD_DrvISR_HandIer()ccccerrreesmerrrrsssmrerrssssmeesssssssssessssssssesssssssnnens 83
Device Configurationcccccceieiiiicccccsssceerrre s ssssssee e e e e e ssssnnsns 85
Endpoint Information Table ... 86
Memory AllOCAtioNccovicieirriinnierr - 88
CPU and Board SUPPOITccceeerrrrrrrrrrrrrrrrrrrresseereeessmsmssssssssssssssssssseses 88
USB Device Driver Functional Modelccouiiiiiiiiicccccceceeeeneneeeeeeee 89
Device Synchronous ReCEIVEcoo i 89
Device Asynchronous ReCEIVEcccccvirrrrrrrrrimrmrrsssesssenecee e sssnssssssnns 91
Device Synchronous TranSmitccccecccemmrimmiinnincccsssssseeeeeesseeesssseens 93
Device Asynchronous Transmitcccccereminemmner s 95
Device Set AAAreSScciiccccirrrrresereresssmre e re s e e e s ssne e e s sms e ee s smeees 97
USB ClaSSES ..ciiiiiiiiieeiicicemeersssssssssss s s s s s s s s s s e s es s es s s s e s mans s sssasssssssnnsnses 99
Class Instance CONGCEPLcccceevrrrrrrrririirrrrreeeeeee e e rsrsreneeeerees 99
Class Instance StruCtures ... scccccccseccrrrr e 108
Class and Core Layers Interaction through Callbacksccecuu.. 111
Communications Device Classcccccvviiicccrssmmeerirnerinsssscsssssssesseseneens 115
L@ Y=Y V= 116
ArchiteClure ... 119
Configuration ... e s 120
General Configuration ... 120
031V IR0 o o7 F= L= 121
OVEIVIEW ..iiiiceeecirt i i r s se s ss s sssme e e e e e e s ss s s smmmn s e e e e e e ee s sa s smmnnnnnnnees 121

Table of Contents

8-4-2
8-4-3
8-4-4
8-4-5
8-4-6

Chapter 9
9-1
9-1-1
9-2
9-3
9-3-1
9-3-2
9-3-3
9-3-4
9-3-5
9-4
9-4-1
9-4-2
9-5
9-6

Chapter 10
10-1
10-1-1
10-1-2
10-1-3
10-1-4
10-2
10-2-1
10-2-2
10-2-3
10-3
10-3-1
10-4
10-4-1
10-4-2
10-5

6

General Configuration ..o 123
Subclass Instance Configurationccccccevimimnnnie . 123
Subclass Notification and Managementccccocccmmmrereeennnecscccsnnnes 127
Subclass Instance CommuNIiCationccccecceerrreescrerrescseeereeeseeeeens 128
Using the Demo Application ... 129
Human Interface Device Classcccceeeecerrrrcsserrssscscer s seee e s s seeens 135
L@ YT 1= 136
2 1=Y oo o APt 136
ArchiteClure ... 142
Configurationcccceiccieeriiiir e ——— 143
General Configurationccccceemriimriisiss s e 143
Class Instance Configurationccoovicccciiireeinn e 144
Class Instance CommuNiCationooccccceiiermminer e 150
Synchronous CommMUNICAtioNccccccevieriiriiisscsccssssnemer e ennas 150
Asynchronous Communicationccccccceerriiniccccccsssseeeereee e sessseens 152
Using the Demo Application ... 154
Configuring PC and Device Applicationsccccccevveieeccccssmmeceeenenennn 154
Running the Demo Applicationcccccciiimimiereeesece e 156
Porting the HID Class to a RTOScccccoiiiiinsnnese e 160
Periodic Input Reports Taskccccceiiiimicmciiiirrececcc s s e e 161
Mass Storage Classcccoecmiiniiinnninniir e s e 165
L@ =Y TS 166
Mass Storage Class Protocolccccccinmmmmmiiniiinscccccccssseeeeeeeeeee 166
= T [0 T 1 | £ 167
Mass Storage Class ReqUESEScovvvccccccimmemmrieerre e eee e 167
Small Computer System Interface (SCSI)ccccocerrmrerrriiincccccccinenene 168
ArchiteClure ... 169
MSC ArchiteCtureccoiiieeeieercceee e e 169
SCSI COMMEANGS ...eererirremrrerrresmrrrrrssssnrrrrsssssrresessssnseessssssssessessssseesenns 170
Storage Layer and Storage Mediumccccciiiicimniinncsennnsnsneeennes 171
RTOS LAYEX ..eeeeeiiieiiiiiiiiscccssssnmnenessnes s sssssssssssnssssssssssees sassssssnnsmsnnssnnnees 171
Mass Storage Task Handleroooviicciciciieceriniiie s smnceeeeeeeee 171
Configurationcccecicccenr i 173
General Configurationcccccceemriimris s 173
Class Instance Configurationccceeicccciecrecrnnn e 174
Using the Demo Application ... 176

10-5-1
10-5-2
10-6
10-7

Chapter 11
11-1
11-1-1
11-1-2
11-2
11-2-1
11-2-2
11-3
11-3-1
11-3-2
11-4
11-5
11-5-1
11-5-2
11-6

Chapter 12
12-1
12-2
12-2-1
12-2-2
12-2-3
12-2-4
12-2-5
12-3
12-3-1
12-3-2
12-4
12-4-1
12-4-2
12-4-3
12-4-4

USB Device Applicationcccccceiiiiiicccccccsseccreerrrr e sssceeeeeenees 177

EST 38 o ToX=3 Y o o] [Te= 14 To] o 179
Porting MSC to a Storage Layerccccecvemmrrmrrinnisssssccsssssseeeeeseneens 180
Porting MSC t0 @ RTOS ... smmnnn e e e 181
Personal Healthcare Device Classcccccvveeeeceerinscnmersescseeeee e 183
OVEIVIEW ..iiiiceeeccerirr e ie s se s ssme e e e e e s s s s smmme e e s e e e e e e s a s mmnnnnnnnees 184
Data characteristiCsccccoriormmii e 184
Operational model ... s 185
Configuration ... e e e 187
General configurationccccceiiiiiir i ——— 187
Class instance configurationcccccccevvccccccsecmrrer e 189
Class Instance Communicationcccceccceirmmemririnnne s e eeeee 192
Communication with metadata preambileooooeiiiiiiiiininnnnenn. 192
Communication without metadata preambleccovreemeinnnnne. 196
RTOS QoS-based schedulerooccccciirimmrmriinniee e 196
Using the Demo Application ... 200
Setup the ApPlicationccooieeiiiiiiieeee e e e e e e e e e 200
Running the Demo Applicationcccccciiimimiereeesece e 202
Porting PHDC t0 @ RTOSccoiiiicieericcceeessscemee s ssmee s s smne e e s 203
VeNdor Class ...iciiiiiiiccccissceceriir e ss s ssssmssee s e s s s essssss s ssssssssssenssesssnnsen 205
L@ Y=Y V= 206
(07070 Te 18] =11 {0 o 1P 207
General Configurationccccciiiiiin s 207
Class Instance Configurationcccciciiciniiniissner s 208
Class Instance CommuNICationcccovceeceerrrccssree e 210
Synchronous Communicationcccccccreieiieccccccssssseeeerer e 211
Asynchronous CommuNiCationcccccrrinriemmnnnnener e 212
USBDEV_API ... e e e e s e e s e a e e e e e 214
Device and Pipe Managementccccceviiiiiimimmresessseseeseeecsmsnssssssnsnes 215
Device COMMUNICALIONccocmimmiiiiiiiicsscceecer e e 218
Using the Demo Applicationccccceriiiiirmmierrenssseseececessss s 220
Configuring PC and Device Applicationsccccccccveevecccccismmecenennnnnnn, 220
Editing an INF Fileccoiiiiciie e rccccere e s 222
Running the Demo Applicationcccccmimmmmmrmeeeecececssssss e 224
€10] | SR 228

Table of Contents

Chapter 13
13-1

13-1-1
13-1-2
13-1-3
13-2
13-2-1
13-2-2
13-2-3

Chapter 14
14-1

14-2

14-3
14-3-1
14-3-2
14-3-3
14-4

Appendix A
A-1
A-1-1
A-1-2
A-1-3
A-1-4
A-1-5
A-2
A-2-1
A-3
A-3-1
A-3-2
A-3-3
A-4
A-4-1
A-4-2
A-4-3
A-4-4

Debug and TracCeecccrrrrr e s 231
Using Debug TraCesccccveriiiiimmnninsissns s s ssnnes 232
Debug Configurationcccccccemmeimmiiiiscscscsssscerere e s eees 232
Debug Trace OUtPULccccccmriiiriirr e 232
Debug FOormatccoccmiiiiiirsmes s 233
Handling Debug Events ... v r e ree e s 234
[DT=Y 010 T [3V7=T o1l o o 234
Debug Task ...ccccceriiiiirrire s 234
[T=Y o 10 T 1Y F= T ¢ o T 234
Porting uC/USB-Device to your RTOScccccmiiiiimmnninniennnnnenen 237
L@ =Y TSN 238
Porting Modules t0 a RTOS ... smmneeeee e 239
Core Layer RTOS Modelccceiiiiimmimiiniennsissss s ssssss s ssanes 240
Synchronous Transfer Completion Signalscccccceeriiiiiiccccccssnceens 240
Core Events Managementccccooveiiiiccccccsemmccnnrne e ssseeeeeeenees 241
Debug Events Managementccccoiiimmiininnen e 241
Porting The Core Layer to a RTOScccoovcemmmmrriinnnssscccssssneeeeeseeeeens 242
Core API Reference ... e 245
Device FUNCLIONSooiiiiciiemiirr s s 246
USBD_INI() weeveeeecrerresesereessssmeesssssmneesssssmmeesssssmsessssssmme e s ssssmmnessssssmnes 246
USBD_DeVvStart()ccecceerrecrsrerrssssmersissssessssssssmesssssssmeessssssnsesssssssneens 247
LIS =7 2 D 7511233 Lo o | R 248
USBD_DevGetState()cccerrmmrmrmrmmiiiiisiccssssseeeeresrseesssssssssssssssssssneees 249
USBD_DeVAdA() -ieeveececeerrieinmeerisssmeeesssssnseessssssmsesssssssmeessssssnnenssssssnnens 251
Configuration FUNCLIONScccciiiiiriiiiisscccemeccrre e ssssnene e 253
ST =] 07 e ¥ [) 253
Interface fuNClioNS ... 255
ST =] T | Ve [) 255
ST =] T N1 72V [) 257
USBD_IF_GIP() .eceeeerersmerrresssnserssssssmeessssssnessssssssmsessssssnssssssssnsenssssssnnens 259
Endpoints FUNCLIONScocomeeie st 261
USBD_CRATX() -eeeeerrreamerrrrssammeressssmeessssssmmeesssssmeessssssmnessssssnneessssssmnees 261
USBD_CHRX() ceeeerrrermeerissssneeesisssmeesssssmesssssssnmesssssssmeessssssnsesssssssnnnns 263
USBD_BUIKAAA() +eeieeeceerereeemrereseemmeesesssme e e s s smme e s s smme e s s s e e e e s s smmnees 265
USBD_BUIKRX() .eeeerieeearerrrsssmerrssssmnessssssmmeesssssmeessssssmnessssssnnesssssssnnees 267

A-4-5
A-4-6
A-4-7
A-4-8
A-4-9
A-4-10
A-4-11
A-4-12
A-4-13
A-4-14
A-4-15
A-4-16
A-4-17
A-4-18
A-4-19
A-4-20
A-5
A-5-1
A-5-2
A-5-3
A-5-4
A-5-5
A-5-6
A-5-7
A-5-8
A-5-9
A-5-10
A-5-11
A-5-12
A-6
A-6-1
A-6-2
A-6-3
A-6-4
A-6-5
A-6-6
A-6-7

USBD_BUIKRXASYNC() ..ccceremmmrrmrerrreisssssssssnmnnneessessssssssssssssnsssnssssssessnas 269

USBD_BUIKTX() .eeeeerreesamerrsssssssersssssasessssssnesssssssnsessssssmessssssansessssssnnens 271
USBD_BUIKTXASYNC() -eeeereeaamrererrssmeeressesmmeesssssmeessssssmmessssssmmeessssssmnees 273
USBD_INtrAAA() -eeeeeeeeceererscsmeeresssmmee s s ssmeessssssmme e s sssssmne s sssssmneessssssmnees 276
USBD_INtrRX() .eeeeeeereesseerssssssserssssssmessssssnesssssssnsessssssnmesssssssnsessssssnnens 278
USBD_INtrRXASYNC() weeieeeeesrnnmeerreerrsrsssssssssssssmssnssssrsesssssssssssssmssnsssnnnes 280
USBD_INTITX() coeoeeerrrseameerrsssssmerrssssamnessssssmsessssssmmessssssmsessssssmnessssssnnees 282
USBD_INtITXASYNC() uueeeeiiirnmrrninsimmnssisssssssssssssss s ssssssss s ssssmss s s ssssnnees 284
USBD_EP_RXZLP() ...ueieiieceeeeeececmee e e emee e s s esmme e e e smm e s 287
USBD_EP_TXZLP() .coeeerreemmreresssmeersssssmseessssssmmessssssnmeessssssmsessssssnnnees 289
ST =] T = =Y o Yo o | SRR 291
USBD_EP_Stall(}) -eeeveeeeeeeeeeeeee e ereece e e smee e s s e e sme e e 292
USBD_EP_ISStalled() ..cceeveeeererrrssmmerrressmeerssssmmessssssmmeessssssmsesssssssmnees 294
USBD_EP_GetMaxPKtSIiZe() -.....coeccerrrerrsmmrrrrsssmersssssmnessssssnnensssssneens 295
USBD_EP_GetMaxPhyNDI()cccocemiirceemrrrecme e 296
USBD_EP_GetMaxNbrOpen() «....cuueieeccccesssmmmemeeeseseesssssssssssssnssesssseneees 297
Core OS FUNCLIONS ...coooiiiciimir s 298
USBD_OS_INIt() -ereerrreeaerrrrresmeerrrssmeessesesmmeeessssmsessssssmme s ssssssmeessssssmmens 298
USBD_CoreTaskHandler()ccccceeeriiiiicccccimeccrcere s cccsmsceneesenees 300
USBD_DbgTaskHandler()ccucooerrrmrinieninsmsssessssms s sssneens 301
USBD_OS_EP_SignalCreate()cccvvvrievcessmmmemererrreesssssssssssmssseessssneens 302
USBD_OS_EP_SignalDel() ..cceeeeeeearerrrrrsmrrrsrssamersssssmeessssssmsesssssssnnees 304
USBD_OS_EP_SignalPend()cccesrrerrmerrsssssmerssssssensssssssesssssssneens 305
USBD_OS_EP_SignalAbort()cccoceerrreeerererseseeeesessmee e e s ssmee e e s 307
USBD_OS_EP_SignalPost() «.ccccerririiiiccciirnmmeemrreneere s sssssccssssssscesesseneens 308
USBD_OS_CoreEVentPUL()ccceveriiiiiiiicccmecmerne e ee s msceene e 309
USBD_OS_CoOreEVentGet()cccceerrrrrrrrrrrrrmrrrrmereeeememsmnnnsssssssssssssseees 310
USBD_OS_DbgEVENtRAY() .eceeererrrrriiiiiiisinmmnnmrrenereesessssssssssnnsesssseeeens 311
USBD_OS_DbgEventWait () -......ccoccerrrecrmmmrissssmersssssnseessssssssesssssssseens 312
Device Drivers Callbacks Functionsccccccceecmiiiceecennncccsceeeeseceen 313
USBD_EP_RXCMPI() .eueeeerreemmerrinssmmersssssmseesssssmnessssssmmeesssssmsessssssnneees 313
USBD_EP_TXCMPI() ceerrriermeeririssmmrersessnseessssssmmessssssssesssssssnsesssssssnnees 314
USBD_EVENtCoNN() cueveeeeeieeeccrrrrrrrressese s e s eeseeseeesse s s msnsns s snsnsssnsnenns 315
USBD_EventDiSCONN()ccccccceremmiiimiiiiccccsssssnceeeee s re s ss s ssmnneesesseeees 316
USBD_EventReset()cccceevemmrrrirne e srrnececen e 317
USBD_EVENtHS() ..ooociieecee e 318
USBD_EventSuspend()ccccccerrrrriisicscssssmnnceeeeessssssssssssssssnssssssssneees 319

Table of Contents

A-6-8
A-7
A-7-1

Appendix B
B-1
B-1-1
B-1-2
B-1-3
B-1-4
B-1-5
B-1-6
B-1-7
B-1-8
B-1-9
B-1-10
B-1-11
B-1-12
B-1-13
B-1-14
B-1-15
B-1-16
B-1-17
B-1-18
B-1-19
B-2
B-2-1
B-2-2
B-2-3

Appendix C
C-1

C-1-1
C-1-2
C-1-3
C-1-4
C-1-5
C-1-6

10

USBD_EventResume()cccccccermrrimmiiiiscccccssncceeeeese s sessss s ssmssssssseneees 320
Trace FUNCLIONS ...ccoiiiiicicecceeececeee s s s s s e s e s s e e s s e e e e e e e 321
USBD_TracCe() -eeeeeeeerrrrrssssssssssnsemeeemsersssssssssssssmssssssssssssssssssssnnnnssssssnssss 321
Device Controller Driver APl Referencecccoveviiieeeeceeccccccccecennn, 323
Device Driver FUNCLIONSeeccciciiiinsrie e eesrese s sessess e s e 324
USBD_DrvINit() ceeeeeeerreiieccccsismcmemerirrsisssssssesssssssessssssesssssssssssssssssssennees 324
USBD_DrvStart() ..ccceeeeecccciesimmcererreieissssssscssssssssesessssesssnssssssssssssssssnnees 326
LIS =7 2 D V5] o] o) I 328
USBD_DrvAddrSet()ccceesmmemmrrmmmriiisiissssssnmseneeeneseessssssssssssssssssssssnsees 329
USBD_DrvAddrEN()cceeveeecmmmriiiiiieisccccccmsscessen s ee s ss s s smsssssssssesees 330
USBD_DrvCfgSet()ccceeerssrmmmmrrrrrrrriissssssssssnssmesssssesssssssssssssnnssssssssseees 331
USBD_DrvCfgCIr() .eeeeeeeeecrrmmmmmreereriesssscssssssmsnmeseseseesssssssssssssnssesssseneees 332
USBD_DrvGetFrameNDI()cccooeiiiiiiiiiiicime e 333
IS 270 2 0 oV =1 =0 o 1= o |) 1 334
USBD_DrVEP_CIOSE() .cecesmmmeereererreissssssssssnnnnneseseseessssssssssssnnssssssssseees 336
USBD_DrvEP_RXStart()cccccccrermmmrriiiisissssmmeeereenseessssssssssssssssssssseseenes 337
USBD_DrVEP_RX() «eeeeeeeeeesssmsmmerererrsissssssssssssnsmssssesesssssssssssssnnsnssssssnsees 339
USBD_DrvEP_RXZLP() ...ueeereirieieicsccsccssmnnceeee e s se s ss s s smmnsesesseneees 341
USBD_DIrVEP_TX() «eeeeeeeeeerssmmmmremmmmeeisssssssssssnsnmsseseseesessssssssssnnnsssssssssees 342
USBD_DrvEP_TXSTart()cccccceererrrrsisssssssssssmermeermesssssssssssssnssssssssssees 344
USBD_DrvEP_TXZLP() ..ccoerrmemrririiiriisicsccsssnscereeesse s ses s smmsssssssseses 346
UEST =102 DT oV = S 2Y o Yo o { | RSP 347
USBD_DrvEP_Stall()cccceevmmemrerrrrresisssssssssssssmesssesessssssssssssssssssssssssenes 348
USBD_DrvISR_HaNndIer()cccccemrrrrriiiiiiccrsmmecereeeree s ssssssesssssscesssssseens 349
Device Driver BSP FUNCLIONScccciiiiiiiiiiiiiirirrrrrree e 350
USBD_BSP_INit() weeeerreiiicicssssnnmeerrrerrsrssssssssssssssseessssssesssssssssssssssssssnnees 350
USBD_BSP_CONN() .iieiiiciinmmemrrrrrerrsssssssssssssssessesessesssssssssssssnssssssssseees 351
ST =102 =157 S D TT=To o) o] o) I 352
CDC APl REfErENCE ..cceveieeicccnneeeeriei e ee s ssmms s e e s e s e snsmnnne e s 353
(@35 T O3 =TT T {0 o 1= 354
USBD_CDC_INIt() weeerrersrrssesssasnmmerreermsersssssssssssssmsessssssesssssssssssssnsssssssnses 354
USBD_CDC_Add() .eeeeeecercnmmmmmmreerrrersssssssssssssssessesessessssssssssssnnssssssssneees 355
USBD_CDC_CfAdA() -eeerrrerrneeerrrsrnererssssmseessssssseessssssnsessssssnnsessssssnnes 358
EST 27 207 B T [T o) o o | S 360
USBD_CDC_DatalF_Add() .eeeeerrrrrriiiicscsssnmmneeeeereeesssssssssssssssssessseseenes 361
USBD_CDC_DataRX()ccceseeererrrrrrrrsrssssssssnmmeeeeeeeesssssssssssmsnnsseseeessss 363

c-1-7
c-1-8
c-2
C-2-1
c-2-2
c-2-3
C-2-4
c-2-5
C-2-6
C-2-7
c-2-8
C-2-9
C-2-10
c-2-11
c-2-12
c-2-13

Appendix D
D-1
D-1-1
D-1-2
D-1-3
D-1-4
D-1-5
D-1-6
D-1-7
D-1-8
D-2
D-2-1
D-2-2
D-2-3
D-2-4
D-2-5
D-2-6
D-2-7
D-2-8
D-2-9
D-2-10

USBD_CDC_DataTX() --ceeeeeeearerrrrssammrrsssssmerssssssmmessssssmesssssssneessssssnnees 365
USBD_CDC_NOHfY() sooceerrerramrerrssssmerrissssmnersssssmesssssssmsesssssssmesssssssnnes 367
CDC ACM Subclass FUNCLIONScccceviieeeerrircceee e e 369
USBD_ACM_SeriallNit()ccooceerrreeamerrrrssmeersssssmersssssnmnessssssmsesssssssneees 369
USBD_ACM_SerialAdd() ...ccccerrerrsmemrissssrerssssssmeessssssnsesssssssmsessssssnnenes 370
USBD_ACM_SerialCfgAdd()ccoecerrrrreamrrrrresmeerrssssmmeesssssmee e e s ssmeees 371
USBD_ACM_SeriallSCoNnN() w.ccceerereeiiiicsccssmmneeeeeeeseessssssssssssssssessssseeens 373
USBD_ACM_SErialRX() «.eeeeeeameersssssmerrsesssmensssssssmeessssssnnesssssssesssssssnnens 374
USBD_ACM_SEerialTX() «eeeeeeecmerrereeammerrrrssmerrsssssmmersssssmmeessssssmsessssssnneees 376
USBD_ACM_SerialLineCtriGet()ceeeveervrmmmmrrrrrrrirssssccsssmsceeeesenees 378
USBD_ACM_SerialLineCtrIReg()cocsrreerrrssmrrissemmssmsrsssssssssnsssssseenns 379
USBD_ACM_SerialLineCodingGet()coorererrrerrrrrrsssssssssssnnmerseeeeeens 381
USBD_ACM_SerialLineCodingSet()ccccccerrmrmrmniiicicccssssmnneeeneeeneens 382
USBD_ACM_SerialLineCodingReg() -.....ceerremmrrrimmmirssmnrsssnnsssmsssssnnnnns 383
USBD_ACM_SerialLineStateSet()cccccvrrrrrrrrrrrirmeeeeeceeeereeeeereeeas 385
USBD_ACM_SerialLineStateCIr()cccerrrmmmmrrmmrrrnnincscccssssmneeeeeseeeens 386
HID API ReferencCecccccciviemmmmniniiiisssmssne s s 387
HID Class FUNCLIONSccciiicecieriiccmeersscsemee e smne s s e e 388
USBD_HID_INIt() -eeevreeeaeerrsssscersssssmnessssssmseesssssmeessssssmnessssssnnesssssssnnens 388
USBD_HID_Add() «eeieceereeeemreresesmmeesssssmeesssssmme e s ssssmme e s s s e e e s ssssmnens 389
USBD_HID_CfgAAA() eeeeeereremrerrrrssmmeerssssmmeeessssmmeessssssmmessssssmmsessssssmnes 391
USBD_HID_ISCONN() ..eueirriecrmrersrsssnmeerssssmensssessnmeesssssmnessssssnnessssssnnens 393
USBD_HID_RA() --eeeeeeemmeerrrssmreressesmeesesssmeessssssmmeesssssmnessssssmmesssssssmnees 394
USBD_HID_RAASYNC() -eeeieeemrerrrsssmmerrrsssmeersssssmmeesssssmnessssssmnessssssnnees 396
USBD_HID_WH() weeeiiiicciericcimeeessccsmmeessssssmenesssssmme e s s s ssmne s sssssmsenssssssmnnes 398
USBD_HID_WFASYNC() --eerieaemmererrssmeereesesmmeeessssmeessssssmmesessssmmnessssssmnens 400
HID OS FUNGLIONS ..ooceeeieccee e rs s cemee e s s seme e e s s e s s e e 402
USBD_HID_OS_INit() .eeeeerreernmrerriissmersisssmeessssssnmessssssmeessssssnsesssssssnnens 402
USBD_HID_OS_INPULOCK() --eerieeemmerrrersmeeresssmmeeresssmee e e smme e e 403
USBD_HID_OS_InputUnIOCK() eeeeereeiriiiiccciimnmmeeerenereessssssssssnssssesesees 404
USBD_HID_OS_InputDataPend()cccoorammmmmmmrmminisisssssmmneeeeeeseees 405
USBD_HID_OS_InputDataPendAboOrt()ccccccerrrrrriiiccccsssmmmeereeeeenns 407
USBD_HID_OS_InputDataPost()ccccerrrmmmmmrrmmrrmniiissscccssmmnceeeeeeeees 408
USBD_HID_OS_OUtpUtLOCK() «eeieereeerrrecrnmeersssssnmensssssnmeessssssmsesssssssneens 409
USBD_HID_OS_OutputUnIOCK() ...ceeeeeeeamerrrrsesmerrressmeeressemeeeessssmeeens 410
USBD_HID_OS_OutputDataPend()cccoerrmmrmmrrmmriiniicccsssnnceeeeeennnn 411
USBD_HID_OS_OutputDataPendAbort()ccccccceeeiiiiiicccssmmmcernenneenns 413

Table of Contents

D-2-11
D-2-12
D-2-13
D-2-14

Appendix E
E-1
E-1-1
E-1-2
E-1-3
E-1-4
E-1-5
E-1-6
E-2
E-2-1
E-2-2
E-2-3
E-2-4
E-2-5
E-2-6
E-3
E-3-1
E-3-2
E-3-3
E-3-4
E-3-5

Appendix F
F-1
F-1-1
F-1-2
F-1-3
F-1-4
F-1-5
F-1-6
F-1-7
F-1-8
F-1-9

12

USBD_HID_OS_OutputDataPost()ccccerrmmmmrmmrrmmrriniccccssnnceneeeennens 414
USBD_HID_OS_TXLOCK() ..cooceerrrrrmmerrrsssnmenrsssssmensssssnmesssssssnsensssssnnnens 415
USBD_HID_OS_TXUNIOCK() --eeerieeemeerrrrcsmeeresssmmeesssssmmee s s s smmee e s ssmees 416
USBD_HID_OS_TMITaSK() ..eeeerrrrrrrriiiiisiisssnnnmeeeeerersssssssssssssnssessssensens 417
MSC API REfEIrENCE ...eoeiiiceeeecceee e e 419
Mass Storage Class FUNCLIONSccoccccccciimeecrrire s 420
USBD_MSC_INit() weveeeeeerrrecssmrersssssmeessssssmsessssssmesssssssmsessssssnnesssssssnnens 420
USBD_MSC_Ad() «eeemeerrreemmrerersemmersesssmeessssssmme e s ssssmmeessssssmeessssssmnees 421
USBD_MSC_CfAdA() -eeeeeeemmrerrrssmmerrrsssmeersssssmmersssssmnessssssmnesssssssnnens 422
USBD_MSC_LUNAA() +evveeemerrriesmmenrsssssmrenssssssmeessssssnsesssssssmsenssssssneens 424
USBD_MSC _ISCONN() +eeeeememnmnnenererrrrrreesrerereerrrereesesssmsmsmssnsssssssssssssseees 426
USBD_MSC_TaskHandler()ccccceeeiiiiccccinimmecereeer e s s s sssssneeeeseeeeeas 427
MSC OS FUNCLIONS ... e 428
USBD_MSC_OS_INit() -eeriereeerrrrresmeerresemmeeresssmee s essssmme s smee e s 428
USBD_MSC_0S_CommSignalPost()cccccerrrrrmrrrisiscscsssnmmneeeeereeeens 429
USBD_MSC_OS_CommSignalPend()cccccoerrrsmrmirsmmssssnssssssesssssnsnnns 430
USBD_MSC_0S_CommSignalDel()cccoermrrrrrerrrrerssssssssssmnmeersseseeens 431
USBD_MSC_0OS_EnumsSignalPost()cccccccmrrmmrrriiiicicccssnmnneeeeseeeens 432
USBD_MSC_OS_EnumsSignalPend()ccccoveeeeeerrrsssmensssssssersssessneens 433
MSC Storage Layer FUNCLIONScocvccccccceeeeceriee e ssccsssmnceene e nees 434
USBD_Storagelnit()ccccceevrmmmrrmmiiiniissccccscsssceesee s se s se s sss s ssmscesssseneees 434
USBD_StorageCapacityGet()cocceerrirvimmmminnismeniinsss e 435
ST =1 D JS] (o) = Te 11 = Vo [| PSR 436
USBD_StorageWr() «..ccccecceemmmmreererersssssssssssnssssseesessesssssssssssssnsmssssseneees 437
USBD_StorageStatusGet()ccvvmrriinrimmmiinnimes e 439
PHDC API REfEreNCEecoicceeerircccceeerescceee s s ssmme e e s s smee s s s smne e e s es 441
PHDC FUNCHIONS ..cceiiicicccecceire e s smme e e e s mmmn e 442
USBD_PHDC_INit() .ooeooeerieeemmereeresmeeseessmeesessssme e s s smee s s e smme e e s s smmnees 442
USBD_PHDC_Add() -.eeeeerreemmrerisssmrersssssmseessssssmmessssssnsesssssssmsessssssnneees 443
USBD_PHDC_CfgAdd() ...ccoeeerrrrrnmeerrsecsmrenssssssmsessssssssesssssssnsesssssssnnens 445
USBD_PHDC _ISCONN() ...uuuunmmemrrererreessssssssssssnmssssesssssssssssssssssmssssssnnees 447
USBD_PHDC_RACTG() -eeerrraemrerrrrssmrerrssssmrersssssseesssssansessssssmsesssssannes 448
USBD_PHDC_WICTQ() -eeeeeeersrerrressmmersssssnnsessssssmsessssssnmesssssssnsessssssnnees 450
USBD_PHDC_11073_EXtCTG() ..eceeceererrrammrrrrrrsmrersssssmmeeeesssmeeeess s 452
USBD_PHDC_RdPreamble()cccevviiicccccirmmeemrrenreee s sss s ssssceeeeeenees 454
USBD_PHDC_Rd() ..cceoeeerricimmeerisismeeesssssnsesssssssmssessssssmeessssssnsssssssssmnens 456

F-1-10
F-1-11
F-1-12
F-2
F-2-1
F-2-2
F-2-3
F-2-4
F-2-5
F-2-6
F-2-7

Appendix G
G-1
G-1-1
G-1-2
G-1-3
G-1-4
G-1-5
G-1-6
G-1-7
G-1-8
G-1-9
G-1-10
G-1-11
G-1-12
G-2
G-2-1
G-2-2
G-2-3
G-2-4
G-2-5
G-2-6
G-2-7
G-2-8
G-2-9
G-2-10
G-2-11

USBD_PHDC_Wrpreamble() ...cccccccerieiicccccismnmmreeernesessssscssssssssssseseseees 458

USBD_PHDC_WI() ceecceeeeeieesmrersssssmmeesssssmeesssssssmesssssssmsessssssnnenssssssnnens 460
USBD_PHDC_RESEt() --eeerieremrerrrremmerrressmee e e s smme e s ssssmee s s s s e e e 462
PHDC OS Layer FUNCHIONSccciviiiiiicicccccceeececer e e mssenee e 463
USBD_PHDC_OS_INit() .eeveceeeerrrscsmrrrissssmeessssssmensssssmeessssssnsesssssssnnens 463
USBD_PHDC_OS_RALOCK() --eereeeammerrrrsrmrerrssssmmeerssssmnessssssmmeessssssmees 464
USBD_PHDC_OS_RdUNLOCK() ...ceerrressmmrrrrrsssmmersssssnmeessssssmsesssssssnnens 466
USBD_PHDC_OS_WrINtrLOCK() ...cccerrreermerrrssssmersssssmnessssssnnesssssssnnens 467
USBD_PHDC_OS_WrINtrUNLOCK()ceeerrererrrrrrrerrreeeeeeemmmnnnnnnesnsesssaens 468
USBD_PHDC_OS_WTrBUIKLOCK() .eceerrrsearrrrrssssmerrssssmeersssssmnerssssssneees 469
USBD_PHDC_OS_WrBUIKUNLOCK()ccocterrrresmmersssssnmeessssssmeenssssssneens 471
Vendor Class APl REfErencecccceeecceemrrcssceersssssmeessssssesesssssssmees 473
Vendor Class FUNCHIONS ... 474
USBD_Vendor_INit() ..uueeecceecssmceererermerssssssssssssssssssessssssssssssssssnsmssssssnnees 474
USBD_Vendor_Add() ...cccceesmmmrmmmmrrmiiiiissssssmseneeesesesssssssssssssssssssssssesees 475
USBD_Vendor_CfgAdd() ...cccceriirrimmmrimnimmnsnisessssssssss s ssssmss s sssssnnnes 477
USBD_Vendor_ISCONN() ..ceeueueeeecrrrrrrrrereereereseseseesssnessmssssssssssssssssseees 479
ST 1D JY/=T oV [T gl = T) R PR PRR 481
USBD_Vendor_WI()cccvieeeeseerrssssmeesssssmeesssssssmssssssssmsessssssnsesssssssnnens 483
USBD_Vendor_ RAASYNC() ...eeeceererrrrrreisssssssssssmmeesserrsesssssssssssssmsensssnnens 485
USBD_Vendor_WIASYNC() ...cccceeerrrrrriiissssssssnnmeeenessssssssssssssssnssssssssseens 487
ST =10 JV/=T oTe [gl 1914 2 T [| IR 489
USBD_Vendor_INTrWH()ccccccceemmeermriiissssssssssssseesessssssssssssssssnssssssssneees 491
USBD_Vendor_INtrRAASYNC() weeevveeriiiiiiccicimnccreeeene s eessseccssmsmenesseneees 493
USBD_Vendor_INtrWFASYNC() ...occeemerrininmrnrinimmss s ssssse s sssmss s ssnees 495
USBDeV_API FUNCLIONSiiiiiceceeeeecceceen e e 497
USBDeV_GEetNDbIDeV()ccccccmrmrimmriiiiiccccmseccrree e s s s ssssene s ee e e ee e 497
USBDEV_OPEN() wrrrrrrrriiiiraasssssnmmmrerrresrsssssssssssssmsmnsssssesssssssssssssnnnnsssseses 499
USBDEV_ClOSE() .everrerermmmmmnnnnnnnnnrrrsrssssssrerrerereeesessesnsmnmsssssssssssssssssssenes 500
USBDev_GetNbrARSetting() «.ccceeeerrriririiircirncmreee s smnceeeeeeeees 501
USBDev_GetNbrAssociatedIF()coovviireeeeissecmrreeere e ccemeceeee e 503
USBDeV_SetARSEetting()ccoeeeerrrrrrrrrisssssssssnmmeenssrrsesssssssssssnsmsesssssnees 504
USBDev_GetCurARSEetting() ..-ceeeeerrrrririiiccissnmmreerrie e ses e ssmseeeeesenees 506
ST =1 D T=AV K51 o [Te] 015 o Y=Y =T o [| PR 508
USBDeV_BUIKIN_OPEN() -eeeueeeeeerrrrrrrrrrrrreresresereeseeeensmsmnnsnssssssnssssssens 509
USBDeVv_BuUIKOUt_OPeNn() ...ccccceerrrrmririrsscrcssnnmmeeneesesesssssssssssnssssseseneees 510
USBDeV_INtrIN_Open() ..ccccccecemrrrereeiressssssmceeee e se s se s s ssmsce e s e nees 511

Table of Contents

G-2-12
G-2-13
G-2-14
G-2-15
G-2-16
G-2-17
G-2-18
G-2-19
G-2-20

Appendix H
H-1
H-2
H-3
H-4
H-5
H-6

Appendix |
1-0-1
1-0-2
1-0-3
1-0-4
1-0-5

14

USBDeV_IntrOut_Open()ccccccerermririiisccssssnnmseereesssessessssssssssssssssssees 512
USBDeV_PipeGetAddr()ccccoeerrmriiiiiiiiicsmmmmneee e 513
USBDEeV_PipeClOSE() ...ceeerrnmmmmrrrrrrrrirssssssssssnnnmssssssesssssssssssssnnssssssssesees 514
USBDeV_PipeStall()cccceeerrmmmrrrrierriiessssssssssnmseeeessesssssssssssssmssesssseseees 515
ST 1D TSIV ST YA o Yo o | I 516
USBDEV_CIrREG() «eereeerrrerrssnnmmerreerrsrssssssssssssnmsnssssssesssasssssssnsmssnsssnnnes 517
USBDEV_PIPEWI() .oiiieiiecciiemmmrrirreesssssssssssssssmseesessessssssssssssssssssssssneees 520
USBDeV_PIPERA() ...ccocerrrerrmrrrirssceerssessmeesssssmme s s ssssnseessssssmsesssssssnens 522
USBDeV_PipeRAASYNC() ..uueeeeerrrrrrrriiiissssssssmsemerseeseesssssssssssssssssssssssenes 524
T4 o] @ o [527
GeNEriC EIror COUESiiiirrriririrreeeeerersssmre e s ssssme e e s s e e e e s s e e s senns 528
Device Error COAesciiviiiicirirmemriiriiss s sss s sssnsseseses s sessss s sssmmnnsssenees 528
Configuration Error Codescccvvmmmiiniimmnninnnsns s snanns 528
Interface Error COdescoooimiirciecereecemee e semee e e 529
Endpoint Error COdEscovmmimmiiiiiiiicccccssssecereee e ses e s sss s ssssmsnssssnees 529
OS Layer Error COdesuuuvmmmiimiismniiinissnssinsssssssisssssss s sssssssssssssnns 529
Memory FOOIPrint ... e s 531
Communications Device Classcccoiiiiiiiiiicriccccccceces e 532
Human Interface Device Classcccccceecerrreseeceeressccee e smee e 533
Mass Storage Classcccccvcemrrmrriiiiinisssssssssscsreee e se s s s ssssssssssseneees 534
Personal Healthcare Device Classccccvvrmmmrrmrirnnissssssssnmeeneesnees 535
RT3 e [0 gl =T 537

Chapter

About USB

This chapter presents a quick introduction to USB. The first section in this chapter
introduces the basic concepts of the USB specification Revision 2.0. The second section
explores the data flow model. The third section gives details about the device operation.
Lastly, the fourth section describes USB device logical organization.

The full protocol is described extensively in the USB Specification Revision 2.0 at
http://www.usb.org.

1-1 INTRODUCTION

The Universal Serial Bus (USB) is an industry standard maintained by the USB Implementers
Forum (USB-IF) for serial bus communication. The USB specification contains all the
information about the protocol such as the electrical signaling, the physical dimension of
the connector, the protocol layer, and other important aspects. USB provides several
benefits compared to other communication interfaces such as ease of use, low cost, low
power consumption and, fast and reliable data transfer.

1-1-1 BUS TOPOLOGY

USB can connect a series of devices using a tiered star topology. The key elements in USB
topology are the host, hubs, and devices, as illustrated in Figure 1-1. Each node in the
illustration represents a USB hub or a USB device. At the top level of the graph is the root
hub, which is part of the host. There is only one host in the system. The specification allows
up to seven tiers and a maximum of five non-root hubs in any path between the host and a
device. Each tier must contain at least one hub except for the last tier where only devices
are present. Each USB device in the system has a unique address assigned by the host
through a process called enumeration (see section 1-4-3 on page 25 for more details on
enumeration).

15

Chapter 1

The host learns about the device capabilities during enumeration, which allows the host
operating system to load a specific driver for a particular USB device. The maximum
number of peripherals that can be attached to a host is 127, including the root hub.

Host

Root Hub

Figure 1-1 Bus topology

1-1-2 USB HOST

The USB host communicates with the devices using a USB host controller. The host is
responsible for detecting and enumerating devices, managing bus access, performing error
checking, providing and managing power, and exchanging data with the devices.

1-1-3 USB DEVICE

A USB device implements one or more USB functions where a function provides one
specific capability to the system. Examples of USB functions are keyboards, webcam,
speakers, or a mouse. The requirements of the USB functions are described in the USB class
specification. For example, keyboards and mice are implemented using the Human
Interface Device (HID) specification.

USB devices must also respond to requests from the host. For example, on power up, or
when a device is connected to the host, the host queries the device capabilities during
enumeration, using standard requests.

16

Data Flow Model

1-2 DATA FLOW MODEL

This section defines the elements involved in the transmission of data across USB.

1-2-1 ENDPOINT

Endpoints function as the point of origin or the point of reception for data. An endpoint is a

logical entity identified using an endpoint address. The endpoint address of a device is

fixed, and is assigned when the device is designed, as opposed to the device address,

which is assigned by the host dynamically during enumeration. An endpoint address

consists of an endpoint number field (0 to 15), and a direction bit that indicates if the

endpoint sends data to the host (IN) or receives data from the host (OUT). The maximum

number of endpoints allowed on a single device is 32.

Endpoints contain configurable characteristics that define the behavior of a USB device:

Bus access requirements

Bandwidth requirement

Error handling

Maximum packet size that the endpoint is able to send or receive
Transfer type

Direction in which data is sent and receive from the host

ENDPOINT ZERO REQUIREMENT

Endpoint zero (also known as Default Endpoint) is a bi-directional endpoint used by the

USB host system to get information, and configure the device via standard requests. All

devices must implement an endpoint zero configured for control transfers (see section

“Control Transfers” on page 18 for more information).

17

Chapter 1

1-2-2 PIPES

A USB pipe is a logical association between an endpoint and a software structure in the USB
host software system. USB pipes are used to send data from the host software to the
device’s endpoints. A USB pipe is associated to a unique endpoint address, type of transfer,
maximum packet size, and interval for transfers.

The USB specification defines two types of pipes based on the communication mode:
B Stream Pipes: Data carried over the pipe is unstructured.
B Message Pipes: Data carried over the pipe has a defined structure.

The USB specification requires a default control pipe for each device. A default control pipe
uses endpoint zero. The default control pipe is a bi-directional message pipe.

1-2-3 TRANSFER TYPES

The USB specification defines four transfer types that match the bandwidth and services
requirements of the host and the device application using a specific pipe. Each USB transfer
encompasses one or more transactions that sends data to and from the endpoint. The
notion of transactions is related to the maximum payload size defined by each endpoint
type in that when a transfer is greater than this maximum, it will be split into one or more
transactions to fulfill the action.

CONTROL TRANSFERS

Control transfers are used to configure and retrieve information about the device
capabilities. They are used by the host to send standard requests during and after
enumeration. Standard requests allow the host to learn about the device capabilities; for
example, how many and which functions the device contains. Control transfers are also
used for class-specific and vendor-specific requests.

A control transfer contains three stages: Setup, Data, and Status. These stages are detailed in
Table 1-1.

18

Data Flow Model

Stage Description

Setup The Setup stage includes information about the request. This SETUP stage represents
one transaction.

Data The Data stage contains data associated with request. Some standard and class-
specific request may not require a Data stage. This stage is an IN or OUT directional
transfer and the complete Data stage represents one ore more transactions.

Status The Status stage, representing one transaction, is used to report the success or failure
of the transfer. The direction of the Status stage is opposite to the direction of the Data
stage. If the control transfer has no Data stage, the Status stage always is from the
device (IN).

Table 1-1 Control Transfer Stages

BULK TRANSFERS

Bulk transfers are intended for devices that exchange large amounts of data where the
transfer can take all of the available bus bandwidth. Bulk transfers are reliable, as error
detection and retransmission mechanisms are implemented in hardware to guarantee data
integrity. However, bulk transfers offer no guarantee on timing. Printers and mass storage
devices are examples of devices that use bulk transfers.

INTERRUPT TRANSFERS

Interrupt transfers are designed to support devices with latency constrains. Devices using
interrupt transfers can schedule data at any time. Devices using interrupt transfer provides a
polling interval which determines when the scheduled data is transferred on the bus.
Interrupt transfers are typically used for event notifications.

ISOCHRONOUS TRANSFERS

Isochronous transfers are used by devices that require data delivery at a constant rate with a
certain degree of error-tolerance. Retransmission is not supported by isochronous transfers.
Audio and video devices use isochronous transfers.

USB DATA FLOW MODEL

Table 1-2 shows a graphical representation of the data flow model.

19

Chapter 1

Physical

° Software Hardware °

Hardware ° Software o

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Devi trol : : : :
evice con .
] EP — 1 1 EP ¥ Device
f.and " i Ll i i Y H standard
configuration ¥ n
| EPgoum [P i ° i P! EPooun [request
1
Pipes! EP — 1 1 EP 1
1 1 1 1
As°f|F‘”at_'9 - 1 y tusB cable | LU USB
pplication ux ux .
EP1(OUT) — Domux i } Demux— EP1(OUT) t Function A
: : : |
1 1 1 1 1 1
1 1 1 1 1
Software ' i 1 Ep H
Application FPs H ! P = sn) usB
1 1 Function B
1 EP souri—— ! ! EP 50Ut !
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
i i i i
Host Software | Host controller 1 1 Device Controller | Device Firmware
1 1 1
1 1 1 :
Figure 1-2 USB data flow
F1-2(D The host software uses standard requests to query and configure the device

using the default pipe. The default pipe uses endpoint zero (EPO).

F1-2(2) USB pipes allow associations between the host application and the device’s
endpoints. Host applications send and receive data through USB pipes.

F1-2(3) The host controller is responsible for the transmission, reception, packing and
unpacking of data over the bus.

F1-2(4) Data is transmitted via the physical media.

F1-2(5) The device controller is responsible for the transmission, reception, packing
and unpacking of data over the bus. The USB controller informs the USB
device software layer about several events such as bus events and transfer

events.

F1-2(6) The device software layer responds to the standard request, and implements
one or more USB functions as specified in the USB class document.

20

Physical Interface and Power Management

TRANSFER COMPLETION

The notion of transfer completion is only relevant for control, bulk and interrupt transfers as
isochronous transfers occur continuously and periodically by nature. In general, control,
bulk and interrupt endpoints must transmit data payload sizes that are less than or equal to
the endpoint’s maximum data payload size. When a transfer’s data payload is greater than
the maximum data payload size, the transfer is split into several transactions whose payload
is maximum-sized except the last transaction which contains the remaining data. A transfer
is deemed complete when:

B The endpoint transfers exactly the amount of data expected.

B The endpoint transfers a short packet, that is a packet with a payload size less than the

maximum.

B The endpoint transfers a zero-length packet.

1-3 PHYSICAL INTERFACE AND POWER MANAGEMENT

USB transfers data and provides power using four-wire cables. The four wires are: Vi, D,
D™ and Ground. Signaling occurs on the D* and D™ wires.

1-3-1 SPEED

The USB 2.0 specification defines three different speeds.
B Low Speed: 1.5 Mb/s

B Full Speed: 12 Mb/s

B High Speed: 480 Mb/s

21

Chapter 1

1-3-2 POWER DISTRIBUTION

The host can supply power to USB devices that are directly connected to the host. USB
devices may also have their own power supplies. USB devices that use power from the
cable are called bus-powered devices. Bus-powered device can draw a maximum of 500
mA from the host. USB devices that have alternative source of power are called self-
powered devices.

1-4 DEVICE STRUCTURE AND ENUMERATION

Before the host application can communicate with a device, the host needs to understand
the capabilities of the device. This process takes place during device enumeration. After
enumeration, the host can assign and load a specific driver to allow communication
between the application and the device.

During enumeration, the host assigns an address to the device, reads descriptors from the
device, and selects a configuration that specifies power and interface requirements. In order
for the host learns about the device’s capabilities, the device must provide information
about itself in the form of descriptors.

This section describes the device logical organization from the USB host’s point of view.

1-4-1 USB DEVICE STRUCTURE

From the host point of view, USB devices are internally organized as a collection of
configurations, interfaces and endpoints.

CONFIGURATION

A USB configuration specifies the capabilities of a device. A configuration consists of a
collection of USB interfaces that implement one or more USB functions. Typically only one
configuration is required for a given device. However, the USB specification allows up to
255 different configurations. During enumeration, the host selects a configuration. Only one
configuration can be active at a time. The device uses a configuration descriptor to inform
the host about a specific configuration’s capabilities.

22

Device Structure and Enumeration

INTERFACE

A USB interface or a group of interfaces provides information about a function or class
implemented by the device. An interface can contain multiple mutually exclusive settings
called alternate settings. The device uses an interface descriptor to inform the host about a
specific interface’s capabilities. Each interface descriptor contains a class, subclass, and
protocol codes defined by the USB-IF, and the number of endpoints required for a
particular class implementation.

ALTERNATE SETTINGS

Alternate settings are used by the device to specify mutually exclusive settings for each
interface. The default alternate settings contain the default settings of the device. The device
also uses an interface descriptor to inform the host about an interface’s alternate settings.

ENDPOINT

An interface requires a set of endpoints to communicate with the host. Each interface has
different requirements in terms of the number of endpoints, transfer type, direction,
maximum packet size, and maximum polling interval. The device sends an endpoint
descriptor to notify the host about endpoint capabilities.

Figure 1-3 shows the hierarchical organization of a USB device. Configurations are grouped

based on the device’s speed. A high-speed device might have a particular configuration in
both high-speed and low/full speed.

23

Chapter 1

High-Speed Low/Full-Sped
Structure Structure

Other configuration

Interfaces
Alternate Settings

L-
EP!)
3 Endpoints
N

Figure 1-3 USB device structure

% Interfaces/Classes

1-4-2 DEVICE STATES

The USB 2.0 specification defines six different states and are detailed in Table 1-2.

Device States Description

Attached The device is in the Attached state when it is connected to the host or a hub port. The
hub must be connected to the host or to another hub.

Powered A device is considered in the Powered state when it starts consuming power from the
bus. Only bus-powered devices use power from the host. Self-powered devices are in
the Powered state after port attachment.

Default After the device has been powered, it should not respond to any request or
transactions until it receives a reset signal from the host. The device enters in the
Default state when it receives a reset signal from the host. In the Default state, the
device responds to standard requests at the default address 0.

Address During enumeration, the host assigns a unique address to the device. When this
occurs, the device moves from the Default state to the Address state.

24

Device Structure and Enumeration

Device States Description

Configurated After the host assigns an address to the device, the host must select a configuration.
After the host selects a configuration, the device enters the Configured state. In this
state, the device is ready to communicate with the host applications.

Suspended The device enters in Suspended state when no traffic has been seen in the bus for a
specific period of time. The device retains the address assigned by the host in the
Suspended state. The device returns to the previous state after traffic is present in the
bus.

Table 1-2 USB Device States

1-4-3 ENUMERATION

Enumeration is the process where the host configures the device and learns about the
device’s capabilities. The host starts enumeration after the device is attached to one of the
root or external hub ports. The host learns about the device’s manufacturer, vendor/product
IDs and release versions by sending a Get Descriptor request to obtain the device descriptor
and the maximum packet size of the default pipe (control endpoint 0). Once that is done,
the host assigns a unique address to the device which will tell the device to only answer
requests at this unique address. Next, the host gets the capabilities of the device by a series
of Get Descriptor requests. The host iterates through all the available configurations to
retrieve information about number of interfaces in each configuration, interfaces classes,
and endpoint parameters for each interface and will lastly finish the enumeration process by
selecting the most suitable configuration.

25

Chapter 1

26

Chapter

Getting Started

This chapter gives you some insight into how to install and use the nC/USB-Device stack.

The following topics are explained in this chapter:

Prerequisites

Downloading the source code files
Installing the files

Building the sample application

Running the sample application

After the completion of this chapter, you should be able to build and run your first USB

application using the nC/USB-Device stack.

27

Chapter 2

2-1 PREREQUISITES

Before running your first application, you must ensure that you have the minimal set of
required tools and components:

B Toolchain for your specific microcontroller.
B Development board.
B pC/USB-Device stack with the source code of at least one of the Micripm USB classes.

B USB device controller driver compatible with your hardware for the pC/USB-Device
stack.

B Board support package (BSP) for your development board.
B Example project for your selected RTOS (that is nC/OS-1I or pC/OS-IID).
If Micripm does not support your USB device controller or BSP, you will have to write your

own device driver. Refer to Chapter 6, “Device Driver Guide” on page 77 for more
information on writing your own USB device driver.

2-2 DOWNLOADING THE SOURCE CODE FILES

pC/USB-Device can be downloaded from the Micripm customer portal. The distribution
package includes the full source code and documentation. You can log into the Micripm
customer portal at the address below to begin your download (you must have a valid
license to gain access to the file):

http://micrium.com/login
pC/USB-Device depends on other modules, and you need to install all the required
modules before building your application. Depending on the availability of support for your

hardware platform, ports and drivers may or may not be available for download from the
customer portal. Table 2-1 shows the module dependency for pC/USB-Device.

28

Downloading the Source Code Files

Module Name Required Note(s)

uC/USB-Device Core YES Hardware independent USB stack.

uC/USB-Device Driver YES USB device controller driver. Available only if Micrium supports
your controller, otherwise you have to develop it yourself.

pC/USB-Device Vendor Class | Optional Available only if you purchased Vendor class.

uC/USB-Device MSC Optional Available only if you purchased Mass Storage Class (MSC).

uC/USB-Device HID Class Optional Available only if you purchased Human Interface Device (HID)
class.

uC/USB-Device CDC ACM Optional Available only if you purchased Communication Device Class
(CDC) with the Abstract Control Model (ACM) subclass.

uC/USB-Device PHDC Optional Available only if you purchased Personal Healthcare Device
Class (PHDC).

uC/CPU Core YES

uUC/CPU Port YES Available only if Micrium has support for your target architecture
(ARM, AVR32, MSP430, etc)

pC/LIB Core YES Micripm run-time library.

uC/LIB Port Optional Available only if Micripm has support for your target architecture
(ARM, AVR32, MSP430, etc)

uC/0OS-Il Core Optional Available only if your application is using uC/OS-II

uC/OS-Il Port Optional Available only if Micripm has support for your target architecture
(ARM, AVR32, MSP430, etc)

uC/0OS-lll Core Optional Available only if your application is using pC/OS-llI

uC/OS-Ill Port Optional Available only if Micripm has support for your target architecture

(ARM, AVR32, MSP430, etc)

Table 2-1 pC/USB-Device Module Dependency

Table 2-1 indicates that all the pC/USB-Device classes are optional because there is no

mandatory class to purchase with the nC/USB-Device Core and Driver. The class you will

have purchased will depend on your needs. But don’t forget that you need a class to build a
complete USB project. Table 2-1 also indicates that pC/OS-II and -III Core and Port are
optional. Indeed, pC/USB-Device stack does not assume a specific real-time operating

system to work with but it still requires one.

29

Chapter 2

2-3 INSTALLING THE FILES

Once all the distribution packages have been downloaded to your host machine, extract all
the files at the root of your C:\ drive for instance. The package may be extracted to any
location. After extracting all the files, the directory structure should look as shown in
Figure 2-1. In the example, all Micripm products sub-folders shown in Figure 2-1 will be
located in C:\Micrium\Software\

=+---{ff=7 uC-CPU

FR— {:__| <Architecture>

—{f7yuC-LIB

H
'
+

Figure 2-1 Directory Tree for yC/USB-Device

30

Building the Sample Application

2-4 BUILDING THE SAMPLE APPLICATION

This section describes all the steps required to build a USB-based application. The
instructions provided in this section are not intended for any particular toolchain, but
instead are described in a generic way that can be adapted to any toolchain.

The best way to start building a USB-based project is to start from an existing project. If you
are using pC/OS-II or pC/OS-III, Micrinm provides example projects for multiple
development boards and compilers. If your target board is not listed on Micripm’s web site,
you can download an example project for a similar board or microcontroller.

The purpose of the sample project is to allow a host to enumerate your device. You will add
a USB class instance to both, full-speed and high-speed configurations (f both are
supported by your controller). Refer to section 7-1 “Class Instance Concept” on page 99 for
more details about the class instance concept. After you have successfully completed and
run the sample project, you can use it as a starting point to run other USB class demos you
may have purchased.

pC/USB-Device requires a Real-Time Operating System (RTOS). The following assumes that
you have a working example project running on pC/OS-II or pC/OS-I1I.

2-4-1 UNDERSTANDING MICRIUM EXAMPLES
A Micripm example project is usually placed in the following directory structure.

\Micrium
\Software
\EvalBoards
\<manufacturer>
\<board_name>
\<compiler>
\<project name>

*, *

Note that Micripm does not provide by default an example project with the nC/USB-Device
distribution package. Micripm examples are provided to customers in specific situations. If it
happens that you receive a Micripm example, the directory structure shown above is
generally used by Micrium. You may use a different directory structure to store the
application and toolchain projects files.

31

Chapter 2

\Micrium
This is where Micrinm places all software components and projects. This directory is
generally located at the root directory.

\Software
This sub-directory contains all software components and projects.

\EvalBoards
This sub-directory contains all projects related to evaluation boards supported by Micripm.

\<manufacturer>
This is the name of the manufacturer of the evaluation board. In some cases this can be also
the name of the microcontroller manufacturer.

\<board name>
This is the name of the evaluation board.

\<compiler>
This is the name of the compiler or compiler manufacturer used to build the code for the
evaluation board.

\<project name>
The name of the project that will be demonstrated. For example a simple pC/USB-Device
with pC/OS-III project might have the project name ‘uCOS-III-USBD".

,
These are the source files for the project. This directory contains configuration files
app cfg.h, os cfg.h, os cfg app.h, cpu cfg.h and other project-required sources files.

os_cfg.h is a configuration file used to configure nC/OS-1II (or pC/OS-1I) parameters
such as the maximum number of tasks, events, objects, which pC/OS-III services are
enabled (semaphores, mailboxes, queues), and so on. os_cfg.h is a required file for
any pC/OS-II application. See the pC/OS-III documentation and books for further
information.

app.c contains the application code for the example project. As with most C programs,

code execution starts at main(). At a minimum, app.c initializes pC/OS-III and creates
a startup task that initializes other Micripm modules.

32

Building the Sample Application

app_cfg.h is a configuration file for your application. This file contains #defines to

configure the priorities and stack sizes of your application and the Micripm modules’
tasks.

app_<module>.c and app_<module>.h These optional files contain the Micripm
modules’ (uC/TCP-IP, nC/FS, nC/USB-Host, etc) initialization code. They may or may
not be present in the example projects.

2-4-2 COPYING AND MODIFYING TEMPLATE FILES

Copy the files from the application template and configuration folders into your application
as shown in Figure 2-2.

:----@ EvalBoards
e @ <manufacturer>

F— @ App B @ <board name>
H—----@ Device e E <compiler>

—----@ uC-USB-Device-V4

+——{B0 08 #--{ | <project name>
bd.
4| ucos-11 [spp_usbd.c
+-—{]uCOS-III [} app_usbd.h

D app_usbd_<class>.c

broees @Cfg [usbd_cfg.h
F— E Template ———— P D usbd_dev_cfg.h

D usbd_dev_cfg.c

Figure 2-2 Copying Template Files.

app_usbd. * is the master template for USB application-specific initialization code. This file
contains the function App_USBD_Init (), which initializes the USB stack and class-specific
demos.

app_usbd <class>.c contains a template to initialize and use a certain class. This file
contains the class demo application. In general, the class application initializes the class,
creates a class instance, and adds the instance to the full-speed and high-speed

configurations. Refer to the chapter(s) of the class(es) you purchased for more details about
the class demos.

33

Chapter 2

usbd_cfg.h is a configuration file used to setup pnC/USB-Device stack parameters such as
the maximum number of configurations, interfaces, or class-related parameters.

usbd_dev_cfg.c and usbd_dev_cfg.h are configuration files used to set device parameters
such as vendor ID, product ID, and device release number. They also serve to configure the
USB device controller driver parameters, such as base address, dedicated memory base
address and size, controller’s speed, and endpoint capabilities.

MODIFY DEVICE CONFIGURATION

Modify the device configuration file (usbd cfg.c) as needed for your application. See
below for details.

USBD_DEV_CFG USBD_DevCfg_Template = { (1)
O0XFFFE, (2)
0x1234,
0x0100,

"OEM MANUFACTURER", (3)

"OEM PRODUCT",
"1234567890ABCDEF",

USBD_LANG_ID ENGLISH US (4)
i
Listing 2-1 Device Configuration Template
L2-1(D) Give your device configuration a meaningful name by replacing the word
“Template”.

L2-1(2) Assign the Vendor ID, Product ID and Device Release Number. For
development purposes you can use the default values, but once you decide to
release your product, you must contact USB-IF in order to get valid IDs. USB-IF
maintains all USB Vendor ID and Product ID numbers.

L2-1(3) Specify human readable Vendor ID, Product ID, and Device Release Number
strings.

L2-1(4) A USB device can store strings in multiple languages. Specify the language

used in your strings. The #defines for the other languages are defined in the file
usbd _core.h in the section “Language Identifiers”.

34

Building the Sample Application

MODIFY DRIVER CONFIGURATION

Modify the driver configuration (usbd dev cfg.c) as needed for your controller. See

Listing 2-2 below for details.

USBD_DRV_CFG USBD_DrvCfg Template = { (1)
0x00000000, (2)
0x00000000, (3)
Ou,
USBD_DEV_SPD_FULL, (4)
USBD_DrvEP_InfoTbl_Template (5)
i
Listing 2-2 Driver Configuration Template
L2-2(D) Give your driver configuration a meaningful name by replacing the word

L2-2(2)

L2-2(3)

L2-2(4)

L2-2(5)

“Template”.
Specify the base address of your USB device controller.

If your target has dedicated memory for the USB controller, you can specify its
base address and size here. Depending on the USB controller, dedicated
memory can be used to allocate driver buffers or DMA descriptors.

Specify the USB device controller speed: USBD_DEV_SPD HIGH if your controller
supports high-speed or USBD DEV_SPD FULL if your controller supports only
full-speed.

Specify the endpoint information table. The endpoint information table should
be defined in your USB device controller BSP files. Refer to section 6-5-1
“Endpoint Information Table” on page 86 for more details about the endpoint
information table.

MODIFY USB APPLICATION INITIALIZATION CODE

Listing 2-3 shows the code that you should modify based on your specific configuration done

previously. You should modify the parts that are highlighted by the bold text. The code

snippet is extracted from the function App USBD Init() defined in app usbd.c. The

complete initialization sequence performed by App USBD Init() is presented in Listing 2-5.

35

Chapter 2

#include <usbd_bsp template.h> (1)

CPU_BOOLEAN App_USBD_Init (void)
{
CPU_INT08U dev_nbr;
CPU_INT08U cfg fs nbr;

USBD_ERR err;

USBD_Init(&err); (2)
dev_nbr = USBD_DevAdd(&USBD_DevCfg_Template, (3)
&App_ USBD_ BusFncts,

&USBD_DrvAPI_Template, (4)
&USBD_DrvCfg_Template, (5)
&USBD_DrvBSP_Template, (6)
&err);

if (USBD_DrvCfg_Template.Spd == USBD DEV_SPD HIGH) { (7)

cfg_hs_nbr = USBD_CfgAdd(dev_nbr,
USBD_DEV_ATTRIB_SELF POWERED,
100u,
USBD_DEV_SPD_HIGH,
"HS configuration",

&err);

Listing 2-3 App_USBD_lInit() in app_usbd.c

L2-3(D) Include the USB driver BSP header file that is specific to your board. This file
can be found in the following folder:

\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

L2-3(2) Initialize the USB device stack’s internal variables, structures and core RTOS
port.
L2-3(3) Specify the address of the device configuration structure that you modified in

the section “Modify Device Configuration” on page 34.

36

Building the Sample Application

12-3(4) Specify the address of the driver API structure. The driver’s API structure is
defined in the driver’s header file named usbd_drv_<controller>.h.

L2-3(5) Specify the address of the driver configuration structure that you modified in
the section “Modify Driver Configuration” on page 35.

L2-3(6) Specify the endpoint information table. The endpoint information table should
be defined in your USB device controller BSP files.

L2-3(7) If the device controller supports high-speed, create a high-speed configuration
for the specified device.

2-4-3 INCLUDING USB DEVICE STACK SOURCE CODE

First, include the following files in your project from the pC/USB-Device source code
distribution, as indicated in Figure 2-3.

--[f77 uC-USB-Device-V4

-;H-----@ Class
i}- ----- @ <class>

D usbd_<class>.c

i}-----@ <controller>
E D usbd_drv_<controller>.c

+f----|ff 7 <board name>

A @ os D usbd _bsp_<controller>.c
+ ------- [f=7 <RTOS>
D usbd_os.c
4---{7 77 Source

D usbd_os.c

D usbd_ep.c
D usbd_core.c

Figure 2-3 yC/USB-Device Source Code

37

Chapter 2

Second, add the following include paths to your project settings:

\Micrium\Software\uC-USB-Device\Source\
\Micrium\Software\uC-USB-Device\Class\<class>\
\Micrium\Software\uC-USB-Device\Drivers\<controller>
\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

2-4-4 MODIFYING APPLICATION CONFIGURATION FILE

The USB application initialization code templates assume the presence of app cfg.h. The
following #defines must be present in app cfg.h in order to build the sample application.

#define APP_CFG USBD_EN DEF_ENABLED (1)
#define USBD 0S_CFG_CORE_TASK PRIO 6u (2)
#define USBD_OS_CFG_TRACE TASK PRIO 7u
#define USBD 0S_CFG_CORE_TASK STK SIZE 256u
#define USBD_OS CFG_TRACE TASK PRIO 256u
#define APP CFG USBD_XXXX EN DEF_ENABLED (3)
#define LIB MEM CFG_OPTIMIZE ASM EN DEF_DISABLED (4)
#define LIB MEM CFG ARG _CHK EXT EN DEF_ENABLED
#define LIB MEM CFG_ALLOC EN DEF_ENABLED
#define LIB MEM CFG_HEAP SIZE 1024u
#define TRACE LEVEL_OFF ou (5)
#define TRACE_LEVEL INFO 1u
#define TRACE LEVEL_DBG 2u
#define APP _CFG TRACE LEVEL TRACE_LEVEL DBG (6)
#define APP CFG_TRACE printf (7)

#define APP_TRACE_INFO(x) \

((APP_CFG_TRACE_LEVEL >= TRACE LEVEL INFO) ? (void)(APP_CFG TRACE x) : (void)0)
#define APP TRACE DBG(X) \
((APP_CFG_TRACE LEVEL >= TRACE LEVEL DBG) ? (void)(APP_CFG TRACE x) : (void)0)

Listing 2-4 Application Configuration #defines

38

Building the Sample Application

L2-4(1)

L2-4(2)

L2-4(3)

L2-4(4)

L2-4(5)

L2-4(6)

L2-4(7)

APP_CFG _USBD_EN enables or disables the USB application initialization code.

These #defines relate to the nC/USB-Device OS port. The nC/USB-Device core
requires only one task to manage control requests and asynchronous transfers,
and a second, optional task to output trace events (if trace capability is
enabled). To properly set the priority of the core and debug tasks, refer to
section 5-2-1 “Task Priorities” on page 69.

This #define enables the USB class-specific demo. The token XXXX in the
constant APP_CFG_USBD_XXXX_EN is the name of the class and can be replaced
by CDC, HID, MSC, PHDC or VENDOR.

Configure the desired size of the heap memory. Heap memory is only used for
uC/USB-Device drivers that use internal buffers and DMA descriptors which are
allocated at run-time. Refer to the nC/LIB documentation for more details on
the other pC/LIB constants.

Most Micripm examples contain application trace macros to output human-
readable debugging information. Two levels of tracing are enabled: INFO and
DBG. INFO traces high-level operations, and DBG traces high-level operations
and return errors. Application-level tracing is different from nC/USB-Device
tracing (refer to Chapter 13, “Debug and Trace” on page 231 for more details).

Define the application trace level.
Specify which function should be used to redirect the output of human-

readable application tracing. You can select the standard output via printf(),
or another output such as a text terminal using a serial interface.

39

Chapter 2

2-5 RUNNING THE SAMPLE APPLICATION

The first step to integrate the demo application into your application code is to call
App USBD_Init(). This function is responsible for the following steps:

B Initializing the USB device stack.

B Creating and adding a device instance.

B Creating and adding configurations.

B Calling USB class-specific application code.

B Starting the USB device stack.

The App USBD Init() function is described in Listing 2-5.

CPU_BOOLEAN App USBD_Init (void)
{
CPU_INT08U dev_nbr;
CPU_INT08U cfg_hs nbr;
CPU_INT08U cfg_fs nbr;
CPU_BOOLEAN ok;
USBD_ERR err;

USBD_Init(&err); (1)
if (err!= USBD _ERR NONE) {

/* $$$$ Handle error. */

return (DEF_FAIL);

dev_nbr = USBD_DevAdd(&USBD_DevCfg_<controller>, (2)
&App_USBD BusFncts,
&USBD_DrvAPI_<controller>,
&USBD_DrvCfg_<controller>,
&USBD_DrvBSP_<board name>,

&err);
if (err != USBD_ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

cfg_hs_nbr = USBD_CFG_NBR NONE;
cfg_fs_nbr = USBD_CFG_NBR _NONE;

40

Running the Sample Application

if (USBD_DrvCfg <controller>.Spd == USBD_DEV_SPD HIGH) {

cfg_hs_nbr = USBD_CfgAdd(dev_nbr, (3)
USBD_DEV_ATTRIB_SELF POWERED,
100u,
USBD_DEV_SPD_HIGH,
"HS configuration",
&err);
if (err != USBD ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

}
}
cfg_fs_nbr = USBD_CfgAdd(dev_nbr, (4)
USBD_DEV_ATTRIB SELF POWERED,
100u,

USBD_DEV_SPD_FULL,
"FS configuration",
&err);
if (err != USBD_ERR NONE) {
/* $$$$ Handle error. */
return (DEF_FAIL);

¥
#if (APP_CFG_USBD_XXXX EN == DEF_ENABLED) (5)
ok = App USBD_XXXX_ Init(dev_nbr,
cfg_hs_nbr,
cfg_fs nbr);

if (ok != DEF OK) {
/* $$$$ Handle error. */
return (DEF_FAIL);

}
#endif
#if (APP_CFG_USBD_XXXX_EN == DEF_ENABLED) (5)
endif
USBD_DevStart(dev_nbr, &err); (6)
(void)ok;

return (DEF_OK);

Listing 2-5 App_USBD_lInit() Function

41

Chapter 2

L2-5(1)

L2-5(2)

L2-5(3)

L2-5(4)

L2-5(5)

L2-5(6)

42

USBD_Init() initializes the USB device stack. This must be the first USB
function called by your application’s initialization code. If nC/USB-Device is
used with pC/OS-II or -III, 0SInit () must be called prior to USBD Init() in
order to intialize the kernel services.

USBD DevAdd() creates and adds a USB device instance. A given USB device
instance is associated with a single USB device controller. pC/USB-Device can
support multiple USB device controllers concurrently. If your target supports
multiple controllers, you can create multiple USB device instances for them.
The function USBD DevAdd() returns a device instance number; this number is
used as a parameter for all subsequent operations.

Create and add a high-speed configuration to your device. USBD CfgAdd()
creates and adds a configuration to the USB device stack. At a minimum, your
USB device application only needs one full-speed and one high-speed
configuration if your device is a high-speed capable device. For a full-speed
device, only a full-speed configuration will be required. You can create as
many configurations as needed by your application, and you can associate
multiple instances of USB classes to these configurations. For example, you can
create a configuration to contain a mass storage device, and another
configuration for a human interface device such as a keyboard, and a vendor
specific device.

Create and add a full-speed configuration to your device.

Initialize the class-specific application demos by calling the function
App USBD XXXX Init() where XXXX can be CDC, HID, MSC, PHDC or
VENDOR. Class-specific demos are enabled and disabled using the
APP CFG USB_XXXX EN #define.

After all the class instances are created and added to the device configurations,
the application should call USBD DevStart(). This function connects the
device with the host by enabling the pull-up resistor on the D+ line.

Running the Sample Application

Table 2-2

lists the sections

you should refer to for more details about each

App USBD XXXX Init() function.

Class Function Refer to...

CDC ACM | App USBD CDC_Init() section 8-3-1 “General Configuration” on page 120

HID App USBD_HID Init() section 9-3-2 “Class Instance Configuration” on page 144
MSC App USBD_MSC Init() section 10-4-2 “Class Instance Configuration” on page 174
PHDC App USBD_PHDC Init() section 11-2-2 “Class instance configuration” on page 189
Vendor App USBD Vendor Init() | section 12-2-2 “Class Instance Configuration” on page 208

Table 2-2 List of Sections to Refer to for Class Demos Information

After building and downloading the application into your target, you should be able to

successfully connect your target to a host PC through USB. Once the USB sample

application is running, the host detects the connection of a new device and starts the

enumeration process. If you are using a Windows PC, it will load a driver which will

manage your device. If no driver is found for your device, Windows will display “found new

hardware” wizard so that you can specify which driver to load. Once the driver is loaded,

your device is ready for communication. Table 2-3 lists the different section(s) you should

refer to for more details on each class demo.

Class Refer to...

CDC ACM section 8-4-6 “Using the Demo Application” on page 129
HID section 9-4 “Using the Demo Application” on page 154
MSC section 10-5 “Using the Demo Application” on page 176
PHDC section 11-5 “Using the Demo Application” on page 200
Vendor section 12-4 “Using the Demo Application” on page 220

Table 2-3 List of Sections to Refer to for Class Demos Information

43

Chapter 2

44

Chapter

Host Operating Systems

The major host operating systems (OS), such as Microsoft Windows, Apple Mac OS and
Linux, recognize a wide range of USB devices belonging to standard classes defined by the
USB Implementers Forum. Upon connection of the USB device, any host operating systems
perform the following general steps:

1 Enumerating the USB device to learn about its characteristics.

2 Loading a proper driver according to its characteristics’ analysis in order to manage the
device.

3 Communicating with the device.

Step 2, where a driver is loaded to handle the device is performed differently by each major
host operating system. Usually, a native driver provided by the operating system manages a
device complying to a standard class (for instance, Audio, HID, MSC, Video, etc.) In this
case, the native driver loading is transparent to you. In general, the OS won'’t ask you for
specific actions during the driver loading process. On the other hand, a vendor-specific
device requires a vendor-specific driver provided by the device manufacturer. Vendor-
specific devices don't fit into any standard class or don’t use the standard protocols for an
existing standard class. In this situation, the OS may explicitly ask your intervention during
the driver loading process.

During step 3, your application may have to find the USB device attached to the OS before
communication with it. Each major OS uses a different method to allow you to find a
specific device.

This chapter gives you the necessary information in case your intervention is required
during the USB device driver loading and in case your application needs to find a device
attached to the computer. For the moment, this chapter describes this process only for the
Windows operating system.

45

Chapter 3

3-1 MICROSOFT WINDOWS

Microsoft offers class drivers for some standard USB classes. These drivers can also be
called native drivers. A complete list of the native drivers can be found in the MSDN
online documentation on the page titled “Drivers for the Supported USB Device Classes”
(http://msdn.microsoft.com/en-us/library/f£538820(VS.85) .aspx). If a connected
device belongs to a class for which a native driver exists, Windows automatically loads
the driver without any additional actions from you. If a vendor-specific driver is required
for the device, a manufacturer’s INF file giving instructions to Windows for loading the
vendor-specific driver is required. In some cases, a manufacturer’s INF file may also be
required to load a native driver.

When the device has been recognized by Windows and is ready for communication, your
application may need to use a Globally Unique IDentifier (GUID) to retrieve a device
handle that allows your application to communicate with the device.

These sections explain the use of INF files and GUIDs. Table 3-1 shows the USB classes to
which the information in the following sub-sections applies.

Section Micrium classes
section 3-1-1 “About INF Files” on page 46 CDC, PHDC and Vendor
section 3-1-2 “Using GUIDs” on page 51 HID, PHDC and Vendor.

Table 3-1 Micripm Classes Concerned by Windows USB Device Management

3-1-1 ABOUT INF FILES

An INF file is a setup information file that contains information used by Windows to install
software and drivers for one or more devices. The INF file also contains information to store
in the registry. Each of the drivers provided natively with the operating system has an
associated INF file stored in C:\WINDOWS\inf. For instance, when a HID or MSC device is
connected to the PC, Windows enumerates the device and implicitly finds an INF file
associated to a HID or MSC class that permits loading the proper driver. INF files for native
drivers are called system INF files. Any new INF files provided by manufacturers for vendor-
specific devices are copied into the folder C:\WINDOWS\inf. These INF files can be called
vendor-specific INF files. An INF file allows Windows to load one or more drivers for a
device. A driver can be native or provided by the device manufacturer.

46

Microsoft Windows

Table 3-2 shows the Windows driver(s) loaded for each Micripm class:

Micrium class Windows driver Driver type INF file type

CDC ACM usbser.sys Native Vendor-specific INF file

HID Hidclass.sys Native System INF file
Hidusb.sys

MSC Usbstor.sys Native System INF file

PHDC winusb.sys (for getting Native Vendor-specific INF file
started purpose only).

Vendor winusb.sys Native Vendor-specific INF file

Table 3-2 Windows Drivers Loaded for each Micripm Class

When a device is first connected, Windows searches for a match between the information
contained in system INF files and the information retrieved from device descriptors. If there
is no match, Windows asks you to provide an INF file for the connected device.

An INF file is arranged in sections whose names are surrounded by square brackets []. Each
section contains one or several entries. If the entry has a predefined keyword such as
“Class”, “Signature”, etc, the entry is called a directive. Listing 3-1 presents an example of an
INF file structure:

2 Version section
[Version] (1)
Signature = "$Windows NT$"

Class = Ports

ClassGuid = {4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%ProviderName$%
DriverVer=01/01/2012,1.0.0.0

; ========== Manufacturer/Models sections =================

[Manufacturer] (2)
%ProviderName% = DeviceList, NTx86, NTamd64

[DeviceList.NTx86] (3)
$PROVIDER CDC% = DriverInstall, USB\VID_ fffe&PID_1234&MI_00

47

Chapter 3

[DeviceList.NTamd64] (3)
$PROVIDER CDC% = DriverInstall, USB\VID_fffe&PID 1234&MI_00

== Installation sections ====

(4)

[DriverInstall]

include
CopyFiles
AddReg

= mdmcpq.inf
= FakeModemCopyFileSection
= LowerFilterAddReg, SerialPropPageAddReg

[DriverInstall.Services]

include

AddService

= mdmcpqg.inf
= usbser, 0x00000002, LowerFilter Service Inst

[SerialPropPageAddReq]

HKR, ,EnumPropPages32, , "MsPorts.dll,SerialPortPropPageProvider"

[Strings]

(5)

ProviderName = "Micrium"
PROVIDER CDC = "Micrium CDC Device"

L3-1(D)

L3-1(2)

L3-1(3)

L3-1(4)

48

Listing 3-1 Example of INF File Structure

The section [Version] is mandatory and informs Windows about the provider,
the version and other descriptive information about the driver package.

The section [Manufacturer] is mandatory. It identifies the device’s
manufacturer.

The following two sections are called Models sections and are defined on a
per-manufacturer basis. They gives more detailed instructions about the
driver(s) to install for the device(s). A section name can use extensions to
specify OSes and/or CPUs the entries apply to. In this example, .NTx86 and
.NTamd64 indicate that the driver can be installed on an NT-based Windows
(that is Windows 2000 and later), on x86- and x64-based PC respectively.

The installation sections actually install the driver(s) for each device described
in the Model section(s). The driver installation may involve reading existing
information from the Windows registry, modifying existing entries of the
registry or creating new entries into the registry.

Microsoft Windows

L3-1(5) The section [Strings] is mandatory and it is used to define each string key
token indicated by $string name$% in the INF file.

Refer to the MSDN online documentation on this web page for more details about INF
sections and directives: http://msdn.microsoft.com/en-us/library/f£549520.aspx.

You will be able to modify some sections in order to match the INF file to your device
characteristics, such as Vendor ID, Product ID and human-readable strings describing the
device. The sections are:

B Models section
B [Strings] section

To identify possible drivers for a device, Windows looks in the Models section for a device
identification string that matches a string created from information in the device’s
descriptors. Every USB device has a device ID, that is a bardware ID created by the
Windows USB host stack from information contained in the Device descriptor. A device ID
has the following form:

USB\Vid xxxx&Pid yyyy

XXXX, Yyyy, represent the value of the Device descriptor fields “idVendor” and “idProduct”
respectively (refer to the Universal Serial Bus Specification, revision 2.0, section 9.6.1 for
more details about the Device descriptor fields). This string allows Windows to load a driver
for the device. You can modify xxxx and yyyy to match your device’s Vendor and Product
IDs. In Listing 2-1, the hardware ID defines the Vendor ID OxFFFE and the Product ID
0x1234.

Composite devices, formed of several functions, can specify a driver for each function. In
this case, the device has a device ID for each interface that represents a function. A device

ID for an interface has the following form:

USB\Vid xxxx&Pid yyyy&MI_ww

49

Chapter 3

ww is equal to the “bInterfaceNumber” field in the Interface descriptor (refer to the Universal
Serial Bus Specification, revision 2.0, section 9.6.5 for more details on the Interface
descriptor fields). You can modify ww to match the position of the interface in the
Configuration descriptor. If the interface has the position #2 in the Configuration descriptor,
ww is equals to 02.

The [Strings] section contains a description of your device. In Listing 3-1, the strings
define the name of the device driver package provider and the device name. You can see
these device description strings in the Device Manager. For instance, Figure 3-1 shows a
virtual COM port created with the INF file from Listing 3-1. The string “Micrium” appears
under the “Driver Provider” name in the device properties. The string “Micrium CDC
Device” appears under the “Ports” group and in the device properties dialog box.

=4 Device Manager = = 2
File Action View Help
& FIEIHE R ERD
4 g=n PC
N 8 Computer Micrium CDC Device (COM15) Properties P9

=g Disk drives

K., Display adapters | General | Port Settings | Driver | Details|
-

e DVD/CD-ROM drives

Micrium CDC Device ({COM15)

b a Ellisys protocol analyzers ==
AL@‘ Human Interface Devices
: Uﬁ,‘ HID-compliant consumer contrel device Driver Provider: Micrium
&?t,‘ USE Input Device Driver Date: 15/10/2009

5 USBInput Device Driver Version: 1.0.0.0

; s IDE ATAATAPL comtrllers Digital Signer: Not digitally signed

> ﬁ Imaging devices

b & Keyboards Ta view details about the driverfiles.

b --B Mice and other pointing devices

» B Monitors To update the driver software for this device.
b ¥ Network adapters

8 b o Bk Drver | e ool oruitg o drver.
Y3 Micrium CDC Device (COMLS)
? USB Serial Port (COMT)

I Processors

-#y Sound, video and game controllers

Disable Disables the selected device.

To uninstall the driver (Advanced).

Uninstall

b M System devices
> a Universal Serial Bus contrellers [OK] [Cancel

Figure 3-1 Windows Device Manager Example for a CDC Device

50

Microsoft Windows

3-1-2 USING GUIDS

A Globally Unique IDentifier (GUID) is a 128-bit value that uniquely identifies a class or
other entity. Windows uses GUIDs for identifying two types of device classes:

B Device setup class
B Device interface class

A device setup GUID encompasses devices that Windows installs in the same way and using
the same class installer and co-installers. Class installers and co-installers are DLLs that
provide functions related to device installation. There is a GUID associated with each device
setup class. System-defined setup class GUIDs are defined in devguid.h. The device setup
class GUID defines the ..\CurrentControlSet\Control\Class\ClassGuid registry key
under which to create a new subkey for any particular device of a standard setup class. A
complete list of system-defined device setup classes offered by Microsoft Windows® is
available on MSDN online documentation (http://msdn.microsoft.com/en-us/
library/windows/hardware/f£553426 (v=vs.85) .aspx).

A device interface class GUID provides a mechanism for applications to communicate with
a driver assigned to devices in a class. A class or device driver can register one or more
device interface classes to enable applications to learn about and communicate with devices
that use the driver. Each device interface class has a device interface GUID. Upon a device;s
first attachment to the PC, the Windows I/O manager associates the device and the device
interface class GUID with a symbolic link name, also called a device path. The device path
is stored in the registry and persists across system reboot. An application can retrieve all the
connected devices within a device interface class. If the application has gotten a device path
for a connected device, this device path can be passed to a function that will return a
handle. This handle is passed to other functions in order to communicate with the
corresponding device.

Three of Micripm’s USB classes are provided with Visual Studio 2010 projects. These Visual
Studio projects build applications that interact with a USB device. They use a device
interface class GUID to detect any attached device belonging to the class. Table 3-3 shows
the Micripm class and the corresponding device interface class GUID used in the class
Visual Studio project.

51

Chapter 3

Micrium class Device interface class GUID Defined in

HID {4d1e55b2-£16f-11c£-88cb-001111000030} app_hid common.h
PHDC {143£20bd-7bd2-4ca6-9465-8882£2156bd6} usbdev_guid.h
Vendor {143£20bd-7bd2-4ca6-9465-8882£2156bd6} usbdev_guid.h

Table 3-3 Micrium Class and Device Interface Class GUID

The interface class GUID for the HID class is provided by Microsoft as part of system-

defined device interface classes, whereas the interface class GUID for PHDC and Vendor

classes has been generated with Visual Studio 2010 using the utility tool, guidgen.exe. This

tool is accessible from the menu Tools and the option Create GUID or, through the

command-line by selecting the menu Tools, option Visual Studio Command Prompt and by

typing guidgen at the prompt.

52

Chapter

Architecture

pC/USB-Device was designed to be modular and easy to adapt to a variety of Central
Processing Units (CPUs), Real-Time Operating Systems (RTOS), USB device controllers, and
compilers.

Figure 4-1 shows a simplified block diagram of all the pC/USB-Device modules and their
relationships.

53

Chapter 4

Application Run-Time Library
app_cfg.h usbd _cfg.h cpu_cfg.h os_cfg.h 1lib def.h
app.c usbd_dev_cfg.c/h os_app_cfg.c/h lib mem.c/h 1lib mem a.*
app_usbd.c lib_str.c/h

/)
v Application Layer

"""" Y A SN IR S S

MSC HID PHDC . Vendor
usbd msc.c/h] usbd_hid.c/h usbd_phdc.c/h ACM Serial usbd_vendor.c/h
_ ’Y Emulation
usbd_acm_serial.c/h 3
A 4 Y
SCSI HID Report
Commands Manager
usbd _scsi.c/h usbd_report.c/h CDC
t usbd cdc.c/h
Storage Driver
usbd_storage.c/h USB Classes
\ \4 \
____________ ;-----------------f--------------------f----- R N —
| Core B Endpoint
i usbd core.c/h [Management
H — usbd _ep.c
I USB Core
............ . --_----------_--_----T-JL-_----------_--_-------_--_----------_.
v
RTOS RTOS Device Controller
(Classes) (Core & EP) Driver
usbd_hid os.c/h usbd_os.c/h usbd_drv_<name>.c/h
usbd _phdc_os.c/h Y
usbd msc_os.c/h
Device Controller
BSP
usbd_bsp_<name>.c/h RaTnods
A "
—L Hardware Abstraction
CPU
cpu_core.c/h cpu.h | Hardware |
cpu_c.c
cpu_a.*

Figure 4-1 pC/USB-Device Architecture Block Diagram

54

Modules Relationship

4-1 MODULES RELATIONSHIP

4-1-1 APPLICATION

Your application layer needs to provide configuration information to pC/USB-Device in the
form of four C files: app cfg.h, usbd cfg.h, usbd dev cfg.c and usbd dev cfg.h:

B app cfg.h is an application-specific configuration file. It contains #defines to specify
task priorities and the stack size of each of the task within the application and the task
required by pC/USB-Device. Some small Micripm modules like pC/LIB (run-time
library) use app_cfg.h to configure parameters such as the heap size.

B Configuration data in usbd cfg.h consists of specifying the number of devices
supported in the stack, the maximum number of configurations, the maximum number
of interfaces and alternate interfaces, maximum number of opened endpoints per
device, class-specific configuration parameters and more. In all, there are approximately
20 #defines to set.

B Finally, usbd dev cfg.c/.h consists of device-specific configuration requirements
such as vendor ID, product ID, device release number and its respective strings. It also
contains device controller specific configurations such as base address, dedicated
memory base address and size, and endpoint management table.

Refer to Chapter 5, “Configuration” on page 65 for more information on how to configure
pC/USB-Device.

4-1-2 LIBRARIES

Given that pC/USB-Device is designed to be used in safety critical applications, some of the
“standard” library functions such as strcpy(), memset(), etc. have been rewritten to
conform to the same quality standards as the rest of the USB device stack. All these standard
functions are part of a separate Micripm’s product, pC/LIB. pC/USB-Device depends on this
product. In addition, some data objects in USB controller drivers are created at run-time
which implies the use of memory allocation from the heap function Mem HeapAlloc().

55

Chapter 4

4-1-3 USB CLASS LAYER

Your application will interface with pC/USB-Device using the class layer API. In this layer,
four classes defined by the USB-IF are implemented. In case you need to implement a
vendor-specific class, a fifth class, the “vendor” class, is available. This class provides
functions for simple communication via endpoints. The classes that pC/USB-Device
currently supports are the following:

B Communication Device Class (CDC)
CDC Abstract Control Model (ACM) subclass
B Human Interface Device Class (HID)
B Mass Storage Class (MSC)
B Personal Healthcare Device Class (PHDC)
B Vendor Class

You can also create other classes defined by the USB-IF. Refer to Chapter 7, “USB Classes”
on page 99 for more information on how a USB class interacts with the core layer.

4-1-4 USB CORE LAYER

USB core layer is responsible for creating and maintaining the logical structure of a USB
device. The core layer manages the USB configurations, interfaces, alternate interfaces and
allocation of endpoints based on the application or USB classes requirements and the USB
controller endpoints available. Standard requests, bus events (reset, suspend, connect and
disconnect) and enumeration process are also handled by the Core layer.

4-1-5 ENDPOINT MANAGEMENT LAYER

The endpoint management layer is responsible for sending and receiving data using
endpoints. Control, interrupt and bulk transfers are implemented in this layer. This layer
provides synchronous API for control, bulk and interrupt I/O operations and asynchronous
API for bulk and interrupt I/O operations.

56

Modules Relationship

4-1-6 REAL-TIME OPERATING SYSTEM (RTOS) ABSTRACTION
LAYER

pC/USB-Device assumes the presence of a RTOS, and a RTOS abstraction layer allows pC/
USB-Device to be independent of a specific RTOS. The RTOS abstraction layer is composed
of several RTOS ports, a core layer port and some class layer ports.

CORE LAYER PORT
At the very least, the RTOS for the core layer:

B Create at least one task for the core operation and one optional task for the debug trace
feature.

B Provide semaphore management (or the equivalent). Semaphores are used to signal
completion or error in synchronous I/O operations and trace events.

B Provide queue management for I/O and bus events.

pC/USB-Device is provided with ports for pC/OS-II and pC/OS-III. If a different RTOS is
used, you can use the files for pC/OS-II or pC/OS-IIT as template to interface to the RTOS
chosen. For more information on how to port pC/USB-Device to a RTOS, see Chapter 14,
“Porting pC/USB-Device to your RTOS” on page 237.

CLASS LAYER PORTS

Some classes requires a RTOS port (i.e., MSC, PHDC and HID). Refer to Table 14-2 on
page 239 for a list of sections containing more informations on the RTOS port of each of
these classes.

4-1-7 HARDWARE ABSTRACTION LAYER

pC/USB-Device works with nearly any USB device controller. This layer handles the
specifics of the hardware, e.g., how to initialize the device, how to open and configure
endpoints, how to start reception and transmission of USB packets, how to read and write
USB packets, how to report USB events to the core, etc. The USB device driver controller
functions are encapsulated and implemented in the usbd drv_<controller>.c file.

57

Chapter 4

In order to have independent configuration for clock gating, interrupt controller and general
purpose /O, a USB device controller driver needs an additional file. This file is called a
Board Support Package (BSP). The name of this file is usbd bsp <controller>.c. This file
contains all the details that are closely related to the hardware on which the product is used.
This file also defines the endpoints information table. This table is used by the core layer to
allocate endpoints according to the hardware capabilities.

4-1-8 CPU LAYER

pC/USB-Device can work with either an 8, 16, 32 or even 64-bit CPU, but it must have
information about the CPU used. The CPU layer defines such information as the C data type
corresponding to 16-bit and 32-bit variables, whether the CPU has little or big endian
memory organization, and how interrupts are disabled and enabled on the CPU.

CPU-specific files are found in the \uC-CPU directory and are used to adapt nC/USB-Device
to a different CPU.

4-2 TASK MODEL

pC/USB-Device requires two tasks: One core task and one optional task for tracing debug
events. The core task has three main responsibilities:

B Process USB bus events: Bus events such as reset, suspend, connect and disconnect are
processed by the core task. Based on the type of bus event, the core task sets the state
of the device.

B Process USB requests: USB requests are sent by the host using the default control
endpoint. The core task processes all USB requests. Some requests are handled by the

USB class driver, for those requests the core calls the class-specific request handler.

B Process I/O asynchronous transfers: Asynchronous I/O transfers are handled by the
core. Under completion, the core task invokes the respective callback for the transfer.

Figure 4-2 shows a simplified task model of pC/USB-Device along with application tasks.

58

Task Model

USB Class API

Endpoint1/O
Operation

Setup Packet

1/0 Events

Application
Output Function

Device
Controller

Figure 4-2 uC/USB-Device Task Model

4-2-1 SENDING AND RECEIVING DATA

Figure 4-3 shows a simplified task model of pC/USB-Device when data is transmitted and
received through the USB device controller. With pC/USB-Device, data can be sent
asynchronously or synchronously. In a synchronous operation, the application blocks
execution until the transfer operation completes, or an error or a time-out has occurred. In
an asynchronous operation, the application does not block. The core task notifies the
application when the transfer operation has completed through a callback function.

59

Chapter 4

App
Task

1) USB Class

Application
Callback

2

Transfer Ready Usgui\:‘eents
Semaphore 5
(5) (5)
(3) | Device driver | ?
1

----pp Asynchronous 1/0

+ Datapath
A 4

> Synchronous /0
USB Device Datapath
Controller

vy

Universal Serial Bus

Figure 4-3 Sending and Receiving a Packet

F4-3(1) An application task that wants to receive or send data interfaces with nC/USB-
Device through the USB classes API. The USB classes API interface with the
core API and the core interfaces with the endpoint layer API.

F4-3(2) The endpoint layer API prepares the data depending on the endpoint
characteristics.

F4-3(3) When the USB device controller is ready, the driver prepares the transmission
or the reception.

60

Task Model

F4-3(4) Once the transfer has completed, the USB device controller generates an
interrupt. Depending of the operation (transmission or reception) the USB
device controller’s driver ISR invokes the transmit complete or receive complete
function from the core.

F4-3(5) If the operation is synchronous, the transmit or receive complete function will
signal the transfer ready counting semaphore. If the operation is asynchronous,
the transmit or receive complete function will put a message in the USB core
event queue for deferred processing by the USB core task.

F4-3(6) If the operation is synchronous, the endpoint layer will wait on the counting
semaphore. The operation repeats steps 2 to 5 until the whole transfer has
completed.

F4-3(7) The core task waits on events to be put in the core event queue. In

asynchronous transfers, the core task will call the endpoint layer until the
operation is completed.

F4-3(8) In asynchronous mode, after the transfer has completed the core task will call
the application completion callback to notify the end of the I/O operation.

4-2-2 PROCESSING USB REQUESTS AND BUS EVENTS

USB requests are processed by the core task. Figure 4-4 shows a simplified task diagram of
a USB request processing. USB bus events such as reset, resume, connect, disconnect, and
suspend are processed in the same way as the USB requests. The core process the USB bus
events to modify and update the current state of the device.

61

Chapter 4

@)

0

Setup
Packet ISR

4

®)

Request Handler

Standard
Request Handler

/\

Class
Request Handler

USB Device
Controller
Figure 4-4 Processing USB Requests
F4-4(D) USB requests are sent using control transfers. During the setup stage of the

control transfer, the USB device controller generates an interrupt to notify the

driver that a new setup packet has arrived.

F4-4(2) The USB device controller driver ISR notifies the core by pushing the event in

the core event queue.

F4-4(3) The core task receives the message from the queue, and starts the parsing of

the USB request by calling the request handler.

F4-4(4) The request handler analyzes the request type and determines if the request is

a standard, vendor or class specific request.

F4-4(5) Standard requests are processed by the core layer. Vendor and class specific

requests are processed by the class driver, in the class layer.

62

Task Model

4-2-3 PROCESSING DEBUG EVENTS
pC/USB-Device contains an optional debug and trace feature. Debug events are managed in

the core layer using a dedicated task. Figure 4-5 describes how the core manage the debug
events.

)

usB

) / Class Layer \ o (4)
USB Debug

B Task

Core Layer
Free Debug \ Debuq Event
Events List usB List l

Driver Layer

Application
Specific Output ®)

Figure 4-5 Processing USB Debug Events

F4-5(1) The debug and trace module in the core contains a free list of USB debug
events. The debug events objects contain useful information such as the
endpoint number, interface number or the layer that generates the events.

F4-5(2) Multiple pC/USB-Device layers take available debug event objects to trace
useful information about different USB related events.

F4-5(3) Trace and debug information events are pushed in the debug event 1ist.ggg

F4-5(4) The debug task is dormant until a new debug event is available in the debug
event list. The debug task will parse the information contained in the debug
event object and it will output it in a human readable format using the
application specific output trace function USBD Trace().

F4-5(5) The application specific output function outputs the debug trace information.

For more information on the debug and trace module, see Chapter 13, “Debug and Trace”
on page 231.

63

Chapter 4

64

Chapter

Configuration

Prior to usage, nC/USB-Device must be properly configured. There are three groups of
configuration parameters:

B Static stack configuration
B Application specific configuration
B Device and device controller driver configuration

This chapter explains how to setup all these groups of configuration. The last section of this
chapter also provides examples of configuration following examples of typical usage.

5-1 STATIC STACK CONFIGURATION

pC/USB-Device is configurable at compile time via approximately 20 #defines in the
application’s copy of usbd cfg.h. pC/USB-Device uses #defines when possible because
they allow code and data sizes to be scaled at compile time based on enabled features and
the configured number of USB objects. This allows the Read-Only Memory (ROM) and
Random-Access Memory (RAM) footprints of pC/USB-Device to be adjusted based on
application requirements.

It is recommended that the configuration process begins with the recommended or default
configuration values which in the next sections will be shown in bold.

The sections in this chapter are organized following the order in pC/USB-Device’s template
configuration file, usbd cfg.h.

65

Chapter 5

5-1-1 GENERIC CONFIGURATION

USBD_CFG_OPTIMIZE_SPD

Selected portions of pC/USB-Device code may be optimized for either better performance
or for smallest code size by configuring USBD_CFG_OPTIMIZE SPD:

DEF_ENABLED Optimizes pC/USB-Device for best speed performance

DEF_DISABLED Optimizes pC/USB-Device for best binary image size

USBD_CFG_MAX_NBR_DEV

USBD_CFG_MAX NBR_DEV configures the maximum number of devices. This value should be
set to the number of device controllers used on your platform. Default value is 1.

5-1-2 USB DEVICE CONFIGURATION

USBD_CFG_MAX _NBR_CFG

USBD_CFG_MAX NBR CFG sets the maximum number of USB configurations used by your
device. Keep in mind that if you use a high-speed USB device controller, you will need at
least two USB configurations, one for low and full-speed and another for high-speed. Refer
to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on USB
configuration. Default value is 2.

5-1-3 INTERFACE CONFIGURATION

USBD_CFG_MAX_NBR_IF

USBD CFG MAX NBR IF configures the maximum number of interfaces available. This value
should at least be equal to USBD CFG MAX NBR CFG and greatly depends on the USB
class(es) used. Each class instance requires at least one interface, while CDC-ACM requires
two. Refer to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more
details on USB interfaces. Default value is 2.

66

Static Stack Configuration

USBD_CFG_MAX_NBR_IF_ALT

USBD CFG MAX NBR IF ALT defines the maximum number of alternate interfaces (alternate
settings) available. This value should at least be equal to USBD CFG MAX NBR IF. Refer to
the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on
alternate settings. Default value is 2.

USBD _CFG_MAX NBR _IF_GRP

USBD CFG MAX NBR IF GRP sets the maximum number of interface groups or associations
available. For the moment, Micripm offers only one USB class (CDC-ACM) that requires
interface groups. Refer to the Interface Association Descriptors USB Engineering Change
Notice for more details about interface associations. Default value is 0 (should be equal to
the number of instances of CDC-ACM).

USBD_CFG_MAX NBR EP_DESC

USBD_CFG_MAX NBR _EP DESC sets the maximum number of endpoint descriptors available.
This value greatly depends on the USB class(es) used. For information on how many
endpoints are needed for each class, refer to the class specific chapter. Keep in mind that
control endpoints do not need any endpoint descriptors. Default value is 2.

USBD_CFG_MAX NBR_EP_OPEN

USBD_CFG MAX NBR EP OPEN configures the maximum number of opened endpoints per
device. If you use more than one device, set this value to the worst case. This value greatly
depends on the USB class(es) used. For information on how many endpoints are needed for
each class, refer to the class specific chapter. Default value is 4 (2 control plus 2 other
endpoints).

5-1-4 STRING CONFIGURATION

USBD_CFG_MAX_NBR_STR

USBD CFG MAX NBR STR configures the maximum number of string descriptors supported.
Default value is 3 (1 Manufacturer string, 1 product string and 1 serial number string). This
value can be increased if, for example, you plan to add interface specific strings.

67

Chapter 5

5-1-5 DEBUG CONFIGURATION

Configurations in this section only need to be set if you use the core debugging service. For
more information on that service, see Chapter 13, “Debug and Trace” on page 231.

USBD_CFG_DBG_TRACE_EN

USBD_CFG DBG_TRACE EN enables or disables the core debug trace engine.
DEF_ENABLED Core debug trace engine is enabled.
DEF_DISABLED Core debug trace engine is disabled.

USBD _CFG_DBG_TRACE_NBR _EVENTS

USBD CFG DBG TRACE NBR EVENTS indicates the maximum number of debug trace events
that can be queued by the core debug trace engine. Default value is 10.

This configuration constant has no effect and will not allocate any memory if
USBD_CFG DBG TRACE EN is set to DEF_DISABLED.

5-1-6 COMMUNICATION DEVICE CLASS (CDC)
CONFIGURATION

For information on CDC configuration, refer to section 8-3 “Configuration” on page 120.

5-1-7 CDC ABSTRACT CONTROL MODEL (ACM) SERIAL CLASS
CONFIGURATION

For information on CDC-ACM class configuration, refer to section 8-4-2 “General
Configuration” on page 123.

5-1-8 HUMAN INTERFACE DEVICE (HID) CLASS
CONFIGURATION

For information on HID class configuration, refer to Section 9-3, “Configuration” on
page 143.

68

Application Specific Configuration

5-1-9 MASS STORAGE CLASS (MSC) CONFIGURATION

For information on MSC configuration, refer to Section 10-4, “Configuration” on page 173.

5-1-10 PERSONAL HEALTHCARE DEVICE CLASS (PHDC)
CONFIGURATION

For information on PHDC configuration, refer to section 11-2 “Configuration” on page 187.

5-1-11 VENDOR CLASS CONFIGURATION

For information on vendor class configuration, refer to Section 12-2, “Configuration” on
page 207.

5-2 APPLICATION SPECIFIC CONFIGURATION

This section defines the configuration constants related to pC/USB-Device but that are
application-specific. All these configuration constants relate to the RTOS. For many OSs, the
pC/USB-Device task priorities and stack sizes will need to be explicitly configured for the
particular OS (consult the specific OS’s documentation for more information).

These configuration constants should be defined in an application’s app cfg.h file.

5-2-1 TASK PRIORITIES

As mentioned in section 4-2 “Task Model” on page 58, pC/USB-Device needs one core task
and one optional debug task for its proper operation. The priority of pnC/USB-Device’s core
task greatly depends on the USB requirements of your application. For some applications, it
might be better to set it at a high priority, especially if your application requires a lot of
tasks and is CPU intensive. In that case, if the core task has a low priority, it might not be
able to process the bus and control requests on time. On the other hand, for some
applications, you might want to give the core task a low priority, especially if you plan using
asynchronous communication and if you know you will have quite a lot of code in your
callback functions. For more information on the core task, see section 4-2 “Task Model” on
page 58.

69

Chapter 5

The priority of the debug task should generally be low since it is not critical and the task
performed can be executed in the background.

For the pC/OS-II and pC/OS-II RTOS ports, the following macros must be configured
within app_cfg.h:

B USBD OS CFG CORE_TASK PRIO
B USBD OS CFG TRACE TASK PRIO

Note: if USBD_CFG_DBG_TRACE_EN is set to DEF_DISABLED, USBD OS CFG TRACE TASK PRIO
should not be defined.

5-2-2 TASK STACK SIZES

For the pC/OS-II and pC/OS-II RTOS ports, the following macros must be configured
within app_cfg.h to set the internal task stack sizes:

M USBD OS CFG CORE_TASK STK SIZE 1000
M USBD OS CFG TRACE TASK STK SIZE 1000

Note: if USBD CFG DBG TRACE EN is set to DEF DISABLED, USBD OS CFG TRACE TASK STK SIZE
should not be defined.

The arbitrary stack size of 1000 is a good starting point for most applications.

The only guaranteed method of determining the required task stack sizes is to calculate the
maximum stack usage for each task. Obviously, the maximum stack usage for a task is the
total stack usage along the task’s most-stack-greedy function path plus the (maximum) stack
usage for interrupts. Note that the most-stack-greedy function path is not necessarily the
longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function
should be performed statically by the compiler or by a static analysis tool since these can
calculate function/task maximum stack usage based on the compiler’s actual code
generation and optimization settings. So for optimal task stack configuration, we
recommend to invest in a task stack calculator tool compatible with your build toolchain.

70

Device and Device Controller Driver Configuration

5-3 DEVICE AND DEVICE CONTROLLER DRIVER
CONFIGURATION

In order to finalize the configuration of your device, you need to declare two structures, one
will contain information about your device (Vendor ID, Product ID, etc.) and another that
will contain information useful to the device controller driver. A reference to both of these
structures needs to be passed to the USBD DevAdd() function, which allocates a device
controller.

For more information on how to modify device and device controller driver configuration,
see section 2-4-2 “Copying and Modifying Template Files” on page 33.

5-4 CONFIGURATION EXAMPLES

This section provides examples of configuration for pC/USB-Device stack based on some
typical usages. This section will only give examples of static stack configuration, as the
application-specific configuration greatly depends on your application. Also, the device
configuration is related to your product’s context, and the device controller driver
configuration depends on the hardware you use.

The examples of typical usage that will be treated are the following:
B A simple full-speed USB device. This device uses Micripm’s vendor class.

B A composite high-speed USB device. This device uses Micripm’s PHDC and MSC
classes.

B A complex composite high-speed USB device. This device uses an instance of Micripm’s
HID class in two different configurations plus a different instance of Micripm’s CDC-
ACM class in each configuration. This device also uses an instance of Micripm’s vendor
class in the second configuration.

71

Chapter 5

5-4-1 SIMPLE FULL-SPEED USB DEVICE

Table 5-1 shows the values that should be set for the different configuration constants

described earlier if you build a simple full-speed USB device using Micripm’s vendor class.

Configuration Value Explanation

USBD_CFG _MAX NBR CFG 1 Since device is full speed, only one configuration is
needed.

USBD_CFG_MAX NBR IF 1 Since device only uses the vendor class, only one
interface is needed.

USBD_CFG MAX NBR IF ALT 1 No alternate interfaces are needed, but this value must at
least be equal to USBD_CFG_MAX NBR IF.

USBD_CFG MAX NBR IF GRP 0 No interface association needed.

USBD_CFG MAX NBR EP DESC 2oré4 Two bulk endpoints and two optional interrupt endpoints.

USBD_CFG_MAX NBR EP_OPEN 40r6 Two control endpoints for device’s standard requests.

Two bulk endpoints and two optional interrupt endpoints.

USBD_VENDOR CFG_MAX NBR DEV

Only one instance of vendor class is needed.

USBD_VENDOR CFG_MAX NBR CFG

72

Vendor class instance will only be used in one
configuration.

Table 5-1 Configuration Example of a Simple Full-Speed USB Device

Configuration Examples

5-4-2 COMPOSITE HIGH-SPEED USB DEVICE

Table 5-2 shows the values that should be set for the different configuration constants
described earlier if you build a composite high-speed USB device using Micripm’s PHDC
and MSC classes. The structure of this device is described in Figure 5-1.

/ High-speed \

SB dewce
FuII speed /H|gh speed
conflguratlon conflguratlon

/ PHDC / MSC \
Qeﬁafe Qterfay

/BulklN\ Bulk OUT ‘/ln/terrupt IN /" BukIN "/ Bulk OUT
\\endpom’y endpoint Qndpoint* ‘\\endpoy \\endpoiy

PHDC instance MSC instance

*Endpoint is optional

Figure 5-1 Composite High-Speed USB Device Structure

73

Chapter 5

Configuration Value Explanation

USBD_CFG _MAX NBR CFG 2 One configuration for full/low-speed and another for high-
speed.

USBD_CFG MAX NBR IF 4 One interface for PHDC and another for MSC. A different

interface for each configuration is also needed.

USBD_CFG_MAX NBR_IF ALT 4 No alternate interface needed, but this value must at least
be equal to USBD_CFG _MAX NBR_IF.

USBD_CFG MAX NBR IF GRP 0 No interface association needed.

USBD_CFG MAX NBR EP DESC 4or5 Two bulk endpoints for MSC.
Two bulk plus one optional interrupt endpoint for PHDC.

USBD_CFG MAX NBR EP OPEN 6or7 Two control endpoints for device’s standard requests.
Two bulk endpoints for MSC.
Two bulk plus 1 optional interrupt endpoint for PHDC.

USBD_PHDC_CFG_MAX NBR DEV 1 Only one instance of PHDC is needed. It will be shared
between all the configurations.

USBD_PHDC_CFG_MAX NBR CFG 2 PHDC instance can be used in both of device’s
configurations.

USBD_MSC CFG MAX NBR DEV 1 Only one instance of MSC is needed. It will be shared
between all the configurations.

USBD_MSC CFG MAX NBR CFG 2 MSC instance can be used in both of device’s
configurations.

Table 5-2 Configuration Example of a Composite High-Speed USB Device

5-4-3 COMPLEX COMPOSITE HIGH-SPEED USB DEVICE

Table 5-3 shows the values that should be set for the different configuration constants
described earlier if you build a composite high-speed USB device using a single instance of
Micripm’s HID class in two different configurations plus a different instance of Micripm’s CDC-
ACM class in each configuration. The device also uses an instance of Micripm’s vendor class in
its second configuration. See Figure 5-2 for a graphical description of this USB device.

74

Configuration Examples

- —

fﬁmmunication

/{\interface

‘mterrupt IN

endpoint

/” Bulk OUT
\\/@pomt

| Data interface -
/\/Bulk IN

\\ endpomt

el 1

—— CDC-ACM class instance 1

/ Full-speed
conflguratron

Interrupt IN

2 ndpornt
/‘/ HID \\
/ / interface —
High- speed i nterrupt ou
‘ configuration \endpoint*

\/

HID class instance
Configuration 1

Communlcatlon Interrupt
o~ mterfac endpornt
/ High-speed
\\USB device /" Bulk OUT
— - / ndpomt

Y Data interface

- Bulk IN_

- \\ndpornt

FuII speed

\\ figuration

\/

CDC-ACM class instance 2
7 BukIN
endpoint

(|gh speed
configuration /Bulk O
- J— endpomt
\/ Vendor

Interrupt IN
\gldpoint*

|
\gerface

nterrupt O
\\ndpornt

Vendor class instance

Configuration 2

*Endpoint is optional

Figure 5-2 Complex Composite High-Speed USB Device Structure

75

Chapter 5

Configuration Value Explanation
USBD_CFG _MAX NBR CFG 4 Two configurations for full/low-speed and two others for
high-speed.
USBD_CFG_MAX NBR IF 7 First configuration:
One interface for HID.
Two interfaces for CDC-ACM.
Second configuration:
One interface for HID.
Two interfaces for CDC-ACM.
One interface for vendor.
USBD_CFG MAX NBR IF ALT 7 No alternate interface needed, but this value must at least
be equal to USBD_CFG_MAX NBR IF.
USBD_CFG_MAX NBR IF GRP 2 CDC-ACM needs to group its communication and data
interfaces into a single USB function. Since there are two
CDC-ACM class instances, there will be two interface
groups.
USBD_CFG MAX NBR EP DESC 9,10, 11 One IN and (optional) OUT interrupt endpoint for HID.
or12 Three endpoints for first CDC-ACM class instance.
Three endpoints for second CDC-ACM class instance.
Two bulk plus two optional interrupt endpoints for vendor.
USBD_CFG _MAX NBR EP OPEN 8,9,10 In the worst case (host enables second configuration):
or 11 Two control endpoints for device’s standard requests.
One IN and (optional) OUT interrupt endpoint for HID.
Three endpoints for second CDC-ACM class instance.
Two bulk plus two optional interrupt endpoints for vendor.
USBD_HID CFG MAX NBR DEV 1 Only one instance of HID class is needed. It will be shared
between all the configurations.
USBD_HID CFG MAX NBR CFG 4 HID class instance can be used in all of device’s
configurations.
USBD_CDC_CFG_MAX NBR DEV 2 Two CDC base class instances are used.
USBD_CDC_CFG MAX NBR CFG 2 Each CDC base class instance can be used in one full-
speed and one high-speed configuration.
USBD_ACM SERIAL CFG_MAX NBR DEV 2 Two ACM subclass instances are used.
USBD_VENDOR_CFG_MAX NBR DEV 1 Only one vendor class instance is used.
USBD_VENDOR_CFG_MAX NBR CFG 2 The vendor class instance can be used in one full-speed

and one high-speed configuration.

Table 5-3 Configuration Example of a Complex Composite High-Speed USB Device

76

Chapter

Device Driver Guide

There are many USB device controllers available on the market and each requires a driver to
work with pC/USB-Device. The amount of code necessary to port a specific device to nC/
USB-Device greatly depends on the device’s complexity.

If not already available, a driver can be developed, as described in this chapter. However, it
is recommended to modify an already existing device driver with the new device’s specific
code following the Micripm coding convention for consistency. It is also possible to adapt

drivers written for other USB device stacks, especially if the driver is short and it is a matter
of simply copying data to and from the device.

6-1 DEVICE DRIVER ARCHITECTURE

This section describes the hardware (device) driver architecture for pC/USB-Device,
including:

B Device Driver API Definition(s)

B Device Configuration

B Memory Allocation

B CPU and Board Support

Micripm provides sample configuration code free of charge; however, the sample code will

likely require modification depending on the combination of processor, evaluation board,
and USB device controller(s).

7

Chapter 6

6-2 DEVICE DRIVER MODEL

No particular memory interface is required by pC/USB-Device's driver model. Therefore, the
USB device controller may use the assistance of a Direct Memory Access (DMA) controller
to transfer data or handle the data transfers directly.

6-3 DEVICE DRIVER API
All device drivers must declare an instance of the appropriate device driver API structure as
a global variable within the source code. The API structure is an ordered list of function

pointers utilized by nC/USB-Device when device hardware services are required.

A sample device driver API structure is shown below.

const USBD_DRV_API USBD_DrvAPI_<controller> = { USBD_DrvInit, (1)
USBD_DrvStart, (2)
USBD_DrvStop, (3)
USBD_DrvAddrSet, (4)
USBD_DrvAddrEn, (5)
USBD_DrvCfgSet, (6)
USBD_DrvCfgClr, (7)
USBD_DrvGetFrameNbr, (8)
USBD_DrvEP_Open, 9)
USBD_DrvEP_Close, (10)
USBD_DrvEP RxStart, (11)
USBD_DrvEP_Rx, (12)
USBD_DrvEP_RXZLP, (13)
USBD_DrvEP_Tx, (14)
USBD_DrvEP TxStart, (15)
USBD_DrvEP_TXZLP, (16)
USBD_DrvEP_Abort, (17)
USBD_DrvEP Stall, (18)
USBD_DrvISR Handler (19)

}i

Listing 6-1 Device Driver Interface API

Note: It is the device driver developers’ responsibility to ensure that all of the functions
listed within the API are properly implemented and that the order of the functions within
the API structure is correct. The different function pointers are:

78

Device Driver API

L6-1(1)

L6-1(2)

L6-1(3)

L6-1(4)

L6-1(5)

L6-1(6)

L6-1(7)

L6-1(8)

L6-1(9)

L6-1(10)

L6-1(11)

L6-1(12)

L6-1(13)

L6-1(14)

L6-1(15)

L6-1(16)

L6-1(17)

L6-1(18)

L6-1(19)

Device initialization/add

Device start

Device stop

Assign device address

Enable device address

Set device configuration

Clear device configuration

Retrieve frame number

Open device endpoint

Close device endpoint

Configure device endpoint to receive data
Receive from device endpoint

Receive zero-length packet from device endpoint
Configure device endpoint to transmit data
Transmit to device endpoint

Transmit zero-length packet to device endpoint
Abort device endpoint transfer

Stall device endpoint

Device interrupt service routine (ISR) handler

79

Chapter 6

The details of each device driver API function are described in Appendix B, “Device
Controller Driver API Reference” on page 323.

Note: pC/USB-Device device driver API function names may not be unique. Name clashes
between device drivers are avoided by never globally prototyping device driver functions
and ensuring that all references to functions within the driver are obtained by pointers
within the API structure. The developer may arbitrarily name the functions within the source
file so long as the API structure is properly declared. The user application should never
need to call API functions. Unless special care is taken, calling device driver functions may
lead to unpredictable results due to reentrancy.

When writing your own device driver, you can assume that each driver API function accepts
a pointer to a structure of the type USBD DRV as one of its parameters. Through this
structure, you will be able to access the following fields:

typedef struct usbd drv USBD_DRV;

typedef wusb_drv {

CPU_INTO08U DevNbr ; (1)
USBD_DRV_API *API_Ptr; (2)
USBD_DRV_CFG *CfgPtr; (3)
void *DataPtr; (4)
USBD_DRV_BSP_API *BSP_API_Ptr; (5)

}i
Listing 6-2 USB Device Driver Data Type
L6-2(1) Unique index to identify device.
L6-2(2) Pointer to USB device controller driver APL
L6-2(3) Pointer to USB device controller driver configuration.
L6-2(4) Pointer to USB device controller driver specific data.

L6-2(5) Pointer to USB device controller BSP.

80

Interrupt Handling

6-4 INTERRUPT HANDLING

Interrupt handling is accomplished using the following multi-level scheme.
1 Processor level kernel-aware interrupt handler

2 Device driver interrupt handler

During initialization, the device driver registers all necessary interrupt sources with the BSP
interrupt management code. You can also accomplish this by plugging an interrupt vector
table during compile time. Once the global interrupt vector sources are configured and an
interrupt occurs, the system will call the first-level interrupt handler. The first-level interrupt
handler is responsible for performing all kernel required steps prior to calling the USB
device driver interrupt handler: USBD DrvISR Handler(). Depending on the platform
architecture (that is the way the kernel handles interrupts) and the USB device controller
interrupt vectors, the device driver interrupt handler implementation may follow the models
below.

6-4-1 SINGLE USB ISR VECTOR WITH ISR HANDLER
ARGUMENT

If the platform architecture allows parameters to be passed to ISR handlers and the USB
device controller has a single interrupt vector for the USB device, the first-level interrupt
handler may be defined as:

PROTOTYPE

void USBD_BSP <controller> IntHandler (void *p_arg);

ARGUMENTS
p_arg Pointer to USB device driver structure that must be typecast to a pointer to
USBD_DRV.

81

Chapter 6

6-4-2 SINGLE USB ISR VECTOR

If the platform architecture does not allow parameters to be passed to ISR handlers and the
USB device controller has a single interrupt vector for the USB device, the first-level
interrupt handler may be defined as:

PROTOTYPE

void USBD BSP <controller> IntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally
in the driver. Since the pointer to the USB device structure is never modified, the BSP
initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-3 MULTIPLE USB ISR VECTORS WITH ISR HANDLER
ARGUMENTS

If the platform architecture allows parameters to be passed to ISR handlers and the USB
device controller has multiple interrupt vectors for the USB device (e.g., USB events, DMA
transfers), the first-level interrupt handler may need to be split into multiple sub-handlers.
Each sub-handler would be responsible for managing the status reported to the different
vectors. For example, the first-level interrupt handlers for a USB device controller that
redirects USB events to one interrupt vector and the status of DMA transfers to a second
interrupt vector may be defined as:

PROTOTYPE

void USBD BSP <controller> EventIntHandler (void *p arg);
void USBD BSP <controller> DMAIntHandler (void *p arg);

ARGUMENTS
p_arg Pointer to USB device driver structure that must be typecast to a pointer to
USBD_DRV.

82

Interrupt Handling

6-4-4 MULTIPLE USB ISR VECTORS

If the platform architecture does not allow parameters to be passed to ISR handlers and the
USB device controller has multiple interrupt vectors for the USB device (e.g., USB events,
DMA transfers), the first-level interrupt handler may need to be split into multiple sub-
handlers. Each sub-handler would be responsible for managing the status reported to the
different vectors. For example, the first-level interrupt handlers for a USB device controller
that redirects USB events to one interrupt vector and the status of DMA transfers to a second
interrupt vector may be defined as:

PROTOTYPE

void USBD BSP <controller> EventIntHandler (void);
void USBD_BSP <controller> DMAIntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally
in the driver. Since the pointer to the USB device structure is never modified, the BSP
initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-5 USBD _DrviSR HANDLER()

The device driver interrupt handler must notify the USB device stack of various status
changes. Table 6-1 shows each type of status change and the corresponding notification

function.
Connect Event USBD_EventConn()
Disconnect Event USBD_EventDisconn()
Reset Event USBD_EventReset ()
Suspend Event USBD_EventSuspend ()
Resume Event USBD_EventResume ()
High-Speed Handshake Event USBD_EventHS ()

83

Chapter 6

Setup Packet USBD_EventSetup()
Receive Packet Completed USBD_EP RxCmpl()
Transmit Packet Completed USBD_EP TxCmpl()

Table 6-1 Status Notification API

Each status notification API queues the event type to be processed by the USB stack’s event

processing task. Upon reception of an USB event, the interrupt service routine may perform

some operations associated to the event before notifying the stack. For example, the USB

device controller driver must perform the proper actions for the bus reset when an interrupt

request for that event is triggered. Additionally, it must also notify the USB device stack

about the bus reset event by invoking the proper status notification API. In general, the

device driver interrupt handler must perform the following functions:

1

84

Determine which type of interrupt event occurred by reading an interrupt status
register.

If a receive event has occurred, the driver must post the successful completion or the
error status to the USB device stack by calling USBD EP RxCmpl() for each transfer
received.

If a transmit complete event has occurred, the driver must post the successful
completion or the error status to the USB device stack by calling USBD_EP_TxCmpl () for
each transfer transmitted.

If a setup packet event has occurred, the driver must post the setup packet data in little-
endian format to the USB device stack by calling USBD EventSetup().

All other events must be posted to the USB device stack by a c