

Datasheet

ZM3102N Z-Wave Module Datasheet

Document No:	DSH10756
Version:	6
Description:	Datasheet for the ZM3102N Z-Wave Module based on the ZW0301 Z-Wave Single Chip.
Written By:	SDH;TCA
Date:	2007-10-01
Reviewed By:	DCL
Restrictions:	None

Approved by:			
Date 2007-10-01	CET 13:28:40	 Name Niels Thybo Johansen	Justification

This document is the property of Zensys A/S. The data contained herein, in whole or in part, may not be duplicated, used or disclosed outside the recipient for any purpose other than to conduct technical evaluation. This restriction does not limit the recipient's right to use information contained in the data if it is obtained from another source without restriction.

REVISION RECORD

Doc. Rev	Date	Ву	Pages affected	Brief description of changes
1	20060913	SDH	ALL	First release
2	20061127	SDH	13	Document reference [1] updated to developers kit v5.0
3	20070209	SDH	ALL	HK, ANZ frequencies added
3	20070420	SDH	ALL Table 4, 6	Datasheet state "Preliminary removed" HK, ANZ RF parameters updated.
6	20070709	SDH	Table 4	Preliminary removed from RF parameters

Table of Contents

1	PRODUCT DESCRIPTION	2
	Name Convention	
	Signal Description	
	RF Front-End	
	.4.1 RF input/output	
	.4.2 Antenna Matching	
1.5	Z-Wave Module Programming	5
2	SPECIFICATIONS	6
2.1	ZW0301 Specification	6
2.2	ZW0301 Single Chip Peripherals	6
	RF Specification	
	Electrical Specification	
	.4.1 Absolute Maximum Ratings	
	.4.2 DC Characteristics	
	Physical Specification	
	Process Specification Recommended PCB Footprint Outline	
	Recommended Reflow Profile	
	Application PCB Layout Recommendation	
	.9.1 Supply Voltage	
2.	.9.2 Ground Plane	
2.	.9.3 Antenna Interconnection	12
3	SOFTWARE	13
3.1	SPI Interface	13
	EEPROM	
4	REFERENCES	14

ZM3102N Datasheet

Integrated Z-Wave RF Module

The ZM3102N Z-Wave Module is a fully integrated RF communication module that uses the unlicensed Short-Range-Device (SRD) frequency band of 868.0-868.6MHz in Europe, 902MHz-928MHz in US, 919.5MHz-920.0 MHz in Hong Kong, 921MHz-929 MHz in New Zealand, and 915MHz-928 MHz in Australia. The ZM3102N is dedicated for wireless control and monitoring of residential products like lighting and appliance control, energy management, access control, security and building automation.

Together with the patented Z-Wave Protocol the ZM3102N Z-Wave Module delivers a complete highly reliable RF communication solution. The Z-Wave Protocol uses Frame Acknowledgement, Retransmission, Collision Avoidance, Frame Checksum Check and sophisticated Routing to assure reliable full home coverage.

The ZM3102N Z-Wave Module contains the integrated ZW0301 Z-Wave Single Chip, system crystal, and RF front-end circuitry. The ZW0301 Single Chip is an integrated chip containing RF Transceiver, 8051 MCU core, SRAM, Flash Memory for Z-Wave Protocol and OEM Application software storage, Triac Controller, and a wide range of HW interfaces.

This complete RF solution makes it very easy for OEM customers to RF enable their products without having to do the time consuming work of designing, verifying and optimizing the RF design and thereby enables faster time to market.

Features Interfaces

- 10 General Purpose I/O's
- Two Interrupt Inputs
- Serial UART
- SPI Interface
- Triac Control Interface
- PWM Output
- Four multiplexed 12/8 bit ADC inputs

ZW0301 Single Chip

- Optimized 8051 CPU Core
- 32kbyte Flash
- 2kbyte SRAM
- Power-On-Reset / Brown-Out Detection
- Supply Voltage: 2.1V-3.6V
- Power Consumption
- TX@-5dBm = 24mA
- TX@0dBm = 36mA
- o RX = 23mA
- Power down/sleep mode = $2.5\mu A$

RF

- Freq for 9.6kbps / 40kbps EU: 868.42 / 868.40MHz US: 908.42 / 908.40MHz HK: 919.82 / 919.80MHz NZ: 921.42 / 921.40MHz AUS:921.42 / 921.40MHz
- High Sensitivity (-102/-98dBm)
- FSK Modulation
- 9.6kbps/40kbps Data Rate
- -22.0dBm to -2.0dBm Output power (ZM3102N) (EU, US)
 -23.5dBm to -3.5dBm Output power (ZM3102N) (HK,ANZ)
- Complies with: EU: EN 300 220 US: FCC CFR47 part 15 HK: HKTA 1035 ANZ: ANZ 4268+A1+A2

Applications

- Home Automation
- Sensor networks
- AV control

1 PRODUCT DESCRIPTION

1.1 Name Convention

The name convention of the ZM3102N module is explained below:

- ZM: Z-Wave Module
- 31: Based on ZW0301 ASIC
- 02: Size of the module (2cm²)
- N: The module contains castellation notches, which enables manual solderability and rework.

1.2 Overview

The ZM3102N Z-Wave Module is a fully integrated module containing all the HW and SW required to Z-Wave enable OEM products. The ZM3102N Z-Wave Module contains the Z-Wave ZW0301 Single Chip, System Crystal, RF Front-end and RF Supply Voltage Filtering. Only the antenna needs to be implemented by the developer designing the Z-Wave enabled product.

The ZM3102N Z-Wave Module contains a system crystal, why no external crystal is needed. In order to get a high reliable and high performance RF communication, the RF Front-end has an optimized and throughout tested matching circuitry, a narrow band SAW filter dedicated for Z-Wave communication and there are filtering of the RF circuitry supply voltage.

The ZM3102N Z-Wave Module is connector-less using Castellation Notches for easy mounting of the module to an OEM Application PCB. The ZM3102N Z-Wave Module has a mounting option for a top shield that improves noise immunity of the module.

The Z-Wave Protocol is designed to enable automatic network address assignment at installation, and simple inclusion/exclusion of nodes. These protocol-handling techniques ensure easy installation, expansion, and management of the Z-Wave control network. Furthermore each Z-Wave network has its own unique Network Identifier preventing control problems or interference from neighboring networks.

The Z-Wave Protocol has a well-defined Application-Programming-Interface (API) enabling easy and fast Application SW development.

1.3 Signal Description

Figure 2 ZM3102N Outline and Signals

2007-10-01

Name	Notch #	I/O	Description
ADC[3:0]	10, 13, 14, 15	Ι	Analog-to-Digital Converter input. The ADC is 12/8 bit and can use either VCC or an internal/external voltage as reference. ADC3: input ADC2: input ADC1: input / lower reference ADC0: input / higher reference
GND	1, 6, 12, 16, 17	Power	Ground signal
INT[1:0]	3, 4	I/O	Interrupt: The signal can be either level or edge trigged. When in power down mode, the ZM3102N Z-Wave Module's MCU can be woken up by asserting the interrupt signal INT1.
P[0.1-0.0], P[1.7-1.0]	3, 4, 5, 7, 8, 9, 10, 13, 14, 15	I/O	In/Out: General purpose I/O signal.
MISO ¹	7	I/O	Master-In-Slave-Out SPI interface: output in slave mode operation and input in master mode operation.
MOSI ¹	9	I/O	Master Out Slave In SPI interface: input in slave mode operation and output in master mode operation.
PWM	4	I/O	Pulse Width Modulator Output: Used for frequency variation applications.
RESET_N	2	Ι	Reset: Active low reset. The ZW0301 Single Chip has an integrated Power-On-Reset and Brown-out detection circuitry.
RF	18	I/O	RF Input/Output
RXD	10	I/O	UART Receive Data: Supports 9.6kbaud, 38.4kbaud, 115.2kbaud.
SCK ¹	8	I/O	SPI Clock: Can be used as either master SPI clock output or slave SPI clock input.
TRIAC	13	I/O	TRIAC Control: A triac controller is implemented in the ZW0301 Single Chip that can controls a triac on the Application Module like light dimmer modules etc.
TXD	15	I/O	UART Transmit Data: Supports 9.6kbaud, 38.4kbaud, 115.2kbaud.
VCC	11	Power	ZM3102N supply voltage.
ZEROX	14	I/O	Zero Cross Detection: Zero cross detection signal used on dimmer modules detecting 120/240V zero crossing.

1. Please note that the SPI interface (MISO, MOSI and SCK) is not available for the Application SW in some Z-Wave protocol API's, see [3]

Table 1 ZM3102N Signal Description

All signals in Table 1 except RF, VCC and GND are connected directly to the corresponding signals on the ZW0301 Z-Wave Single Chip on the ZM3102N Z-Wave Module. A detailed description of these signals is given in the ZW0301 Z-Wave Single Chip datasheet [1].

1.4 RF Front-End

1.4.1 RF input/output

The ZM3102N Z-Wave Module is equipped with a SAW filter that rejects the unwanted frequencies both in receive and transmit operations.

Figure 3 ZM3102N RF Front-end Circuitry

The RF input/output on the ZW0301 is a single ended input/output that is internally matched to 50 ohm.

1.4.2 Antenna Matching

The ZM3102N Z-Wave Module is using an antenna placed on the Application Module, the matching of the external antenna to 50 ohm (SAW filter impedance) must be made on the Application Module.

As the ZM3102N Z-Wave Module is integrated into various products, different types of antennas can be implemented to get the best RF performance, i.e. range and reliability. In [4], a good overview of the different antennas is given as well as their pro's and con's. In the case the antenna is not 500hm a matching network must be implemented between the ZM3102N Z-Wave Module and the antenna. The matching network can for example be a "pi" or a "T" structure as shown in Figure 4.

Figure 4 "T" and " π " structure for the antenna-matching network

1.5 Z-Wave Module Programming

The ZM3102N Z-Wave Module is programmed using the SPI interface and the RESET_N signal. The programming procedure of the ZW0301 flash is identical to the programming procedure of ZW0201. For detailed programming instructions see [2] and recommended programming tool(s) see [3].

2 SPECIFICATIONS

2.1 ZW0301 Specification

MCU	Description
MCU Type	Optimized 8-bit 8051 MCU core.
MCU speed	16 MHz (integrated clock divider, external crystal frequency is 32MHz)
Flash	32kbyte. Programmed through the SPI interface.
SRAM	2kbyte
SRAM (CPU)	256byte
MCU Peripherals	12/8-bit ADC, UART, SPI, 2x16 bit timers one with PWM mode, Watch Dog Timer, Wake Up Timer, Power-on Reset/Brown-Out Detector, Triac controller.
Interrupt sources	Internal and external.

 Table 2
 MCU Specifications

2.2 ZW0301 Single Chip Peripherals

Peripherals	Description
Crystals	System Clock: 32MHz, ±10ppm@25°C, ±10ppm@-15°C to +85°C, 3ppm aging per 5 years.
	Alternative: 32MHz, ±8ppm@25°C, ±8ppm@-15°C to +85°C, 3ppm aging per year.
Optional Peripherals	EEPROM
	External PA enabling TX signal amplification up to a maximum of +6dBm radiated power.

 Table 3
 External Peripherals

2.3 RF Specification

RF	Description		
RF Data rate	9.6 kbps / 40kbps		
RF frequency (center frequency)	EU: 9.6kbps: 868.42 MHz, 40kbps: 868.40 MHz US: 9.6kbps: 908.42 MHz, 40kbps: 908.40 MHz HK: 9.6kbps: 919.82 MHz, 40kbps: 919.80 MHz NZ: 9.6kbps: 921.42 MHz, 40kbps: 921.40 MHz AUS 9.6kbps: 921.42 MHz, 40kbps: 921.40 MHz		
Modulation	Frequency Shift Keying (FSK)		
Frequency deviation	Center frequency ± 20kHz		
Signal coding	9.6kbps: Manchester Encoded 40kbps: NRZ		
RF filter	SAW Filter US: Center frequency = 908MHz EU: Center frequency = 868MHz HK/ANZ: Center frequency = 923	, BW = 20MHz	
RF receiver sensitivity (typical). Including SAW filter on ZM3102N.	EU: 9.6kbps: -102dBm US: 9.6kbps: -102dBm HK: 9.6kbps: -101dBm ANZ: 9.6kbps: -101dBm	EU: 40kbps: -98dBm US: 40kbps: -98dBm HK: 40kbps: -97dBm ANZ: 40kbps: -97dBm	
RF output power (typical) ¹	EU: -22.0dBm to -2.0dBm US: -22.0dBm to -2.0dBm HK: -23.5dBm to -3.5dBm ANZ: -23.5dBm to -3.5dBm		
Maximum allowed effective radiated power with external PA or high gain antenna.	EU : +6.0dBm ² US : -94dBuV/m ³ (-1.25dBm) HK : +6.0dBm ² ANZ : +2.7dBm ³		
RF Input/Output Impedance	50ohm @ respective EU/US/HK/	NZ/AUS frequencies	
Range (typical) ⁴	Indoor >30 meters line of sight, in unobstructed environment. Outdoor > 100 meters line of sight		
RF regulatory	US: FCC Part 15 EU: R&TTE Directive 1999/5/EC, HK : HKTA 1035 ANZ : AS/ANZ 4268+A1+A2		

1. ZW0301 programmable output power is -20dBm to 0dBm. Typical ZM3102N output power includes a typical SAW insertion loss. Note that different SAW filters are used for EU, US and HK/ANZ modules.

2. The maximum radiated power level is set by the 200kHz reference spurious level in ZW0301. This limit is applicable at 25 deg.C.

3. Maximum radiated power given by official specifications.

Test Conditions: ZM3102N mounted on ZM3120C with quarter wavelength monopole whip antenna mounted on ZW010x interface module. Radiated power ≈0dBm. Range is valid for both 9.6kbit and 40kbit data rate.
 Table 4 RF Specifications

2.4 Electrical Specification

The "Absolute Maximum Ratings" specifies the conditions in which the ZM3102N Z-Wave Module is guaranteed not to be damaged but correct operations are not guaranteed. Exceeding the "Absolute

2007-10-01

Maximum Ratings" may destroy the ZM3102N Z-Wave Module. See "DC Characteristics" for guaranteed operation limits.

2.4.1 **Absolute Maximum Ratings**

Electrical	Value
Operating Temperature	-15°C to +85°C
Storage Temperature	-40°C to +85°C
Voltage on input pins	-0.3V to VCC+0.3V
Minimum Operating Voltage (VCC)	-0.3V
Maximum Operating Voltage (VCC)	4V

Table 5 Absolute Maximum Ratings

2.4.2 **DC Characteristics**

The following DC characteristics are preliminary for the ZM3102N Z-Wave Module.

Symbol	Parameter	Condition	Min	Тур	Max	Units
VCC	Supply Voltage		2.1	3.3	3.6	V
RRST ¹	Reset Pull-up Resistor	Integrated in ZW0301	45		200	kΩ
I _C	Continuous Output Current	One GPIO	-20		20	mA
I _{CTOT}	Total continuous output source/sink current	All GPIO's	-100		100	mA
	Transmitting (16MHz system clock) ²	Pout = -7 dBm(Setting: 1B) ³ Pout = -2 dBm(Setting: 2A) ³		24 36		mA
I _{CC}	Receiving (16MHz system clock) ⁴			23		mA
	Power Down⁵			2.5		μA
Т _{ор}	Operating Temperature		-10		85	°C
H _{OP}	Operating Relative Humidity		8		80	%

 $T_A = 25^{\circ}C$, VCC = 3.3V (unless otherwise noted)

1. The integrated Reset pull up is not for external circuitry. If external circuits are connected to the reset pin an external pull up resistor should be implemented.

The transceiver is in transmit mode with the MCU running. The ADC is off. 2.

3. Pout valid for EU and US modules. Pout for HK and ANZ modules are 1dB lower.

The transceiver is in receive mode with the MCU running. The ADC is off. 4.

5. The ADC, transceiver, MCU and flash are shut down. The chip can be woken by brownout, an external reset pulse, external interrupt (if enabled) or periodical wakeup by WUT (if enabled). POR cannot be disabled. Table 6 DC Characteristics

2.5 Physical Specification

Physical Specification	Description
Size	12.5mm. x 13.6mm. x 2.4mm (0.492" x 0.535" x 0.094")
Weight	7g (with shield) 5g (without shield)
Castellation Notches	18

 Table 7 Physical Specifications

2.6 Process Specification

Specification	Description	
MSL-3	Moisture Level Verification tested according to JEDEC J-STD-020C	
RoHS	Designed in compliance with The Restriction of Hazardous Substances Directive (RoHS)	
Table 9 Drasses Specifications		

 Table 8 Process Specifications

2.7 Recommended PCB Footprint Outline

Figure 5 Recommend ZM3102N PCB footprint Outline

2.8 Recommended Reflow Profile

Figure 6 Recommended Reflow Temperature Profile

2.9 Application PCB Layout Recommendation

2.9.1 Supply Voltage

As the ZM3102N Z-Wave Module contains a RF transceiver good supply voltage decoupling is important. Two decoupling capacitors should be placed at the VCC pin (EP11), a 1.0uF and a 100nF capacitor is recommended. The two capacitors should be placed as close to EP11 as possible and the capacitors should be placed between the ZM3102N Z-Wave Module supply line and the via that goes to the power plane as shown in Figure 7.

Figure 7 Placement of decoupling capacitor (power pin, EP11)

2.9.2 Ground Plane

In order to minimize any noise coupling from noisy signals (typically power products) it is recommended to insert as much ground cobber below the ZM3102N Z-Wave Module as possible on the Application PCB.

2.9.3 Antenna Interconnection

As the RF signal (EP18) is 500hm the trace from the EP18 to the matching circuitry (see 1.4.2) must be 500hm. The Application PCB designer must therefore take the PCB layer structure and thickness into account when designing the 500hm trace (either Microstrip or Stripline).

3 SOFTWARE

3.1 SPI Interface

The signals 'P1.2/MISO', 'P1.4/SCK' and 'P1.3/MOSI' signals are in some SW API's used by the protocol to store Routing Tables and HomeID in an external EEPROM. When these SW API's are used, the Application SW must <u>not</u> use these three signals. Table 9 shows the available SW API's and in which the SPI interface is used by the protocol.

SW API	SPI interface used by Protocol
Slave	No
Routing Slave	No
Enhanced Slave	Yes
Controller	Yes
Static Controller	Yes
Installer	Yes
Bridge	Yes

 Table 9
 SW API / SPI availability

3.2 EEPROM

Some SW API's require an external EEPROM to be implemented on the Application PCB for protocol information storage (like routing table, HomeID etc.). The SPI interface is used to access the EEPROM and the 'P1.5' signal (EP5) is used by the Z-Wave Protocol as EEPROM Chip Select. To assure proper control of the EEPROM chip select signal during reset and power-up a pull up resistor on the P1.5 should be implemented as shown in Figure 8.

Figure 8 External EEPROM

Only a part of the EEPROM is used for protocol data storage, the Application SW can use the remaining memory area using an API call (see [3]). For the EEPROM memory area requirements of the protocol API please refer to the documentation for the Z-Wave Controller code selected (see [3]).

4 REFERENCES

Always refer to latest document revision.

- [1]
- Zensys, DSH10717, Datasheet, ZW0301 With Developers Kit v5.0x Zensys, APL10312, Application Note, Programming the 200 and 300 Series Z-Wave Single Chip [2] Flash
- Zensys, INS10247, Instruction, Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 [3]
- [4] Zensys, APL10045, Application Note, Antennas for Short Range Devices

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.