

2.5-GHz, High Dynamic Range, Low-Noise Down-Converter

FEATURES

- Performs First Down-Conversion in MMDS / WCS Radio 2300 MHz to 2700 MHz
- Integrated Low Noise, Variable Gain Amplifier
- Provisions For An External Image Reject / Band Pass Filter
- Differential Mixer Provides Extra Noise
 Immunity
- Integrated LO Buffer Amplifier
- 20 dB of Gain With 10 dB of Gain Control
- 3-dB Noise Figure, Typical
- Input Third Order Intercept of 0 dBm, Typical
- Input P-1 dB of –5 dBm, Typical
- LO Input Power: 3 dBm

DESCRIPTION

The TRF1115 is the first of two ASICs used in the receiver section of Texas Instruments MMDS/MDS/WCS/802.16x chipset. The TRF1115 down-converts the input frequency to an IF frequency in the range of 420 MHz to 480 MHz. The device provides a differential output that passes through a SAW filter before connecting to a second converter chip. (Note: For the down best performance, the Texas Instruments TRF1112 should be used to perform both the second down conversion and provide the local oscillator for the TRF1115.)

In order to provide exceptional image rejection and extra jammer rejection, the TRF1115 offers a signal path to an off-chip filter. Specifications are provided assuming an in-band 1.5-dB loss in this filter. The TRF1115 includes a differential LO buffer, mixer, and IF amplifier for improved performance. After the filter, an on-chip balun converts the signal from single-ended to differential in order to provide better noise immunity in the mixer.

DEVICE INFORMATION

Figure 1. TRF1115 Pin Out

Figure 2. Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ABSOLUTE MAXIMUM RATINGS

		VALUE	UNIT
VDD	Positive DC Supply Voltage, VDD	0.0 to +5.5	V
IDD	Current consumption	200	mA
Pin	RF Input Power	5	dBm
TJ	Junction Temperature	200	°C
Pd	Power Dissipation	1.1	W
	Digital Input Pins	-0.3 to 5.5	
θ_{JC}	Thermal Resistance Junction to Case ⁽¹⁾	9.1	°C/W
T _{stg}	Storage Temperature	-40 to 105	°C
T _{op}	Operating Temperature	-40 to 85	°C
	Lead Temperature (40 sec max)	260	°C

(1) Thermal resistance is junction to ambient assuming thermal pad with 16 thermal vias under package metal base. See Recommended PCB layout.

DC SPECIFICATIONS

1						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VDD	Supply Voltage			5	5.25	V
IDD	Supply Current (Total)			130	180	mA
I _{LNA}	Supply Current, LNA, pin 3			30		mA
I _{LO}	Supply Current, LO, pin 9			45		mA
I _{IF}	Supply Current, IF	Pins 10 plus IF drain bias on pins 13 and 14.		55		mA
V _C	Gain Control Voltage		0		2	V
I _C	Gain Control Current		0		1.2	mA

ELECTRICAL CHARACTERISTICS

Unless otherwise stated VDD = 5.0 V, External Filter loss = 1.5 dB, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{RF}	RF input frequency		2300		2700	MHz
f _{LO}	LO input frequency		1820		2220	MHz
f _{IF}	IF output frequency		400	480	500	MHz
G	Gain	$V_{\rm C} = 0 \ V$	16	18		dB
	Gain control range	V _C > 1.5 V		10		dB
G _{NB}	Gaub fkatbess / 6 MHz				0.2	dB
NF _{HG}	Noise figure, high gain	$V_{\rm C} = 0 \ V$		3	4	dB
NF_{LG}	Noise figure with AGC on	V _C > 1.5 V		6	7	dB
IP-1dB	Input power at 1 dB compression, high gain	$V_{C} = 0 V$, Without RF BPF	-6	-2		dBm
IP-1dB	Input power at 1 dB compression with AGC on	V _C > 1.5 V, Without RF BPF	-1	2		dBm
IIP3	Input third order intercept point, high gain	V _C = 0 V, Without RF BPF	-3	0		dBm
IIP3	Input third order intercept point with AGC on	V _C > 1.5 V, Without RF BPF	5	8		dBm
Z _{RF}	RF input impedance	Differential		50		Ω
RL _{RF}	RF input return loss	Z = 50 Ω , P _{LO} = 3 dBm, F _{RF} = 2500 to 2700 MHz	8	10		dB
Z _{LO}	LO input impedance	Differential		100		Ω
P _{LO}	LO input power	Referenced to 100 Ω differential	0	3	6	dB
RL _{LO}	LO input return loss	Differential, with external matching circuit. LO input = 3 dBm	-10	-12		dB
Z _{IF}	IF output impedance	Differential		100		Ω
RL _{IF}	IF1 output return loss	Differential, with external matching circuit	-7	-10		dB
	LO to RF leakage, differential	LO input = 3 dBm, $V_C = 0 V$	-35	-45		dBm
	LO to IF1 leakage, differential	LO input = 3 dBm, $V_C = 0 V$	-40	-50		dBm
	RF to IF1 isolation, differential	LO input = 3 dBm, $V_C = 0 V$	35	45		dBc
	RF to LO insolation, differential	LO input = 3 dBm, $V_{C} = 0 V$		25		dBc

TERMINAL FUNCTIONS

TERMINAL		1/0	TYDE	DESCRIPTION
NO.	NAME	I/O TYPE		DESCRIPTION
1, 2, 6, 12, 15, 19	GND			Ground
3	LNAO	0	Analog/P ower	Output of LNA, before mixer, Also provides DC bias to FET. Apply 5 V bias thru bias network.
4	RES			Reserved. Do not connect or ground this pin.
5	LOB			Not connected for normal operation. Internal bias for LO buffer. Normal voltage at this pin is 3.0 to 3.2 V. Do not ground this pin or connect.
7	LOP	I	Analog	LO input, Positive, ac coupled internally
8	LON	I	Analog	LO input, Negative, ac coupled internally
9	VDD	I	Power	DC bias for LO Buffer +5 V
10	VDD	I	Power	DC bias for IF circuit +5 V
11	IFB			Not connected for normal operation. Internal bias for IF circuitry Normal voltage at this pin is 2.8 to 3.0 V. Do not ground this pin or connect.
13	IFON	0	Analog/P ower	IF output, negative, and dc bias for IF amplifier. Apply +5 V through bias network.
14	IFOP	0	Analog/P ower	IF output, Positive, and dc bias for IF amplifier. Apply +5 V through bias network.

TERMINAL FUNCTIONS (continued)

TEF	TERMINAL		TERMINAL		TERMINAL		TYPE	DESCRIPTION
NO.	NAME	I/O	TTPE	DESCRIPTION				
16	RFAGC	I	Analog	Input voltage for gain control: $V_{C} = 0$ to 1.5 V Maximum gain at $V_{C} = 0$ V Minimum gain at $V_{C} = 1.5$ V				
17	MXRPB			Not connected for normal operation. Internal bias for mixer circuitry. Normal voltage at this pin is 1.8 V to 2.5 V. Do not ground this pin or connect to any other pin.				
18	MXRI	I	Analog	Input to RF mixer, ac coupled, 50 Ω				
20	RXI	I	Analog	RF input, ac coupled, 50 Ω				
Back	GND			Back of package has metal base that must be grounded for thermal and RF performance.				

TYPICAL CHARACTERISTICS

TYPICAL DATA

SLWS174B-APRIL 2005-REVISED SEPTEMBER 2006

TYPICAL CHARACTERISTICS (continued)

Figure 7.

SLWS174B-APRIL 2005-REVISED SEPTEMBER 2006

RECOMMENDED PCB LAYOUT

Solder Mask. No Solder Mask Under Chip, On Lead Pads or On Ground Connections.

Notes: 9 Via Holes, Each 0.38 mm. DIMENSIONS in mm

M0022-04

A. Four layer Board, Starting material: two: 10 mil core FR4 with 1 oz copper, both sides, pressed with 8 mil thick prepreg. Via plating ½ oz copper plate, final plate White immersion tin. Final thickness: 0.033" to 0.037" thick.

TEXAS INSTRUMENTS www.ti.com

SLWS174B-APRIL 2005-REVISED SEPTEMBER 2006

APPLICATION SCHEMATIC

Submit Documentation Feedback

SLWS174B-APRIL 2005-REVISED SEPTEMBER 2006

APPLICATION INFORMATION

Figure 8. Package Outline: 4 mm x 4 mm LPCC 20-Pin Leadless Package

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TRF1115IRGPR	ACTIVE	QFN	RGP	20	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	
TRF1115IRGPRG3	ACTIVE	QFN	RGP	20	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	
TRF1115IRGPT	ACTIVE	QFN	RGP	20	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	
TRF1115IRGPTG3	ACTIVE	QFN	RGP	20	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

*A

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF1115IRGPR	QFN	RGP	20	2500	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2
TRF1115IRGPT	QFN	RGP	20	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF1115IRGPR	QFN	RGP	20	2500	338.1	338.1	20.6
TRF1115IRGPT	QFN	RGP	20	250	338.1	338.1	20.6

MECHANICAL DATA

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Α.

- Β. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

D. The package thermal pad must be soldered to the board for thermal and mechanical performance.

- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. E.
- 🖄 Check thermal pad mechanical drawing in the product datasheet for nominal lead length dimensions.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.