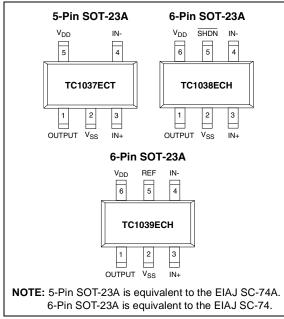
Міскоснір ТС1037/ТС1038/ТС1039

Linear Building Block – Single Comparator in SOT Packages

Features

- Tiny SOT-23A Packages
- Optimized for Single Supply Operation
- Ultra Low Input Bias Current: Less than 100pA
- Low Quiescent Current: 4μA (TC1037), Shutdown Mode: 4μA, 0.05μA (TC1038), 6μA (TC1039)
- Shutdown Mode (TC1038)
- 2.0% Accurate Independent Voltage Reference (TC1039)
- Rail-to-Rail Inputs and Outputs
- Operation Down to V_{DD} = 1.8V


Applications

- Power Management Circuits
- Battery Operated Equipment
- Consumer Products

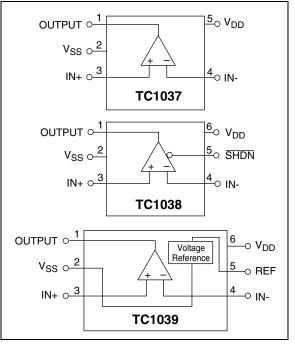
Device Selection Table

Part Number	Package	Temperature Range
TC1037CECT	5-Pin SOT-23A	-40°C to +85°C
TC1038CECH	6-Pin SOT-23A	-40°C to +85°C
TC1039CECH	6-Pin SOT-23A	-40°C to +85°C

Package Types

General Description

The TC1037/TC1038/TC1039 are single, low-power comparators designed for low-power applications.


These comparators are specifically designed for operation from a single supply. However, operation from dual supplies also is possible, and power supply current is independent of the magnitude of the power supply voltage. The TC1037/TC1038/TC1039 operate from two 1.5V alkaline cells down to $V_{DD} = 1.8V$. Active supply current is 4µA for the TC1037/TC1038 and 6µA for the TC1039. Input and output swing of these devices is rail-to-rail.

An active low shutdown input, \overline{SHDN} , is available on the TC1038 and disables the comparator, placing its output in a high-impedance state. The TC1038 draws only 0.05 μ A (typical) when the shutdown mode is active.

An internally biased 1.20V bandgap reference is included in the TC1039. The reference is accurate to 2.0 percent tolerance. This reference is independent of the comparator in the TC1039.

Packaged in a 5-Pin SOT-23A (TC1037) or 6-Pin SOT-23A (TC1038/TC1039), these single comparators are ideal for applications requiring high integration, small size and low power.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage	6.0V
Voltage on Any Pin (V _{SS} - 0.3)	/) to (V _{DD} + 0.3V)
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	55°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1037/TC1038/TC1039 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Typical values apply at 25°C and $V_{DD} = 3.0V$. Minimum and maximum values apply for $T_A = -40^{\circ}$ to +85°C and $V_{DD} = 1.8V$ to 5.5V, unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
V _{DD}	Supply Voltage	1.8	—	5.5	V	
l _Q	Supply Current, Operating (TC1039) (TC1037/TC1038)	_	6 4	10 8	μΑ μΑ	All Outputs Unloaded, SHDN = V_{DD} for TC1038
I _{SHDN}	Supply Current Shutdown Mode (TC1038 Only)	—	—	0.3	μA	SHDN = V _{SS}
Shutdown In	nput (TC1038 Only)			•		•
V _{IH}	Input High Threshold	80% V _{DD}	—	—	V	
V _{IL}	Input Low Threshold	_	_	20% V _{DD}	V	
I _{SI}	Shutdown Input Current	_	—	±100	nA	
Comparator	•			•		•
R _{OUT} (SD)	Output Resistance in Shutdown	20	_	—	MΩ	SHDN = V _{SS} (TC1038 Only)
C _{OUT} (SD)	Output Capacitance in Shutdown	_	_	5	pF	SHDN = V _{SS} (TC1038 Only)
T _{SEL}	Select Time	—	20	—	μsec	V_{OUT} Valid from $\overline{SHDN} = V_{IH}$ R _L = 10k Ω to V _{SS} (TC1038 Only)
T _{DESEL}	Deselect Time	—	500	—	nsec	V_{OUT} Valid from $\overline{SHDN} = V_{IL}$ $R_L = 10k\Omega$ to V_{SS}
V _{ICMR}	Common Mode Input Voltage Range	$V_{SS} - 0.2$	_	V _{DD} + 0.2	V	
A _{VOL}	Large Signal Voltage Gain	_	100	—	V/mV	$R_L = 10k\Omega$, $V_{DD} = 5V$
GBWP	Gain Bandwidth Product	-	90	_	kHz	$V_{DD} = 1.8V$ to 5.5V; $V_O = V_{DD}$ to V_{SS}
V _{OS}	Input Offset Voltage	5 5	—	+5 +5	mV mV	$V_{DD} = 3V, V_{CM} = 1.5V, T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 85^{\circ}C
I _B	Input Bias Current	—	—	±100	pА	$T_A = 25$ °C; IN+, IN- = V _{DD} to V _{SS}
V _{OH}	Output High Voltage	V _{DD} - 0.3	_	_	V	$R_L = 10k\Omega$ to V_{SS}
V _{OL}	Output Low Voltage	_	_	0.3	V	$R_{L} = 10k\Omega$ to V_{DD}
CMRR	Common Mode Rejection Ratio	66	_	—	dB	$T_A = 25^{\circ}C; V_{DD} = 5V;$ $V_{CM} = V_{DD}$ to V_{SS}
PSRR	Power Supply Rejection Ratio	60	—	—	dB	T _A = 25°C; V _{CM} = 1.2V; V _{DD} = 1.8V to 5V
I _{SRC}	Output Source Current	1	—	_	mA	$IN+ = V_{DD}, IN- = V_{SS}$ Output Shorted to V _{SS} $V_{DD} = 1.8V$
I _{SINK}	Output Sink Current	2	_	_	mA	$IN+ = V_{SS}, IN- = V_{SS}$ Output Shorted to V _{SS} V _{DD} = 1.8V
T _{PD1}	Response Time	_	4	_	μsec	100mV Overdrive, C _L = 100pF
T _{PD2}	Response Time	_	6	_	μsec	10 mV Overdrive, C ₁ = $100 pF$

TC1037/TC1038/TC1039 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Typical values apply at 25°C and V_{DD} = 3.0V. Minimum and maximum values apply for T_A = -40° to +85°C and V_{DD} = 1.8V to 5.5V, unless otherwise specified.					
Symbol	Symbol Parameter Min Typ Max Units Test Conditions				

Voltage Refer	ence (TC1039 Only)					
V _{REF}	Reference Voltage	1.176	1.200	1.224	V	
IREF(SOURCE)	Source Current	50		—	μA	
I _{REF(SINK)}	Sink Current	50	_	—	μΑ	
C _{L(REF)}	Load Capacitance	—	_	100	pF	
E _{VREF}	Noise Voltage	_	20	_	μV_{RMS}	100Hz to 100kHz
e _{VREF}	Noise Voltage Density	_	1.0	_	μV/√Hz	1kHz

2.0 PIN DESCRIPTIONS

The description of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. TC1037 (5-Pin SOT-23A)	Symbol	Description	
1	OUTPUT	Comparator output.	
2	V _{SS}	Negative power supply.	
3	IN+	Comparator non-inverting input.	
4	IN-	Comparator inverting input.	
5	V _{DD}	Positive power supply.	

Pin No. TC1038 (6-Pin SOT-23A)	Symbol	Description	
1	OUTPUT	Comparator output.	
2	V _{SS}	Negative power supply.	
3	IN+	Comparator non-inverting input.	
4	IN-	Comparator inverting input.	
5	SHDN	Active low shutdown input (TC1038 only). A low input on this pin disables the comparator and places the output terminal in a high impedance state.	
6	V _{DD}	Positive power supply.	

Pin No. TC1039 (6-Pin SOT-23A)	Symbol	Description	
1	OUTPUT	Comparator output.	
2	V _{SS}	Negative power supply.	
3	IN+	Comparator non-inverting input.	
4	IN-	Comparator inverting input.	
5	REF	1.20V bandgap voltage reference output (TC1039 only).	
6	V _{DD}	Positive power supply.	

3.0 DETAILED DESCRIPTION

The TC1037/TC1038/TC1039 are a series of very low power, linear building block products targeted at low voltage, single supply applications. The TC1037/TC1038/TC1039 minimum operating voltage is 1.8V and typical supply current is only 4μ A for the TC1037 and TC1038 (fully enabled) and 6μ A for the TC1039.

3.1 Comparator

The TC1037/8/9 contain one comparator. The comparator's input range extends beyond both supply voltages by 200mV and the outputs will swing to within several millivolts of the supplies depending on the load current being driven.

The comparator exhibits a propagation delay and supply current which is largely independent of supply voltage. The low input bias current and offset voltage makes it suitable for high impedance precision applications.

The TC1038 comparator is disabled during shutdown and has a high impedance output.

3.2 Voltage Reference

A 2.0% tolerance, internally biased, 1.20V bandgap voltage reference is included in the TC1039. It has a push-pull output capable of sourcing and sinking at least 50μ A.

3.3 Shutdown Input (TC1038 Only)

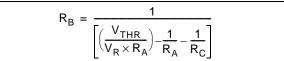
SHDN at V_{IL} disables the comparator and reduces the supply current to less than 0.3µA. The SHDN input cannot be allowed to float. When not used, connect it to V_{DD} . The comparator's output is in a high impedance state when the TC1038 is disabled. The comparator's inputs can be driven from rail-to-rail by an external voltage when the TC1038 is disabled. No latchup will occur when the device is driven to its enabled state when SHDN is set to V_{IH} .

4.0 TYPICAL APPLICATIONS

The TC1037/TC1038/TC1039 family lends itself to a wide variety of applications, particularly in battery powered systems. It typically finds application in power management, processor supervisory and interface circuitry.

4.1 External Hysteresis (Comparator)

Hysteresis can be set externally with two resistors using positive feedback techniques (see Figure 4-1). The design procedure for setting external comparator hysteresis is as follows:


- 1. Choose the feedback resistor R_C . Since the input bias current of the comparator is at most 100pA, the current through R_C can be set to 100nA (i.e., 1000 times the input bias current) and retain excellent accuracy. The current through R_C at the comparator's trip point is V_R / R_C where V_R is a stable reference voltage.
- 2. Determine the hysteresis voltage (V_{HY}) between the upper and lower thresholds.
- 3. Calculate R_A as follows:

EQUATION 4-1:

 $R_{A} = R_{C} \left(\frac{V_{HY}}{V_{DD}} \right)$

- 4. Choose the rising threshold voltage for $V_{\mbox{SRC}}$ $(V_{\mbox{THR}}).$
- 5. Calculate R_B as follows:

EQUATION 4-2:

6. Verify the threshold voltages with these formulas:

V_{SRC} rising:

EQUATION 4-3:

$$V_{\text{THR}} = (V_{\text{R}})(R_{\text{A}})\left[\left(\frac{1}{R_{\text{A}}}\right) + \left(\frac{1}{R_{\text{B}}}\right) + \left(\frac{1}{R_{\text{C}}}\right)\right]$$

V_{SRC} falling:

EQUATION 4-4:

$$V_{THF} = V_{THR} - \left[\left(\frac{R_A \times V_{DD}}{R_C} \right) \right]$$

4.2 Precision Battery Monitor

Figure 4-2 is a precision battery low/battery dead monitoring circuit. Typically, the battery low output warns the user that a battery dead condition is imminent. Battery dead typically initiates a forced shutdown to prevent operation at low internal supply voltages (which can cause unstable system operation).

The circuit in Figure 4-2 uses a TC1034, a TC1037 and a TC1039, and only six external resistors. AMP 1 is a simple buffer, while CMPTR1 and CMPTR2 provide precision voltage detection using V_R as a reference. Resistors R2 and R4 set the detection threshold for BATT LOW, while resistors R1 and R3 set the detection threshold for BATT FAIL. The component values shown assert BATT LOW at 2.2V (typical) and BATT FAIL at 2.0V (typical). Total current consumed by this circuit is typically 16µA at 3V. Resistors R5 and R6 provide hysteresis for comparators CMPTR1 and CMPTR2, respectively.

4.3 32.768 kHz "Time Of Day Clock" Crystal Controlled Oscillator

A very stable oscillator driver can be designed by using a crystal resonator as the feedback element. Figure 4-3 shows a typical application circuit using this technique to develop a clock driver for a Time Of Day (TOD) clock chip. The value of R_A and R_B determine the DC voltage level at which the comparator trips – in this case one-half of V_{DD} . The RC time constant of R_C and C_A should be set several times greater than the crystal oscillator's period, which will ensure a 50% duty cycle by maintaining a DC voltage at the inverting comparator input equal to the absolute average of the output signal.

4.4 Non-Retriggerable One Shot Multivibrator

Using two comparators, a non-retriggerable one shot multivibrator can be designed using the circuit configuration of Figure 4-4. A key feature of this design is that the pulse width is independent of the magnitude of the supply voltage because the charging voltage and the intercept voltage are a fixed percentage of V_{DD}. In addition, this one shot is capable of pulse width with as much as a 99% duty cycle and exhibits input lockout to ensure that the circuit will not re-trigger before the output pulse has completely timed out. The trigger level is the voltage required at the input to raise the voltage at node A higher than the voltage at node B, and is set by the resistive divider R4 and R10 and the impedance network composed of R1, R2 and R3. When the one shot has been triggered, the output of CMPTR2 is high, causing the reference voltage at the non-inverting input of CMPTR1 to go to V_{DD}. This prevents any additional input pulses from disturbing the circuit until the output pulse has timed out.

The value of the timing capacitor C1 must be small enough to allow CMPTR1 to discharge C1 to a diode voltage before the feedback signal from CMPTR2 (through R10) switches CMPTR1 to its high state and allows C1 to start an exponential charge through R5. Proper circuit action depends upon rapidly discharging C1 through the voltage set by R6, R9 and D2 to a final voltage of a small diode drop. Two propagation delays after the voltage on C1 drops below the level on the non-inverting input of CMPTR2, the output of CMPTR1 switches to the positive rail and begins to charge C1 through R5. The time delay which sets the output pulse width results from C1 charging to the reference voltage set by R6, R9 and D2, plus four comparator propagation delays. When the voltage across C1 charges beyond the reference, the output pulse returns to ground and the input is again ready to accept a trigger signal.

4.5 Oscillators and Pulse Width Modulators

Microchip's linear building block comparators adapt well to oscillator applications for low frequencies (less than 100kHz). Figure 4-5 shows a symmetrical square wave generator using a minimum number of components. The output is set by the RC time constant of R4 and C1, and the total hysteresis of the loop is set by R1, R2 and R3. The maximum frequency of the oscillator is limited only by the large signal propagation delay of the comparator in addition to any capacitive loading at the output which degrades the slew rate.

To analyze this circuit, assume that the output is initially high. For this to occur, the voltage at the inverting input must be less than the voltage at the non-inverting input. Therefore, capacitor C1 is discharged. The voltage at the non-inverting input (V_H) is:

EQUATION 4-5:

V –	$R2(V_{DD})$	
∙н –	[R2 + (R1 R3)]	

where, if R1 = R2 = R3, then:

EQUATION 4-6:

$$V_{H} = \frac{2(V_{DD})}{3}$$

Capacitor C1 will charge up through R4. When the voltage of the comparator's inverting input is equal to V_H , the comparator output will switch. With the output at ground potential, the value at the non-inverting input terminal (V_L) is reduced by the hysteresis network to a value given by:

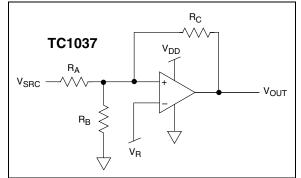
EQUATION 4-7:

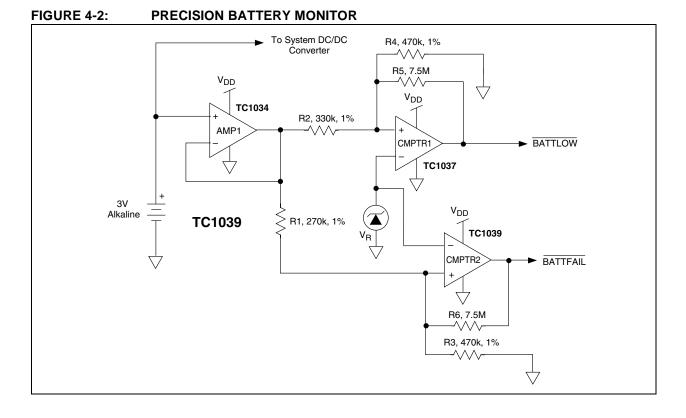
$$V_{L} = \frac{V_{DD}}{3}$$

Using the same resistors as before, capacitor C1 must now discharge through R4 toward ground. The output will return to a high state when the voltage across the capacitor has discharged to a value equal to V_L . The period of oscillation will be twice the time it takes for the RC circuit to charge up to one half its final value. The period can be calculated from:

EQUATION 4-8:

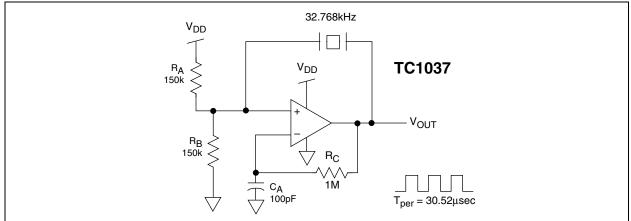
$$\frac{1}{FREQ} = 2(0.694)(R4)(C1)$$

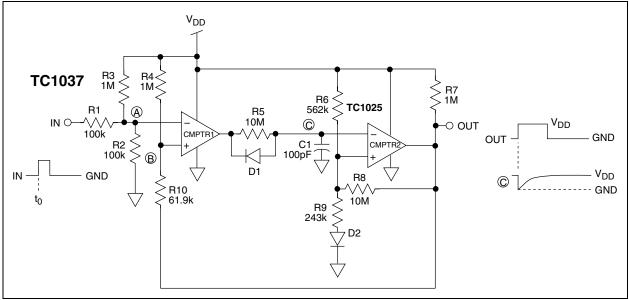

The frequency stability of this circuit should only be a function of the external component tolerances.


Figure 4-6 shows the circuit for a pulse width modulator circuit. It is essentially the same as in Figure 4-5 with the addition of an input control voltage. When the input control voltage is equal to one-half V_{DD} , operation is

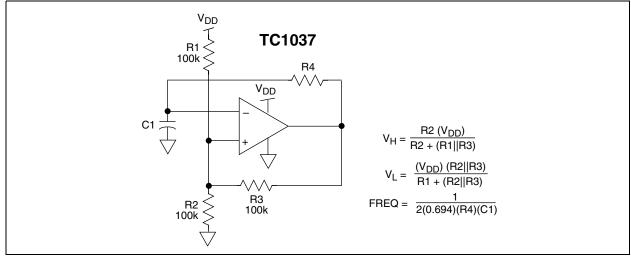
basically the same as described for the free-running oscillator. If the input control voltage is moved above or below one-half V_{DD} , the duty cycle of the output square wave will be altered. This is because the addition of the control voltage at the input has now altered the trip points. The equations for these trip points are shown in Figure 4-6 (see V_H and V_I).

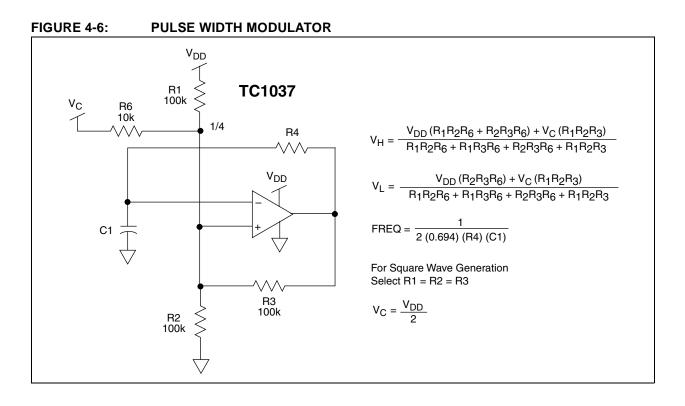
Pulse width sensitivity to the input voltage variations can be increased by reducing the value of R6 from $10K\Omega$ and conversely, sensitivity will be reduced by increasing the value of R6. The values of R1 and C1 can be varied to produce the desired center frequency.

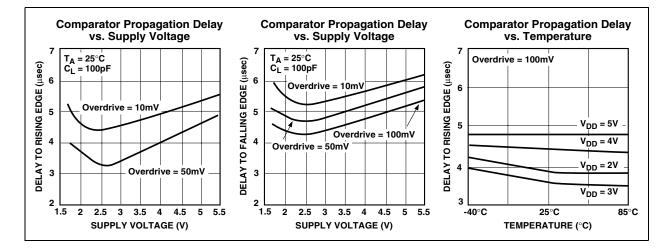

FIGURE 4-1: COMPARATOR EXTERNAL HYSTERESIS CONFIGURATION

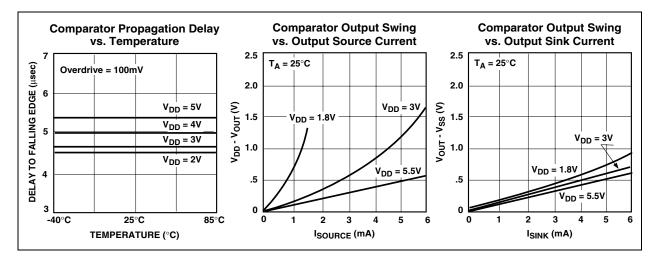


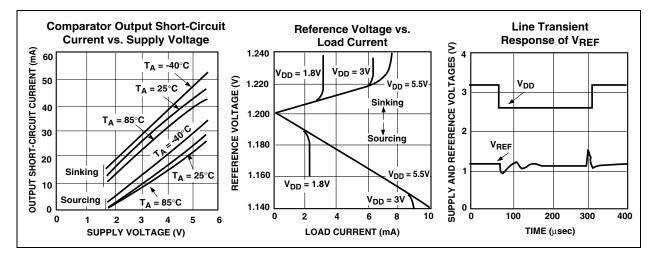
TC1037/TC1038/TC1039


FIGURE 4-3: 32.768 kHz "TIME OF DAY" CLOCK OSCILLATOR

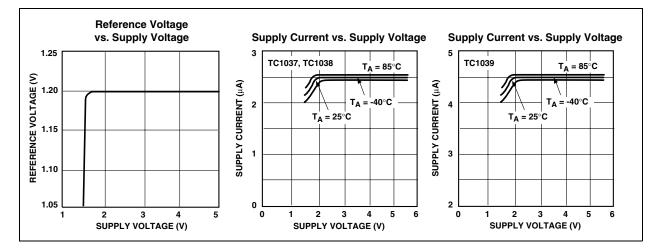


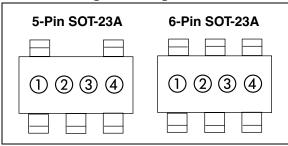



TC1037/TC1038/TC1039



5.0 TYPICAL CHARACTERISTICS

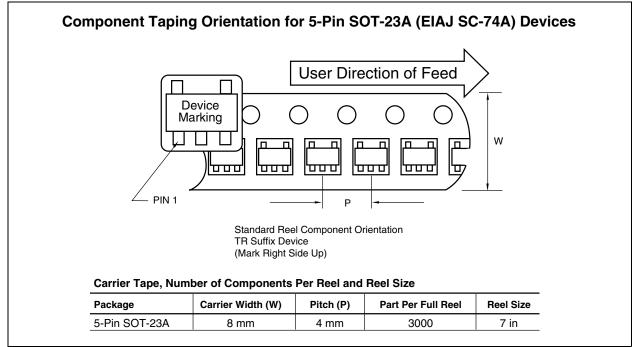

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.



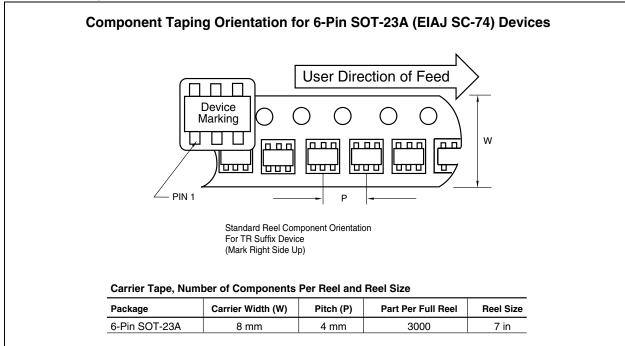
5.0 TYPICAL CHARACTERISTICS (CONTINUED)

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

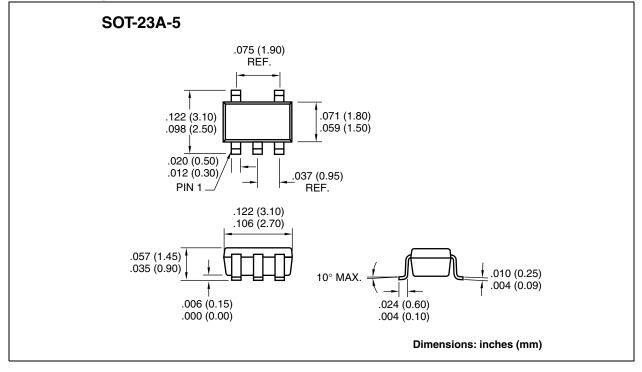

1 & 2 = part number code + temperature range and voltage

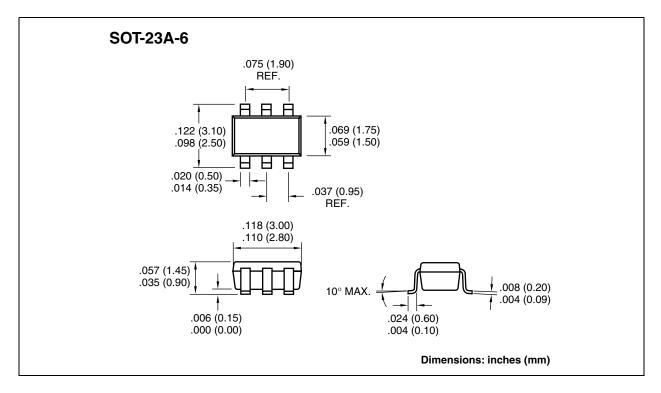
Part Number	Code
TC1037CECT	AR
TC1038CECH	AS
TC1039CECH	AT


3 = year and quarter code

4 = lot ID number

6.2 Taping Form




6.3 Taping Form (Continued)

TC1037/TC1038/TC1039

6.3 Package Dimensions

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

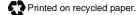
New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B

Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan

aiwan Iioroohin To

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany

Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

TC1039CECHTR TC1038CECHTR TC1037CECTTR

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.