- TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180C – FEBRUARY 1997 – REVISED DECEMBER 2001
- Direct Upgrades for the TL06x Low-Power BiFETs
- Low Power Consumption . . . 6.5 mW/Channel Typ
- On-Chip Offset-Voltage Trimming for Improved DC Performance (1.5 mV, TL031A)
- Higher Slew Rate and Bandwidth Without Increased Power Consumption
- Available in TSSOP for Small Form-Factor Designs

description

The TL03x series of JFET-input operational amplifiers offer improved dc and ac characteristics over the TL06x family of low-power BiFET operational amplifiers. On-chip zener trimming of offset voltage yields precision grades as low as 1.5 mV (TL031A) for greater accuracy in dc-coupled applications. The Texas Instruments improved BiFET process and optimized designs also yield improved bandwidths and slew rates without increased power consumption. The TL03x devices are pin-compatible with the TL06x and can be used to upgrade existing circuits or for optimal performance in new designs.

BiFET operational amplifiers offer the inherently higher input impedance of the JFET-input transistors without sacrificing the output drive associated with bipolar amplifiers. This higher input impedance makes the TL3x amplifiers better suited for interfacing with high-impedance sensors or very low-level ac signals. These devices also feature inherently better ac response than bipolar or CMOS devices having comparable power consumption.

The TL03x family has been optimized for micropower operation, while improving on the performance of the TL06x series. Designers requiring significantly faster ac response should consider the Excalibur™ TLE206x family of low-power BiFET operational amplifiers.

Because BiFET operational amplifiers are designed for use with dual power supplies, care must be taken to observe common-mode input-voltage limits and output swing when operating from a single supply. DC biasing of the input signal is required, and loads should be terminated to a virtual-ground node at midsupply. The TI TLE2426 integrated virtual-ground generator is useful when operating BiFET amplifiers from single supplies.

The TL03x devices are fully specified at \pm 15 V and \pm 5 V. For operation in low-voltage and/or single-supply systems, the TI LinCMOS families of operational amplifiers (TLC prefix) are recommended. When moving from BiFET to CMOS amplifiers, particular attention should be paid to slew rate, bandwidth requirements, and output loading.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Excalibur is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright $\ensuremath{\textcircled{\sc 0}}$ 2001, Texas Instruments Incorporated

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

NC – No internal connection

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

AVAILABLE OPTIONS											
				PAC	KAGED DEVI	CES					
T _A	V _{IO} MAX AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)			
	0.8 mV	TL031ACD TL032ACD	-	—	—	—	TL031ACP TL032ACP	_			
0°C to 70°C	1.5 mV	TL031CD TL032CD — TL034ACD				TL034ACN	TL031CP TL032CP	_			
	4 mV	TL034CD	—		—	TL034CN	—	TL034CPW			
	0.8 mV	TL031AID TL032AID	—	—	_	—	TL031AIP TL032AIP	—			
–40°C to 85°C	1.5 mV	TL031ID TL032ID TL034AID	—	_	—	TL034AIN	TL031IP TL032IP	_			
	4 mV	TL034ID	—	—	—	TL034IN	—	—			
	0.8 mV	TL031AMD TL032AMD	TL031AMFK TL032AMFK	—	TL031AMJG TL032AMJG	—	TL031AMP TL032AMP	—			
–55°C to 125°C	1.5 mV	TL031MD TL032MD TL034AMD	TL031MFK TL032MFK TL034AMFK	TL034AMJ	TL031MJG TL032MJG	TL034AMN	TL031MP TL032MP	_			
	4 mV	TL034MD	TL034MFK	TL034MJ		TL034MN	_				

The D and PW packages are available taped and reeled and are indicated by adding an R suffix to device type (e.g., TL034CDR or TL034CPWR).

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

symbol (each amplifier)

equivalent schematic (each amplifier)

NOTE A: OFFSET N1 and OFFSET N2 are available only on the TL031, TL031A.

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage (see Note 1): V _{CC+}		18 V
V _{CC-}		–18 V
Differential input voltage, V _{ID} (see Note 2)		±30 V
Input voltage, V _I (any input) (see Notes 1 and 3)	±15 V
Input current, I _I (each input)		±1 mA
Output current, I _O (each output)		±40 mA
Total current into V _{CC+}		160 mA
Total current out of V _{CC}		160 mA
Duration of short-circuit current at (or below) 25	°C (see Note 4)	Unlimited
Continuous total power dissipation		See Dissipation Rating Table
Package thermal impedance, θ_{JA} (see Note 5):	D package (8 pin)	97°C/W
	D package (14 pin)	
	N package	
	P package	
	PW package	113°C/W
Lead temperature 1,6 mm (1 /16 inch) from cas	e for 10 seconds: D, N, P, or PW	package 260°C
Lead temperature 1,6 mm (1 /16 inch) from cas	e for 60 seconds: J or JG packag	ge 300°C
Case temperature for 60 seconds: FK package		260°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

- 4. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW

recommended operating conditions

			C SU	FFIX	I SUF	FIX	M SU	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
$V_{CC\pm}$	Supply voltage		±5	±15	±5	±15	±5	±15	V
		$V_{CC\pm} = \pm 5 V$	-1.5	4	-1.5	4	-1.5	4	
v _{IC}	Common-mode input voltage	$V_{CC\pm} = \pm 15 \text{ V}$	-11.5	14	-11.5	14	-11.5	14	V
T _A	Operating free-air temperature		0	70	-40	85	-55	125	°C

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031C and TL031AC electrical characteristics at specified free-air temperature

						Т	L031C,	TL031A	с		
	PARAMETER	TEST CO	NDITIONS	TA	٧d	cc± = ±5	v	۷٥	c± = ±15	v	UNIT
					MIN	ТҮР	MAX	MIN	ТҮР	MAX	
			_	25°C		0.54	3.5		0.5	1.5	
		V _O = 0,	TL031C	Full range [†]			4.5			2.5	
VIO	Input offset voltage	$V_{IC} = 0,$ Be = 50 Ω	T I 00440	25°C		0.41	2.8		0.34	0.8	mV
			TL031AC	Full range [†]			3.8			1.8	
a	Temperature coefficient of	$V_{O} = 0,$	TL031C	25°C to 70°C		7.1			5.9		N/20
"V _{IO}	input offset voltage	$v_{IC} = 0,$ $R_S = 50 \Omega$	TL031AC	25°C to 70°C		7.1			5.9	25	μv/°C
	Input offset voltage long-term drift [‡]	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
		$V_{O} = 0, V_{IC}$	= 0	25°C		1	100		1	100	
IIO	Input offset current	See Figure	5	70°C		9	200		12	200	рА
	lowed bing assumed	$V_{O} = 0, V_{IC}$	= 0	25°C		2	200		2	200	
IB	input blas current	See Figure	5	70°C		50	400		80	400	рА
	Common-mode input			25°C	–1.5 to 4	–3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		
VICR	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak	$R_L = 10 \ k\Omega$		0°C	3	4.2		13	14		V
	calpat renage entrig			70°C	3	4.3		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V _{OM} -	output voltage swing	$R_L = 10 \ k\Omega$		O°C	-3	-4.1		-12.5	-13.9		V
	1 0 0			70°C	-3	-4.2		-12.5	-14		
				25°C	4	12		5	14.3		
A _{VD}	voltage amplification [§]	$R_L = 10 \ k\Omega$		0°C	3	11.1		4	13.5		V/mV
				70°C	4	13.3		5	15.2		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	Common-mode	Vio Viorm	in	25°C	70	87		75	94		
CMRR	rejection ratio	$V_0 = 0, R_S$	= 50 Ω	0°C	70	87		75	94		dB
				70°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio $(A)(z = (A)(z = x)$	V _O = 0, R _S =	= 50 Ω	0°C	75	96		75	96		dB
	(ΔΛCCŦ/QΛIO)			70°C	75	96		75	96		

[†] Full range is 0° C to 70° C.

[‡] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^\circ C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031C and TL031AC electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST C	TEST CONDITIONS		TEST CONDITIONS		TEST CONDITIONS		٧ _C	c± = ±5	V	Vco	_{2±} = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX					
				25°C		1.9	2.5		6.5	8.4					
P _D Total power dissipation	V _O = 0,	No load	0°C		1.8	2.5		6.3	8.4	mW					
				70°C		1.9	2.5		6.3	8.4					
				25°C		192	250		217	280					
Icc	Supply current	V _O = 0,	No load	0°C		184	250		211	280	μA				
				70°C		189	250		210	280					

TL031C and TL031AC operating characteristics at specified free-air temperature

	PARAMETER		TEST CO	NDITIONS	TA	٧ _c	; _{C±} = ±5	V	Vcc	_{2±} = ±15	V	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
				_	25°C		2		1.5	2.9		
SR+	Positive slew rate	at	$R_L = 10 \text{ k}\Omega, C_l$	_ = 100 pF	0°C		1.8		1	2.6		V/µs
	unity gain'		See l'igure i		70°C		2.2		1.5	3.2		
				_	25°C		3.9		1.5	5.1		
SR-	Negative slew rate	e at	$R_L = 10 \text{ k}\Omega, C_l$	_ = 100 pF	0°C		3.7		1.5	5		V/µs
	unity gain'		See l'igure i		70°C		4		1.5	5		
			$V_{(PP)} = \pm 10 \text{ m}$	V	25°C		138			132		
t _r	Rise time		$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 100 pF	0°C		134			127		ns
			See Figures 1	and 2	70°C		150			142		
			$V_{(100)} = \pm 10 \text{ m}$	$H(PP) = \pm 10 \text{ mV},$			138			132		
t _f	Fall time	$V_{I(PP)} = \pm 10 \text{ mV},$ $R_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}$		0°C		134			127		ns	
			See Figure 1		70°C		150			142		
			$V_{(PP)} = \pm 10 \text{ mV}.$		25°C		11%			5%		
	Overshoot factor		$RL = 10 k\Omega$, C	$RL = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$			10%			4%		
			See Figures 1	and 2	70°C		12%			6%		
				f = 10 Hz	1		61			61		
	Equivalent input	TL031C	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41		/
Vn	noise voltage		See Figure 3	f = 10 Hz			61			61		nV/√Hz
		TL031AC		f = 1 kHz	25°C		41			41	60	
In	Equivalent input r current	ioise	f = 1 kHz		25°C		0.003			0.003		pA/√Hz
			$V_{1} = 10 \text{ mV}$	$V_{1} = 10 \text{ mV}$			1			1.1		
B ₁	Unity-gain bandw	idth	$R_{L} = 10 \text{ k}\Omega, C_{I}$	_ = 25 pF	0°C		1			1.1		MHz
			See Figure 4		70°C		1			1		
			$V_{1} = 10 \text{ mV}$		25°C		61°			65°		
φm	Phase margin at u	unity gain	R _L = 10 kΩ, C _l	_ = 25 pF	0°C		61°			65°		
			See Figure 4		70°C		60°			64°		

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031I and TL031AI electrical characteristics at specified free-air temperature

DADAMETED											
	PARAMETER	TEST CO	NDITIONS	TA	Vo	C± = ±5	V	۷۵	_{C±} = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TLOOAL	25°C		0.54	3.5		0.5	1.5	
.,	have the first such as a	$V_{\rm O} = 0,$	110311	Full range [†]			5.3			3.3	
VIO	input offset voltage	$v_{\rm IC} = 0,$ Rs = 50 Ω		25°C		0.41	2.8		0.34	0.8	mv
		0	TL031AI	Full range [†]			4.6			2.6	
a	Temperature coefficient	$V_0 = 0,$	TL0311	25°C to 85°C		6.5			6.2		
^{av} io	of input offset voltage	$V_{\rm IC} = 0,$ $R_{\rm S} = 50 \ \Omega$	TL031AI	25°C to 85°C		6.5			6.2	25	μv/°C
	Input offset voltage long-term drift [‡]	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
	Input offect ourrent	V _O = 0, V _{IC} =	V _O = 0, V _{IC} = 0 See Figure 5			1	100		1	100	pА
IO	input onset current	See Figure 5	See Figure 5			0.02	0.45		0.02	0.45	nA
	Input biog ourrent	V _O = 0, V _{IC} =	= 0	25°C		2	200		2	200	pА
чв	input bias current	See Figure 5	5	85°C		0.2	0.9		0.2	0.9	nA
	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		V
VICR	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			v
				25°C	3	4.3		13	14		
V _{OM+}	output voltage swing	$R_L = 10 \ k\Omega$		−40°C	3	4.1		13	14		V
				85°C	3	4.4		13	14		
	Movimum pogotivo poole			25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	output voltage swing	$R_L = 10 \ k\Omega$		-40°C	-3	-4.1		-12.5	-13.8		V
	1 0 0			85°C	-3	-4.2		-12.5	-14		
	l a mar a tana di al' ff a mandia l			25°C	4	12		5	14.3		
A _{VD}	Large-signal differential	$R_L = 10 \ k\Omega$		-40°C	3	8.4		4	11.6		V/mV
	voltago ampinications			85°C	4	13.5		5	15.3		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
ci	Input capacitance			25°C		5			4		pF
	Common mode		~	25°C	70	87		75	94		
CMRR	rejection ratio	$V_{\rm IC} = V_{\rm ICR}$	Π, = 50 Ω	-40°C	70	87		75	94		dB
	•	0 -7 3		85°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	V _O = 0,	$R_S = 50 \ \Omega$	-40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$		$V_0 = 0$, $N_0 = 30.22$		75	96		75	96		

[†] Full range is -40°C to 85°C.

[‡] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}$ C using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At V_{CC±} = ±5 V, V_O = ±2.3 V; at V_{CC±} = ±15 V, V_O = ±10 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031I and TL031AI electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST CONDITIONS T _A		V _{CC±} = ±5 V			V _{CC±} = ±15 V			UNIT			
					MIN	TYP	MAX	MIN	TYP	MAX			
				25°C		1.9	2.5		6.5	8.4			
P _D Total power dissipation	V _O = 0,	No load	-40°C		1.4	2.5		5.4	8.4	mW			
				85°C		1.9	2.5		6.2	8.4			
				25°C		192	250		217	280			
Icc	Supply current	$V_{O} = 0$, No load	V _O = 0, No loa	No load	_D = 0, No load	-40°C		144	250		181	280	μA
						85°C		189	250		207	280	

TL031I and TL031AI operating characteristics at specified free-air temperature

						-	TL031I, ⁻	TL031AI				
	PARAMETER		TEST CO	NDITIONS	TA	Vc	c± = ±5	V	Vc	_{2±} = ±15	۷	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate	at	$R_L = 10 k\Omega, C_L$	_= 100 pF	-40°C		1.6		1	2.1		V/µs
	unity gain		occ rigure r		85°C		2.3		1.5	3.3		
			_	_	25°C		3.9		1.5	5.1		
SR-	Negative slew rat	e at unity	$R_L = 10 k\Omega, C_L$	_= 100 pF	−40°C		3.3		1.5	4.8		V/µs
	gann		See ligure l		85°C		4.1		1.5	4.9		
			$V_{1}(PP) = +10 m^{2}$	V.	25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C_L$	_= 100 pF	-40°C		132			123		ns
			See Figures 1 and 2		85°C		154			146		
			$V_{(DD)} = \pm 10 \text{ m}^{-1}$	$P_{\rm N} = \pm 10 {\rm mV}$			138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		-40°C		132			123		ns
			See Figure 1		85°C		154			146		
			$V_{I(PP)} = \pm 10 \text{ mV},$ $R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$ See Figures 1 and 2		25°C		11%			5%		
	Overshoot factor				-40°C		12%			5%		
					85°C		13%			7%		
		_		f = 10 Hz			61			61		
	Equivalent	110311	$R_S = 20 \Omega$	f = 1 kHz	25°C		41			41		/
Vn	input poise voltage		See Figure 3	f = 10 Hz			61			61		nV/√Hz
	noise voltage	TL031AI		f = 1 kHz	25°C		41			41	60	
I _n	Equivalent input r current	ioise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
	$V_{1} = 10 \text{ n}$		$V_{\rm L} = 10 {\rm mV}$		25°C		1			1.1		
B ₁	Unity-gain bandw	idth	$R_{L} = 10 \text{ k}\Omega, C_{L}$	= 25 pF	-40°C		1			1.1		MHz
			See Figure 4		85°C		0.9			1		
			$V_{1} = 10 mV$		25°C		61°			65°		
φm	Phase margin at	unity gain	$R_{L} = 10 \text{ k}\Omega, C_{L}$	= 25 pF	-40°C		60°			65°		
			See Figure 4		85°C		60°			64°		

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031M and TL031AM electrical characteristics at specified free-air temperature

[т	L031M,	TL031A	М		
	PARAMETER	TEST CO	NDITIONS	TA	V	cc± = ±5	V	۷۵	c± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		0.54	3.5		0.5	1.5	
	· · · · · ·	V _O = 0,	TL031M	Full range [†]			6.5			4.5	
V _{IO}	Input offset voltage	$V_{\rm IC} = 0,$ Be = 50 Ω	-	25°C		0.41	2.8		0.34	0.8	mV
			IL031AM	Full range [†]			5.8			3.8	
	Temperature coefficient of	V _O = 0,	TL031M	25°C to 125°C		5.1			4.3		N/20
α _{VIO}	input offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TL031AM	25°C to 125°C		5.1			4.3		μv/°C
	Input offset voltage long-term drift [‡]	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
	Input offect ourrent	$V_{O} = 0, V_{IC}$	= 0	25°C		1	100		1	100	pА
IO	input offset current	See Figure	5	125°C		0.2	10		0.2	10	nA
	Innut biog ourrent	$V_{O} = 0, V_{IC}$	= 0	25°C		2	200		2	200	pА
ЧВ	input bias current	See Figure	5	125°C		7	20		8	20	nA
	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		
V _{ICR}	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak	$R_L = 10 \ k\Omega$		–55°C	3	4.1		13	14		V
	output voltage owing			125°C	3	4.4		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	Maximum negative peak	$R_L = 10 \ k\Omega$		–55°C	-3	-4		-12.5	-13.8		V
	output ronago orning			125°C	-3	-4.3		-12.5	-14		
				25°C	4	12		5	14.3		
A _{VD}	Large-signal differential voltage amplification§	$R_L = 10 \ k\Omega$		–55°C	3	7.1		4	10.4		V/mV
	voltago ampinications			125°C	3	12.9		4	15		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
с _і	Input capacitance			25°C		5			4		pF
	Common modo	V V	in	25°C	70	87		75	94		
CMRR	rejection ratio	$V_{\rm IC} = V_{\rm ICRII}$ $V_{\rm O} = 0, R_{\rm S}$	= 50 Ω	–55°C	70	87		70	94		dB
		0 0		125°C	70	87		70	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	V _O = 0,	$R_S = 50 \ \Omega$	–55°C	75	96		75	95		dB
<u> </u>	(ΔΛCC T /ΔΛΙΟ)	ļ		125°C	75	96		75	96		
				25°C		1.9	2.5		6.5	8.4	
PD	Total power dissipation	V _O = 0,	No load	–55°C		1.1	2.5		4.7	8.4	mW
				125°C		1.8	2.5		5.8	8.4	

[†] Full range is –55°C to 125°C.

⁺ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL031M and TL031AM electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST C	TEST CONDITIONS		$V_{CC\pm} = \pm 5 V$			$V_{CC\pm} = \pm 15 V$			UNIT
					MIN	ТҮР	MAX	MIN	ТҮР	MAX	
				25°C		192	250		217	280	
ICC	Supply current	V _O = 0,	No load	–55°C		114	250		156	280	μA
				125°C		178	250		197	280	

TL031M and TL031AM operating characteristics at specified free-air temperature

							Т	L031M, ⁻	TL031AN	1		
	PARAMETER		TEST CO	NDITIONS	TA	Vc	c± = ±5	V	Vco	_{C±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate	at	$R_L = 10 k\Omega, C$	_L = 100 pF	–55°C		1.4		1	1.9		V/µs
	unity gain		Occ rigure r		125°C		2.4		1	3.5		
					25°C		3.9		1.5	5.1		
SR-	Negative slew rate	at	$R_L = 10 k\Omega, C$	_L = 100 pF	–55°C		3.2		1	4.6		V/µs
	unity gain		See l'igule i		125°C		4.1		1	4.7		
			$V_{(PP)} = \pm 10 \text{ n}$	nV	25°C		138			132		
t _r	Rise time		$R_{L} = 10 \text{ k}\Omega, C$	_L = 100 pF	–55°C		142			123		ns
			See Figures 1	and 2	125°C		166			158		
			Vuop) = +10 n	nV	25°C		138			132		
t _f	Fall time		$R_{L} = 10 \text{ k}\Omega, C$	_L = 100 pF	–55°C		142			123		ns
ч			See Figure 1		125°C		166			158		
			V _{UDD}) = +10 n	nV.	25°C		11%			5%		
	Overshoot factor		$R_{L} = 10 \text{ k}\Omega, C$	_L = 100 pF	–55°C		16%			6%		
			See Figures 1	and 2	125°C		14%			8%		
		TIOCAL		f = 10 Hz	0.500		61			61		
	Equivalent input	1L031M	R _S = 20 Ω	f = 1 kHz	25°C		41			41		
Vn	noise voltage	_	See Figure 3	f = 10 Hz			61			61		nV/√Hz
		TL031AM		f = 1 kHz	25°C		41			41		
I _n	Equivalent input no	oise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			$V_{i} = 10 \text{ mV}$		25°C		1			1.1		
B ₁	Unity-gain bandwi	dth	$R_{L} = 10 \text{ k}\Omega, C$	c _L = 25 pF	–55°C		1			1.1		MHz
			See Figure 4		125°C		0.9			0.9		
			$V_{I} = 10 \text{ mV}$		25°C		61°			65°		
φ _m	Phase margin at u	nity gain	R _L = 10 kΩ, C	C _L = 25 pF	–55°C		57°			64°		
			See Figure 4		125°C		59°			62°		

 † For V_{CC\pm} = \pm5 V, V_{I(PP)} = ±1 V; for V_{CC\pm} = ±15 V, V_{I(PP)} = ±5 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032C and TL032AC electrical characteristics at specified free-air temperature

						т	L032C,	TL032A	с		
	PARAMETER	TEST CON	DITIONS	TA	V	cc± = ±5	V	Vo	cc± = ±15	V	UNIT
					MIN	TYP	MAX	MIN	ТҮР	MAX	
			-	25°C		0.69	3.5		0.57	1.5	
		$V_{O} = 0,$	1L032C	Full range [†]			4.5			2.5	
VIO	Input offset voltage	$v_{\rm IC} = 0,$ Rs = 50 Ω	TI 000 4 0	25°C		0.53	2.8		0.39	0.8	mv
		8	TL032AC	Full range [†]			3.8			1.8	
αν	Temperature	$V_0 = 0,$	TL032C	25°C to 70°C		11.5			10.8		
V IO	offset voltage	$R_{\rm S} = 50 \ \Omega$	TL032AC	25°C to 70°C		11.5			10.8	25	μv/°C
	Input offset voltage long-term drift [‡]	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \ \Omega$		25°C		0.04			0.04		μV/mo
	have to the standard	$V_{O} = 0,$	$V_{IC} = 0$	25°C		1	100		1	100	
IIO	Input onset current	See Figure 5		70°C		9	200		12	200	рА
	Input biog gurrant	V _O = 0,	$V_{IC} = 0$	25°C		2	200		2	200	~^
ЧВ	input bias current	See Figure 5		70°C		50	400		80	400	рА
N	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		
V _{ICR}	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			v
	Maximum positive			25°C	3	4.3		13	14		
V _{OM+}	peak output voltage	$R_L = 10 \ k\Omega$		0°C	3	4.2		13	14		V
	swing			70°C	3	4.3		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	peak output voltage	$R_L = 10 \ k\Omega$		0°C	-3	-4.1		-12.5	-13.9		V
	swing			70°C	-3	-4.2		-12.5	-14		
	Large-signal			25°C	4	12		5	14.3		
A _{VD}	differential voltage	$R_L = 10 \ k\Omega$		0°C	3	11.1		4	13.5		V/mV
	amplifications			70°C	4	13.3		5	15.2		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
Ci	Input capacitance			25°C		5			14		pF
	Common-mode	$V_{IC} = V_{ICP}$ min	l.	25°C	70	87		75	94		
CMRR	rejection ratio	$V_0 = 0, R_S = 8$	50 Ω	0°C	70	87		75	94		dB
				70°C	70	87		75	94		
L.	Supply-voltage	$V_{CC\pm} = \pm 5 V$	to ±15 V,	25°C	75	96		75	96		
^K SVR	rejection ratio $(\Delta V_{CC+}/\Delta V_{IO})$	V ₀ = 0, R _S =	50 Ω	0°C	/5 75	90		/5 75	90		uВ
	· · · · · · · · · · · · · · · · · · ·			70-0	/5	90		70	90		

[†] Full range is 0°C to 70°C.

⁴ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032C and TL032AC electrical characteristics at specified free-air temperature (continued)

	DADAMETED					Т	L032C, 1	FL032AC	;		
	PARAMETER	TEST CO	ONDITIONS	TA	٧c	:C± = ±5	v	Vco	_{2±} = ±15	۷	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
P _D	.			25°C		3.8	5		13	17	
	lotal power dissipation (two amplifiers)	V _O = 0,	No load	0°C		3.7	5		12.7	17	mW
	(two unpinoto)			70°C		3.8	5		12.6	17	
	Supply current	<u>м</u>	Nie le sel	0°C		368	500		422	560	•
I _{CC}	(two amplifiers)	$V_{O} = 0,$	No load	70°C		378	500		420	560	μΑ
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100 dB		25°C		120			120		dB

TL032C and TL032AC operating characteristics at specified free-air temperature

							Т	L032C, ⁻	TL032AC	;		
	PARAMETER		TEST CO	NDITIONS	TA	vc	_{C±} = ±5	V	Vc	_{2±} = ±15	٧	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		1.2		1.5	2.9		
SR+	Positive slew rate at	unity	$R_L = 10 k\Omega, C$ See Figure 1	_L = 100 p⊦	0°C		1.8		1	2.6		V/µs
	gain		occ rigure r		70°C		2.2		1.5	3.2		
					25°C		3.9		1.5	5.1		
SR-	Negative slew rate a	t unity	$R_L = 10 k\Omega, C$ See Figure 1	_L = 100 pF	0°C		3.7		1.5	5		V/µs
	gan		occ riguie r		70°C		4		1.5	5		
			$V_{I(PP)} = \pm 10 V$		25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C$, L = 100 pF	0°C		134			127		ns
			See Figures 1	and 2	70°C		150			142		
			$V_{1(BB)} = \pm 10 V$		25°C		138			132		
t _f	Fall time		$R_L = 10 \text{ k}\Omega, C$, L = 100 pF	0°C		134			127		ns
		See Figures 1	and 2	70°C		150			142			
			$V_{(PP)} = +10 V$		25°C		11%			5%		
	Overshoot factor		$R_L = 10 \text{ k}\Omega$, C	, L = 100 pF	0°C		10%			4%		
			See Figures 1	and 2	70°C		12%			6%		
		T I 0000		f = 10 Hz			49			49		
.,	Equivalent input	1L032C	R _S = 20 Ω	f = 1 kHz	25°C		41			41		
v _n	noise voltage	TI 000 4 0	See Figure 3	f = 10 Hz	0500		49			49		nv/∿Hz
		TL032AC		f = 1 kHz	25°C		41			41	60	
I _n	Equivalent input noi	se current	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			$V_{\rm H} = 10 \text{ mV}$		25°C		1			1.1		
B ₁	Unity-gain bandwidt	h	$R_{L} = 10 \text{ k}\Omega, \text{ C}$	L = 25 pF	0°C		1			1.1		MHz
			See Figure 4		70°C		1			1		
			$V_{\rm I} = 10 \rm mV$		25°C		61°			65°		
φm	Phase margin at uni	ty gain	R _L = 10 kΩ, C	L = 25 pF	0°C		61°			65°		
			See Figure 4		70°C		60°			64°		

⁺ For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032I and TL032AI electrical characteristics at specified free-air temperature

							TL032I,	TL032A	I		
	PARAMETER	TEST CO	DITIONS	TA	Vo	cc± = ±5	V	۷۵	_{C±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0001	25°C		0.69	3.5		0.57	1.5	
		V _O = 0,	1L0321	Full range [†]			5.3			3.3	
VIO	Input offset voltage	$v_{\rm IC} = 0,$ Bs = 50 Ω	TI 000 41	25°C		0.53	2.8		0.39	0.8	mv
			1L032AI	Full range [†]			4.6			2.6	
α.,	Temperature	$V_0 = 0,$	TL032I	25°C to 85°C		11.4			10.8		
IO	offset voltage	$V_{IC} = 0,$ $R_S = 50 \Omega$	TL032AI	25°C to 85°C		11.4			10.8	25	μν/°C
	Input offset voltage long-term drift [‡]	$\label{eq:VO} \begin{split} V_O &= 0, \\ V_{IC} &= 0, \\ R_S &= 50 \ \Omega \end{split}$		25°C		0.04			0.04		μV/mo
	have the first summer t	V _O = 0,	$V_{IC} = 0$	25°C		1	100		1	100	pА
IIO	Input offset current	See Figure 5		85°C		0.02	0.45		0.02	0.45	nA
		V _O = 0,	V _{IC} = 0	25°C		2	200		2	200	pА
IВ	input bias current	See Figure 5		85°C		0.2	0.9		0.3	0.9	nA
	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		
V _{ICR}	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			V
	Maximum positive			25°C	3	4.3		13	14		
V _{OM+}	peak output voltage	$R_L = 10 \ k\Omega$		-40°C	3	4.2		13	14		v
-	swing			85°C	3	4.4		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V _{OM} _	peak output voltage	$R_L = 10 \ k\Omega$		-40°C	-3	-4.1		-12.5	-13.8		V
	swing			85°C	-3	-4.2		-12.5	-14		
	Large-signal differential			−40°C	3	8.4		4	11.6		1/1001/
AVD	voltage amplification§	$H_{L} = 10 \text{ k}_{22}$		85°C	4	13.5		5	15.3		V/mv
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
Ci	Input capacitance			25°C		5			4		pF
	Common mode			25°C	70	87		75	94		
CMRR	rejection ratio	$v_{IC} = v_{ICR}mII$ $V_{O} = 0. R_{S} =$	n, 50 Ω	-40°C	70	87		75	94		dB
		0 5,3-		85°C	70	87		75	94		
	Supply-voltage	V 15 V		25°C	75	96		75	96		
k _{SVR}	rejection ratio	$v_{CC\pm} = \pm 5 V 1$ $V_{C} = 0. R_{e} =$	$0 \pm 15 V,$ 50 Ω	-40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$	0 5,3-		85°C	75	96		75	96		

[†] Full range is –40°C to 85°C.

⁴ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032I and TL032AI electrical characteristics at specified free-air temperature (continued)

							TL032I,	TL032AI			
P	ARAMETER	TEST CO	ONDITIONS	TA	٧c	C± = ±5	v	Vcc	_{2±} = ±15	۷	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
	Total power			25°C		3.8	5		13	17	
P _D	dissipation	V _O = 0,	No load	−40°C		2.9	5		10.9	17	mW
	(two amplifiers)			85°C		3.7	5		12.4	17	
				25°C		384	500		434	560	
ICC	Supply current	V _O = 0,	No load	−40°C		288	500		362	560	μA
	(two ampinioro)			85°C		372	500		414	560	
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100 dB		25°C		120			120		dB

TL032I and TL032AI operating characteristics at specified free-air temperature

	DADAMETED							TL032I, ⁻	TL032AI			
	PARAMETER		TEST CO	NDITIONS	TA	٧c	c± = ±5	v	٧ _C	$C\pm = \pm 15$	V	UNIT
						MIN	TYP	MAX	MIN	ТҮР	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate at	unity	R _L = 10 kΩ, C	_L = 100 pF	−40°C		1.6		1	2.1		V/µs
	gain				85°C		2.3		1.5	3.3		
					25°C		3.9		1.5	5.1		
SR-	Negative slew rate a	at unity	R _L = 10 kΩ, C	L = 100 pF	-40°C		3.3		1.5	4.8		V/µs
	gain				85°C		4.1		1.5	4.9		
			$V_{(100)} = \pm 10 V_{(100)}$	1	25°C		138			132		
tr	Rise time		$R_{L} = 10 \text{ k}\Omega, C$, L = 100 pF	−40°C		132			123		ns
			See Figures 1	and 2	85°C		154			146		
			$V_{(100)} = \pm 10 V_{(100)}$	1	25°C		138			132		
t _f	Fall time		$R_{L} = 10 \text{ k}\Omega, C$, _L = 100 pF	-40°C		132			123		ns
-			See Figure 1		85°C		154			146		
			$V_{(DD)} = \pm 10 V_{(DD)}$	1	25°C		11%			5%		
	Overshoot factor		$R_{L} = 10 \text{ k}\Omega, C$, L = 100 pF	−40°C		12%			5%		
			See Figures 1	and 2	85°C		13%			7%		
		-		f = 10 Hz			49			49		
	Equivalent input	1L0321	R _S = 20 Ω	f = 1 kHz	25°C		41			41		
v _n	noise voltage	TI 000 M	See Figure 3	f = 10 Hz	0.500		49			49		nv/√Hz
		1L032A1		f = 1 kHz	25°C		41			41	60	
I _n	Equivalent input nois current	se	f = 1 kHz		25°C		0.003			0.003		pA/√Hz
			$V_{\rm I} = 10 {\rm mV}$		25°C		1			1.1		
B ₁	Unity-gain bandwidt	h	$R_{L} = 10 \text{ k}\Omega, C$	L = 25 pF	−40°C		1			1.1		MHz
			See Figure 4		85°C		0.9			1		
			$V_{1} = 10 mV_{2}$		25°C		61°			65°		
φm	Phase margin at uni	ty gain	R _L = 10 kΩ, C	_L = 25 pF	-40°C		61°			65°		
			See Figure 4		85°C		60°			64°		

 † For V_{CC\pm} = \pm5 V, V_{I(PP)} = ±1 V; for V_{CC\pm} = ±15 V, V_{I(PP)} = ±5 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032M and TL032AM electrical characteristics at specified free-air temperature

						т	L032M,	TL032A	М		
	PARAMETER	TEST COM	DITIONS	TA	V.	cc± = ±5	V	۷۵	C± = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	ТҮР	MAX	
			TLOOOM	25°C		0.69	3.5		0.57	1.5	
V	Input offect veltage	$V_0 = 0,$ V ₁₀ = 0	I LUJZIVI	Full range [†]			6.5			4.5	m\/
VIO	input onset voltage	$V_{\rm IC} = 0$, R _S = 50 Ω		25°C		0.53	2.8		0.39	0.8	mv
		0	TLU3ZAW	Full range [†]			5.8			3.8	
a	Temperature coefficient	$V_0 = 0,$ $V_0 = 0$	TL032M	25°C to 125°C		9.7			9.7		
"VIO	of input offset voltage	$R_{\rm S} = 50 \ \Omega$	TL032AM	25°C to 125°C		9.7			9.7		μv/C
	Input offset voltage long-term drift [‡]	$\label{eq:VO} \begin{split} V_{O} &= 0, \\ V_{IC} &= 0, \\ R_{S} &= 50 \; \Omega \end{split}$		25°C		0.04			0.04		μV/mo
	land affect and an	V _O = 0,	$V_{IC} = 0$	25°C		1	100		1	100	pА
IIO	Input offset current	See Figure 5		125°C		0.2	10		0.2	10	nA
		V _O = 0,	V _{IC} = 0	25°C		2	200		2	200	pА
IB	Input blas current	See Figure 5		125°C		7	20		8	20	nA
V _{ICR}	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		V
	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			v
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak	$R_L = 10 \text{ k}\Omega$		–55°C	3	4.1		13	14		V
	output voltage swing			125°C	3	4.4		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	Maximum negative peak	$R_L = 10 \ k\Omega$		−55°C	-3	-4		-12.5	-13.8		V
	oulput voltage swilig			125°C	-3	-4.3		-12.5	-14		
				25°C	4	12		5	14.3		
A _{VD}	Large-signal differential	$R_L = 10 \ k\Omega$		–55°C	3	7.1		4	10.4		V/mV
	voltage amplifications			125°C	3	12.9		4	15		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	o i i i	., ., .		25°C	70	87		75	94		
CMRR	common-mode rejection	$V_{IC} = V_{ICR}mir$ $V_{O} = 0$, $B_{S} = 1$	η, 50 Ω	–55°C	70	87		70	94		dB
	14110	.0 0,1.3		125°C	70	87		70	94		
	Supply-voltage	V 15.V.		25°C	75	96		75	96		
k _{SVR}	rejection ratio	$v_{CC\pm} = \pm 5 V t$ $V_0 = 0. R_0 = 5$	$0 \pm 15 V$, 50 Ω	–55°C	75	95		75	95		dB
	SVR rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	0 ,		125°C	75	96		75	96		

 † Full range is –55°C to 125°C.

⁺ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL032M and TL032AM electrical characteristics at specified free-air temperature (continued)

	PARAMETER					Т	_032M, [·]	TL032AN	1		
	PARAMETER	TEST CC	NDITIONS	T _A	٧c	:c± = ±5	v	Vco	_{C±} = ±15	۷	UNIT
					MIN	ТҮР	MAX	MIN	TYP	MAX	
	Total power dissipation			25°C		3.8	5		13	17	
P _D	(two amplifiers)	V _O = 0,	No load	–55°C		2.3	5		9.4	17	mW
	V _O = 0,			125°C		3.6	5		11.8	17	
				25°C		384	500		434	560	
ICC	Supply current (two amplifiers)	V _O = 0,	No load	–55°C		228	500		312	560	μA
66	(two ampinoro)			125°C		356	500		394	560	
V ₀₁ /V ₀₂	Crosstalk attenuation	$A_{VD} = 100 d$	IB	25°C		120			120		dB

TL032M and TL032AM operating characteristics at specified free-air temperature

							Т	L032M, ⁻	TL032AN	Λ		
	PARAMETE	R	TEST CO	NDITIONS	TA	Vc	:c± = ±5	v	Vc	_{C±} = ±15	v	UNIT
						MIN	TYP	MAX	MIN	ТҮР	MAX	
			_		25°C		2		1.5	2.9		
SR+	Positive slew ra	ate at unity	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 100 pF ≏ 1	–55°C		1.4		1	1.9		V/µs
	gam		Occ and Figure		125°C		2.4		1	3.5		
					25°C		3.9		1.5	5.1		
SR-	Negative slew r	ate at unity	$R_L = 10 \text{ k}\Omega, C_l$	_ = 100 pF	–55°C		3.2		1	4.6		V/µs
	gam		See and Figure	eı	125°C		4.1		1	4.7		
			$V_{(100)} = \pm 10 V$		25°C		138			132		
t _r	Rise time		$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 100 pF	–55°C		142			123		ns
			See Figures 1 and 2 V _{I(PP)} = ±10 V, B ₁ = 10 kQ, C ₁ = 100 pE	125°C		166			58			
			$V_{(PP)} = \pm 10 V$		25°C		138			132		
t _f	t _f Fall time		$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 100 pF	–55°C		142			123		ns
			See Figure 1		125°C		166			158		
		$V_{(PP)} = \pm 10 V_{.}$		25°C		11%			5%			
	Overshoot facto	or	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 100 pF	–55°C		16%			6%		
			See Figures 1	and 2	125°C		14%			8%		
		TLOOOM		f = 10 Hz	0500		49			49		
.,	Equivalent	1L032M	R _S = 20 Ω	f = 1 kHz	25°C		41			41		
v _n	input noise voltage	TI 000 414	See Figure 3	f = 10 Hz	0.500		49			49		nv/√Hz
		TL032AM		f = 1 kHz	25°C		41			41		
In	Equivalent inpu current	t noise	f = 1 kHz		25°C		0.003			0.003		pA/√Hz
			$V_{\rm i} = 10 {\rm mV}$		25°C		1			1.1		
B1	Unity-gain band	dwidth	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 25 pF	–55°C		1			1.1		MHz
			See Figure 4		125°C		0.9			0.9		
			$V_{l} = 10 \text{ mV}$		25°C		61°			65°		
φ _m	Phase margin a	at unity gain	R _L = 10 kΩ, C _l	_ = 25 pF	–55°C		57°			64°		
			See Figure 4		125°C		59°			62°		

 † For V_{CC\pm} = \pm5 V, V_{I(PP)} = ±1 V; for V_{CC\pm} = ±15 V, V_{I(PP)} = ±5 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034C and TL034AC electrical characteristics at specified free-air temperature

						1	L034C,	TL034A	с		
	PARAMETER	TEST CO	NDITIONS	TA	Vo	cc± = ±5	V	٧c	_{C±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 0040	25°C		0.91	6		0.79	4	
	lanut offerst velteres	$V_{O} = 0,$	TL034C	Full range [†]			8.2			6.2	
VIO	input onset voltage	$v_{\rm IC} = 0,$ Rs = 50 Ω	TI 00 (A O	25°C		0.7	3.5		0.58	1.5	mv
		0	TL034AC	Full range [†]			5.7			3.7	
a	Temperature coefficient	$V_0 = 0,$	TL034C	25°C to 70°C		11.6			12		
^a v _{io}	of input offset voltage	$R_{\rm S} = 50 \ \Omega$	TL034AC	25°C to 70°C		11.6			12	25	μv/°C
	Input offset voltage long-term drift [‡]	$\label{eq:VO} \begin{array}{l} V_{O}=0,\\ V_{IC}=0,\\ R_{S}=50~\Omega \end{array}$		25°C		0.04			0.04		μV/mo
	land the effect of the set	$V_{O} = 0, V_{IC}$	= 0	25°C		1	100		1	100	
IO	Input offset current	See Figure 8	5	70°C		9	200		12	200	рА
	Input biog ourrent	$V_{O} = 0$, V_{IO}	= 0	25°C		2	200		2	200	~^
IΒ	input bias current	See Figure 8	See Figure 5			50	400		80	400	рА
V _{ICR}	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		
	voltage range			Full range [†]	-1.5 to 4			–11.5 to 14			V
				25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak	$R_L = 10 \ k\Omega$		0°C	3	4.2		13	14		v
	ouput voltage swilig			70°C	3	4.3		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V _{OM} _	Maximum negative peak	$R_L = 10 \ k\Omega$		0°C	-3	-4.1		-12.5	-13.9		v
	ouput voltage swilig			70°C	-3	-4.2		-12.5	-14		
				25°C	4	12		5	14.3		
A _{VD}	Large-signal differential	$R_L = 10 \ k\Omega$		0°C	3	11.1		4	13.5		V/mV
	voltage amplifications			70°C	4	13.3		5	15.2		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
с _і	Input capacitance			25°C		5			14		pF
	0	$V_{IC} = V_{ICB}m$	in,	25°C	70	87		75	94		
CMRR	reiection ratio	$V_0 = 0,$		0°C	70	87		75	94		dB
		H _S = 50 Ω		70°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0, R_{S} =$	= 50 Ω	0°C	75	96		75	96		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			70°C	75	96		75	96		

[†] Full range is 0°C to 70°C.

⁴ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034C and TL034AC electrical characteristics at specified free-air temperature (continued)

					Т	L034C,	TL034AC	;		
	PARAMETER	TEST CONDITIONS	TA	v _c	c± = ±5	v	Vco	_{C±} = ±15	۷	UNIT
				MIN	ΤΥΡ	MAX	MIN	ТҮР	MAX	
			25°C		7.7	10		26	34	
P _D	Iotal power dissipation	V _O = 0, No load	0°C		7.4	10		25.3	34	mW
	(the ampinolo)		70°C		7.6	10		25.2	34	
	0		25°C		0.77	1		0.87	1.12	
ICC	Supply current (four amplifiers)	V _O = 0, No load	0°C		0.74	1		0.85	1.12	mA
00	umpinioio)		70°C		0.76	1		0.84	1.12	
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

TL034C and TL034AC operating characteristics at specified free-air temperature

							Т	L034C, 1	LO34AC	;		
	PARAMETER		TEST CO	NDITIONS	TA	٧c	c± = ±5	v	Vcc	_{2±} = ±15	S V	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
			_	25°C		2		1.5	2.9			
SR+	Positive slew rate at	unity	$R_L = 10 k\Omega, C_l$	0°C		1.8		1	2.6		V/µs	
	gain				70°C		2.2		1.5	3.2		
			_	25°C		3.9		1.5	5.1			
SR-	Negative slew rate a	at unity	$R_L = 10 \text{ k}\Omega, C_l$ See Figure 1	∟= 100 pF	0°C		3.7		1.5	5		V/µs
	gann				70°C		4		1.5	5		
			$V_{(IPP)} = \pm 10 V_{.0}$		25°C		138			132		
tr	Rise time		$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}$		0°C		134			127		ns
			See Figures 1	70°C		150			142			
	t _f Fall time		$V_{I(PP)} = \pm 10$ V, R _L = 10 kΩ, C _L = 100 pF		25°C		138			132		
t _f					0°C		134			127		ns
			See Figure 1		70°C		150			142		
	Overshoot factor		V _{I(PP)} = ±10 V, R _L = 10 kΩ, C _L = 100 pF		25°C		11%			5%		
					0°C		10%			4%		
			See Figures 1 and 2		70°C		12%			6%		
		TI 0240		f = 10 Hz	0.5%		83			83		
	Equivalent input	1L034C	R _S = 20 Ω	f = 1 kHz	25°C		43			43		
v _n	noise voltage	TI 00440	See Figure 3	f = 10 Hz	0500		83			83		nv/vHz
		TL034AC		f = 1 kHz	25°C		43			43	60	
l _n	Equivalent input noise current		f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			$V_{1} = 10 \text{ mV}$		25°C		1			1.1		
B ₁	Unity-gain bandwidt	h	$R_L = 10 \text{ k}\Omega$, C_l	_ = 25 pF	0°C		1			1.1		MHz
			See Figure 4		70°C		1			1		
			$V_1 = 10 \text{ mV}.$		25°C		61°			65°		
φm	Phase margin at uni	ty gain	$R_L = 10 \text{ k}\Omega$, C	L = 25 pF	0°C		61°			65°		
	U U U		See Figure 4		70°C		60°			64°		

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034I and TL034AI electrical characteristics at specified free-air temperature

							TL034I,	TL034A	I		
	PARAMETER	TEST CO	NDITIONS	TA	V	cc± = ±5	V	٧c	_{C±} = ±15	٧	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			TI 00 (I	25°C		0.91	3.6		0.79	4	
		V _O = 0,	1L0341	Full range [†]			9.3			7.3	
VIO	Input offset voltage	$v_{IC} = 0,$ Be = 50 Ω	-	25°C		0.7	3.5		0.58	1.5	mv
			1L034AI	Full range [†]			6.8			4.8	
			TI 034I	25°C to		11 5			11.6		
$\alpha_{V_{IO}}$	Temperature coefficient	$V_{O} = 0, V_{IC} = 0.$	1 20041	85°C		11.5			11.0		uV/ºC
	of input offset voltage	R _S = 50 Ω	TL034AI	25°C to 85°C		11.5			11.6	25	μν
	Input offset voltage long-term drift [‡]	$V_{O} = 0,$ $V_{IC} = 0,$ $B_{S} = 50 \Omega$	$V_{O} = 0,$ $V_{IC} = 0,$ $R_{S} = 50 \ \Omega$			0.04			0.04		μV/mo
		V. = 0 V	$V_0 = 0$ $V_{10} = 0$			1	100		1	100	nA
l _{IO}	Input offset current	See Figure 5		85°C		0.02	0.45		0.02	0.45	nA
			V _O = 0, V _{IC} = 0 See Figure 5			2	200		2	200	pA
I _{IB}	Input bias current	See Figure 5				0.2	0.9		0.3	0.9	nA
					-1.5	-3.4		-11.5	-13.4		
	Common-mode input			25°C	to 4	to 5.4		to 14	to 15.4		
V _{ICR}	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			v .
	Maximum positive peak	$R_L = 10 \text{ k}\Omega$		25°C	3	4.3		13	14		V
V _{OM+}				-40°C	3	4.1		13	14		
	oulput voltage swillig			85°C	3	4.4		13	14		
	Maximum negative			25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	peak	$R_L = 10 \ k\Omega$		-40°C	-3	-4.1		-12.5	-13.8		v
-	output voltage swing				-3	-4.2		-12.5	-14		1
	Large-signal differential			-40°C	4	12		5	14.3		
A _{VD}	voltage amplification§	$R_{L} = 10 \text{ k}\Omega$		85°C	3	8.4		4	11.6		v/mv
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
		$V_{IC} = V_{ICP}m$	in,	25°C	70	87		75	94		
CMRR	Common-mode	$V_{O} = 0,$,	-40°C	70	87		75	94		dB
		$R_S = 50 \Omega$		85°C	70	87		75	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_0 = 0, R_S =$	50 Ω	-40°C	75	96		75	96		dB
	$(\Delta V_{CC\pm} / \Delta V_{IO})$			85°C	75	96		75	96		

[†] Full range is –40°C to 85°C.

[‡] Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C \text{ using the Arrhenius equation and assuming an activation energy of 0.96 eV.}$ § At V_{CC±} = ±5 V, V_O = ±2.3 V; at V_{CC±} = ±15 V, V_O = ±10 V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034I and TL034AI electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST CONDITIONS	TA	Vc	;c± = ±5	v	V _{CC±} = ±15 V			UNIT
				MIN	TYP	MAX	MIN	ΤΥΡ	MAX	
PD			25°C		7.7	10		26	34	mW
	lotal power dissipation	V _O = 0, No load	−40°C		5.8	10		21.7	34	
	(iour ampinioro)		85°C		7.4	10		24.8	34	
			25°C		0.77	1		0.87	1.12	
ICC	Supply current (four amplifiers)	V _O = 0, No load	-40°C		0.58	1		0.72	1.12	mA
	(iour ampiniero)		85°C		0.74	1		0.83	1.12	
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

TL034I and TL034AI operating characteristics

	PARAMETER		TEST CO	NDITIONS	TA	٧c	:c± = ±5	v	Vc	_{C±} = ±15	i V	UNIT
						MIN	ТҮР	MAX	MIN	TYP	MAX	
			_		25°C		2		1.5	2.9		
SR+	Positive slew rate at unity		$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		−40°C		1.6		1	2.1		V/µs
	gam	gan					2.3		1.5	3.3		
				_	25°C		3.9		1.5	5.1		V/µs
SR-	Negative slew rat	e at unity	$R_L = 10 \text{ k}\Omega, C_L$	_= 100 pF	−40°C		3.3		1.5	4.8		
	gain				85°C		4.1		1.5	4.9		
			V _{V(DD)} = ±10 V		25°C		138			132		
t _r	Rise time		$R_{L} = 10 \text{ k}\Omega, C_{L}$	= 100 pF	−40°C		132			123		ns
			See Figures 1 and 2		85°C		154			146		
	Fall time		V _{I(PP)} = ±10 V, R _L = 10 kΩ, C _L = 100 pF		25°C		138			132		
t _f					-40°C		132			123		ns
				See Figures 1 and 2			154			146		
	Overshoot factor		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}$		25°C		11%			5%		
					−40°C		12%			5%		
			See Figures 1 and 2		85°C		13%			7%		
		TL034I		f = 10 Hz	0500		83			83		
	Equivalent input		R _S = 20 Ω	f = 1 kHz	25°C		43			43		
v _n	noise voltage	TI 00 (A)	See Figure 3	f = 10 Hz	0500		83			83		nv/∿Hz
		TL034AI		f = 1 kHz	25°C		43			43	60	1
In	Equivalent input r current	noise	f = 1 kHz		25°C		0.003			0.003		pA/√Hz
			$V_{i} = 10 \text{ mV}$		25°C		1			1.1		
B ₁ Unity-gain bandwidth		ridth	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 25 pF	-40°C		1			1.1		MHz
			See Figure 4		85°C		0.9			1		
			$V_{1} = 10 mV$		25°C		61°			65°		
φ _m	Phase margin at	unity gain	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 25 pF	-40°C		61°			65°		
			See Figure 4		85°C		60°			64°		

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034M and TL034AM electrical characteristics at specified free-air temperature

						т	L034M,	TL034A	М		
	PARAMETER	TEST CO	NDITIONS	TA	V	CC± = ±5	V	٧c	_{C±} = ±15	V	UNIT
					MIN	TYP	MAX	MIN	ТҮР	MAX	
			TLODANA	25°C		0.91	3.6		0.78	4	
. v	lanut offerst velteres	$V_0 = 0,$	1 L034M	Full range [†]			11			9	
VIO	input onset voltage	$V_{\rm IC} = 0,$ R _S = 50 Ω	TLODAANA	25°C		0.7	3.5		0.58	1.5	mv
		U	TL034AM	Full range [†]			8.5			6.5	
~	Temperature coefficient of	$V_O = 0,$ $V_{IC} = 0,$ $R_S = 50 \ \Omega$	TL034M	25°C to 125°C		10.6			10.9		N/60
av _{io}	input offset voltage		TL034AM	25°C to 125°C		10.6			10.9		μv/°C
	Input offset voltage long-term drift [‡]			25°C		0.04			0.04		μV/mo
ha	Input offect ourrept	$V_{O} = 0, V_{IC}$	V _O = 0, V _{IC} = 0 See Figure 5			1	100		1	100	pА
νiΟ	input onset current	See Figure				0.2	10		0.2	10	nA
	- Input bias current		$V_{O} = 0, V_{IC} = 0$			2	200		2	200	pА
чв	input bias current	See Figure	See Figure 5			7	20		8	20	nA
	Common-mode input			25°C	–1.5 to 4	-3.4 to 5.4		–11.5 to 14	-13.4 to 15.4		V
VICR	voltage range			Full range [†]	–1.5 to 4			–11.5 to 14			·
		$R_L = 10 \ k\Omega$		25°C	3	4.3		13	14		
V _{OM+}	Maximum positive peak			–55°C	3	4.1		13	14		V
	ouput voitago owing			125°C	3	4.4		13	14		
				25°C	-3	-4.2		-12.5	-13.9		
V _{OM-}	Maximum negative peak	$R_L = 10 \ k\Omega$		−55°C	-3	-4		-12.5	-13.8		v
	ouput voitage swing			125°C	-3	-4.3		-12.5	-14		1
				25°C	4	12		5	14.3		
A _{VD}	Large-signal differential	$R_L = 10 \ k\Omega$	$R_L = 10 \ k\Omega$		3	7.1		4	10.4		V/mV
	vonage amplification.			125°C	3	12.9		4	15		
r _i	Input resistance			25°C		10 ¹²			10 ¹²		Ω
c _i	Input capacitance			25°C		5			4		pF
	Common mode			25°C	70	87		75	94		
CMRR	rejection ratio	$V_{IC} = V_{ICRII}$	= 50 Ω	–55°C	70	87		70	94		dB
	•			125°C	70	87		70	94		
	Supply-voltage			25°C	75	96		75	96		
k _{SVR}	rejection ratio	$V_{O} = 0$, $R_{S} = 50 \ \Omega$		−55°C	75	95		75	95		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$			125°C	75	96		75	96		

[†] Full range is –55°C to 125°C.

⁴ Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV. § At $V_{CC\pm} = \pm 5$ V, $V_O = \pm 2.3$ V; at $V_{CC\pm} = \pm 15$ V, $V_O = \pm 10$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TL034M and TL034AM electrical characteristics at specified free-air temperature (continued)

	PARAMETER	TEST CO	TEST CONDITIONS		V _{CC±} = ±5 V			Vco	۷	UNIT	
					MIN	TYP	MAX	MIN	ТҮР	MAX	1
PD	.	V _O = 0,	No load	25°C		7.7	10		26	34	mW
	Iotal power dissipation (two amplifiers)			–55°C		4.6	12		18.7	45	
				125°C		7.1	12		23.6	45	
	Supply current (two amplifiers)	V _O = 0,	No load	25°C		0.77	1		0.87	1.12	
ICC				–55°C		0.46	1.2		0.62	1.5	mA
				125°C		0.71	1.2		0.79	1.5	
V ₀₁ /V ₀₂	Crosstalk attenuation	$A_{VD} = 100$		25°C		120			120		dB

TL034M and TL034AM operating characteristics at specified free-air temperature

	PARAMETER	ł	TEST CO	NDITIONS	TA	٧c	c± = ±5	v	Vc	_{C±} = ±15	v	UNIT
						MIN	TYP	MAX	MIN	TYP	MAX	
					25°C		2		1.5	2.9		
SR+	Positive slew rate	Positive slew rate at unity		$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$			1.4		1	1.9		V/µs
	gain		occ rigure r	125°C		2.4		1	3.5			
					25°C		3.9		1.5	5.1		
SR-	Negative slew rat	te at unity	$R_L = 10 k\Omega, C_L$ See Figure 1	_= 100 pF	–55°C		3.2		1	4.6		V/µs
	gaini				125°C		4.1		1	4.7		
			$V_{(00)} = \pm 10 V$		25°C		138			132		
t _r	Rise time		$R_L = 10 \text{ k}\Omega, C_L$	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$			142			123		ns
			See Figures 1	125°C		166			58			
	t _f Fall time		$V_{I(PP)} = \pm 10 \text{ V},$ $R_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}$		25°C		138			132		
t _f					–55°C		142			123		ns
			See Figure 1		125°C		166			158		
	Overshoot factor		$V_{I(PP)} = \pm 10 V,$ $R_L = 10 k\Omega$, $C_L = 100 pF$		25°C		11%			5%		
					–55°C		16%			6%		
			See Figures 1 and 2		125°C		14%			8%		
		TL034M		f = 10 Hz	0500		83			83		nV/√ Hz
	Equivalent input		$R_{S} = 20 \Omega$	f = 1 kHz	25'0		43			43		
vn	noise voltage	TIODAANA	See Figure 3	f = 10 Hz	0500		83			83		
		I LU34AIVI		f = 1 kHz	25°C		43			43		
In	Equivalent input i current	noise	f = 1 kHz		25°C		0.003			0.003		pA/√ Hz
			$V_{1} = 10 \text{ mV}$		25°C		1			1.1		
B1	Unity-gain bandw	/idth	$R_{L} = 10 \text{ k}\Omega, C_{L}$	_ = 25 pF	–55°C		1			1.1		MHz
			See Figure 4		125°C		0.9			0.9		
			$V_{1} = 10 \text{ mV}_{2}$		25°C		61°			65°		
φ _m	Phase margin at	unity gain	R _L = 10 kΩ, C _L	_ = 25 pF	–55°C		57°			64°		
			See Figure 4		125°C		59°			62°		
-						-						

[†] For $V_{CC\pm} = \pm 5$ V, $V_{I(PP)} = \pm 1$ V; for $V_{CC\pm} = \pm 15$ V, $V_{I(PP)} = \pm 5$ V

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTE A: CL includes fixture capacitance.

Figure 1. Slew-Rate and Overshoot Test Circuit

Figure 2. Rise Time and Overshoot Waveform

Figure 3. Noise-Voltage Test Circuit

NOTE A: C_L includes fixture capacitance.

Figure 4. Unity-Gain Bandwidth and Phase-Margin Test Circuit

Figure 5. Input-Bias and Offset-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

input bias and offset current

At the picoampere bias current level typical of the TL03x and TL03xA, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test-socket leakages easily can exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

noise

With the increasing emphasis on low noise levels in many of today's applications, the input noise voltage density is performed at f = 1 kHz, unless otherwise noted.

TL03x, TL03xA **ENHANCED-JFET LOW-POWER LOW-OFFSET** OPERATIONAL AMPLIFIERS SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

Table of Graphs

	FIGURE
Distribution of TL03x input offset voltage	6–11
Distribution of TL03x input offset-voltage temperature coefficient	12–14
Input bias current vs Common-mode input voltage	15
Input bias current and input offset current vs Free-air temperature	16
Common-mode input voltage vs Supply voltage	17
Common-mode input voltage vs Free-air temperature	18
Output voltage vs Differential input voltage	19, 20
Maximum peak output voltage vs Supply voltage	21
Maximum peak-to-peak output voltage vs Frequency	22
Maximum peak output voltage vs Output current	23, 24
Maximum peak output voltage vs Free-air temperature	25, 26
Large-signal differential voltage amplification vs Load resistance	27
Large-signal differential voltage amplification and Phase shift vs Frequency	28
Large-signal differential voltage amplification vs Free-air temperature	29
Output impedance vs Frequency	30
Common-mode rejection ratio vs Frequency	31, 32
Common-mode rejection ratio vs Free-air temperature	33
Supply-voltage rejection ratio vs Free-air temperature	34
Short-circuit output current vs Supply voltage	35
Short-circuit output current vs Time	36
Short-circuit output current vs Free-air temperature	37
Equivalent input noise voltage vs Frequency (TL031 and TL031A)	38
Equivalent input noise voltage vs Frequency (TL032 and TL032A)	39
Equivalent input noise voltage vs Frequency (TL034 and TL034A)	40
Supply current vs Supply voltage (TL031 and TL031A)	41
Supply current vs Supply voltage (TL032 and TL032A)	42
Supply current vs Supply voltage (TL034 and TL034A)	43
Supply current vs Free-air temperature (TL031 and TL031A)	44
Supply current vs Free-air temperature (TL032 and TL032A)	45
Supply current vs Free-air temperature (TL034 and TL034A)	46
Slew rate vs Load resistance	47, 48
Slew rate vs Free-air temperature	49, 50
Overshoot factor vs Load capacitance	51
Total harmonic distortion vs Frequency	52
Unity-gain bandwidth vs Supply voltage	53
Unity-gain bandwidth vs Free-air temperature	54
Phase margin vs Supply voltage	55
Phase margin vs Load capacitance	56
Phase margin vs Free-air temperature	57
Voltage-follower small-signal pulse response	58
Voltage-follower large-signal pulse response	59, 60

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 20

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

TL03x, TL03xA **ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIE**

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

input characteristics

The TL03x and TL03xA are specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction.

Due to of the extremely high input impedance and resulting low bias-current requirements, the TL03x and TL03xA are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets easily can exceed bias-current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 61). These guard rings should be driven from a low-impedance source at the same voltage level as the common-mode input.

Unused amplifiers should be connected as grounded unity-gain followers to avoid oscillation.

(a) NONINVERTING AMPLIFIER

(b) INVERTING AMPLIFIER

Figure 61. Use of Guard Rings

(c) UNITY-GAIN AMPLIFIER

TL03x, TL03xA **ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS**

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

APPLICATION INFORMATION

output characteristics

All operating characteristics (except bandwidth and phase margin) are specified with 100-pF load capacitance. The TL03x and TL03xA drive higher capacitive loads; however, as the load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation. The value of the load capacitance at which oscillation occurs varies with production lots. If an application appears to be sensitive to oscillation due to load capacitance, adding a small resistance in series with the load should alleviate the problem (see Figure 63). Capacitive loads of 1000 pF and larger can be driven if enough resistance is added in series with the output (see Figure 62).

Figure 62. Effect of Capacitive Loads

NOTE A: CL includes fixture capacitance.

APPLICATION INFORMATION

high-Q notch filter

In general, Texas Instruments enhanced-JFET operational amplifiers serve as excellent filters. The circuit in Figure 64 provides a narrow notch at a specific frequency. Notch filters are designed to eliminate frequencies that are interfering with the operation of an application. For this filter, the center frequency can be calculated as:

$$f_{O} = \frac{1}{2\pi \times R1 \times C1}$$

With the resistors and capacitors shown in Figure 64, the center frequency is 1 kHz. C1 = C3 = C2 + 2 and $R1 = R3 = 2 \times R2$. The center frequency can be modified by varying these values. When adjusting the center frequency, ensure that the operational amplifier has sufficient gain at the frequency required.

Figure 64. High-Q Notch Filter

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

APPLICATION INFORMATION

transimpedance amplifier

The low-power precision TL03x allows accurate measurement of low currents. The high input impedance and low offset voltage of the TL03xA greatly simplify the design of a transimpedance amplifier. At room temperature, this design achieves 10-bit accuracy with an error of less than 1/2 LSB.

Assuming that R2 is much less than R1 and ignoring error terms, the output voltage can be expressed as:

$$V_{O} = -I_{IN} \times R_{F} \left(\frac{R1 + R2}{R2} \right)$$

Using the resistor values shown in the schematic for a 1-nA input current, the output voltage equals -0.1 V. If the V_O limit for the TL03xA is measured at \pm 12 V, the maximum input current for these resistor values is \pm 120 nA. Similarly, one LSB on a 10-bit scale corresponds to 12 mV of output voltage, or 120 pA of input current.

The following equation shows the effect of input offset voltage and input bias current on the output voltage:

$$V_{O} = -\left[V_{IO} + R_{F}\left(I_{IO} + I_{IB}\right)\right]\left(\frac{R1 + R2}{R2}\right)$$

If the application requires input protection for the transimpedance amplifier, do not use standard PN diodes. Instead, use low-leakage Siliconix SN4117 JFETs (or equivalent) connected as diodes across the TL03xA inputs (see Figure 65).

As with all precision applications, special care must be taken to eliminate external sources of leakage and interference. Other precautions include using high-guality insulation, cleaning insulating surfaces to remove fluxes and other residue, and enclosing the application within a protective box.

Figure 65. Transimpedance Amplifier

APPLICATION INFORMATION

4-mA to 20-mA current loops

Often, information from an analog sensor must be sent over a distance to the receiving circuitry. For many applications, the most feasible method involves converting voltage information to a current before transmission. The following circuits give two variations of low-power current loops. The circuit in Figure 66 requires three wires from the transmitting to receiving circuitry, while the second variation in Figure 67 requires only two wires, but includes an extra integrated circuit. Both circuits benefit from the high input impedance of the TL03xA because many inexpensive sensors do not have low output impedance.

Assuming that the voltage at the noninverting input of the TL03xA is zero, the following equation determines the output current:

$$I_{O} = V_{I}\left(\frac{R3}{R1 \times R_{S}}\right) + 5V\left(\frac{R3}{R2 \times R_{S}}\right) = 0.16 \times V_{I} + 4mA$$

The circuits presently provide 4-mA to 20-mA output current for an input voltage of 0 to 100 mV. By modifying R1, R2, and R3, the input voltage range or the output current range can be adjusted.

Including the offset voltage of the operational amplifier in the above equation clearly illustrates why the low offset TL03xA was chosen:

$$I_{O} = V_{I} \left(\frac{R3}{R1 \times R_{S}} \right) + 5V \left(\frac{R3}{R2 \times R_{S}} \right) - V_{I} \left(\frac{R3}{R1 \times R_{S}} + \frac{R3}{R2 \times R_{S}} + \frac{R1}{R_{S}} \right)$$
$$= 0.16 \times V_{I} + 4mA - 0.17 \times V_{I}$$

For example, an offset voltage of 1 mV decreases the output current by 0.17 mA.

Due to the low power consumption of the TL03xA, both circuits have at least 2 mA available to drive the actual sensor from the 5-V reference node.

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

Figure 66. Three-Wire 4-mA to 20-mA Current Loop

Figure 67. Two-Wire 4-mA to 20-mA Current Loop

APPLICATION INFORMATION

low-level light-detector preamplifier

Applications that need to detect small currents require high input-impedance operational amplifiers; otherwise, the bias currents of the operational amplifier camouflage the current being monitored. Phototransistors provide a current that is proportional to the light reaching the transistor. The TL03x allows even the small currents resulting from low-level light to be detected.

In Figure 68, if there is no light, the phototransistor is off and the output is high. As light is detected, the operational amplifier output begins pulling low. Adjusting R4 both compensates for offset voltage of the amplifier and adjusts the point of light detection by the amplifier.

Figure 68. Low-Level Light-Detector Preamplifier

TL03x, TL03xA ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

SLOS180C - FEBRUARY 1997 - REVISED DECEMBER 2001

APPLICATION INFORMATION

audio-distribution amplifier

This audio-distribution amplifier (see Figure 69) feeds the input signal to three separate output channels. U1A amplifies the input signal with a gain of 10, while U1B, U1C, and U1D serve as buffers to the output channels. The gain response of this circuit is very flat from 20 Hz to 20 kHz. The TL03x allows quick response to the input signal while maintaining low power consumption.

NOTE A: U1A through U1D = TL03x; $V_{CC+} = 5 V$

Figure 69. Audio-Distribution Amplifier Circuit

APPLICATION INFORMATION

instrumentation amplifier with linear gain adjust

The low offset voltage and low power consumption of the TL03x provide an accurate but inexpensive instrumentation amplifier (see Figure 70). This particular configuration offers the advantage that the gain can be linearly set by one resistor:

$$V_{O} = \frac{R6}{R5} \times (V_{B} - V_{A})$$

Adjusting R6 varies the gain. The value of R6 always should be greater than, or equal to, the value of R5 to ensure stability. The disadvantage of this instrumentation amplifier topology is the high degree of CMRR degradation resulting from mismatches between R1, R2, R3, and R4. For this reason, these four resistors should be 0.1%-tolerance resistors.

NOTE A: U1A through U1D = TL03x; V_{CC \pm} = ±15 V

Figure 70. Instrumentation Amplifier With Linear Gain-Adjust Circuit

TEXAS INSTRUMENTS www.ti.com

22-Dec-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9086102Q2A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL031ACD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL031ACP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL031AID	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL031AIP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL031CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL031CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL031CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TL031ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL031IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL031IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

PACKAGE OPTION ADDENDUM

TEXAS INSTRUMENTS www.ti.com

22-Dec-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL032AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL032CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CPSRE4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI
TL032ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032IDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032IDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL032IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

PACKAGE OPTION ADDENDUM

22-Dec-2008

0	Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
	TL032IP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL032IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL032MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
	TL032MJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
	TL034ACD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034ACN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL034ACNE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL034AID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034AIN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL034AINE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
	TL034CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CDRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
	TL034CN	ACTIVE	PDIP	Ν	14	25	Pb-Free	CU NIPDAU	N / A for Pkg Type

PACKAGE OPTION ADDENDUM

22-Dec-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
						(RoHS)		
TL034CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL034CNSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CNSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CNSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPWE4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPWLE	OBSOLETE	TSSOP	PW	14		TBD	Call TI	Call TI
TL034CPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPWRE4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034CPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034IDE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL034IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL034INE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL034MD	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
TL034MFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL034MJB	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
TL034MN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

TEXAS

www.ti.com

JMENTS

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL031CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL032CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TL032IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL034ACDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL034AIDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL034CDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TL034CNSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TL034CPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TL034IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

'All dimensions are nominal									
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)		
TL031CDR	SOIC	D	8	2500	340.5	338.1	20.6		
TL032ACDR	SOIC	D	8	2500	340.5	338.1	20.6		
TL032AIDR	SOIC	D	8	2500	340.5	338.1	20.6		
TL032CDR	SOIC	D	8	2500	340.5	338.1	20.6		
TL032CPSR	SO	PS	8	2000	367.0	367.0	38.0		
TL032IDR	SOIC	D	8	2500	340.5	338.1	20.6		
TL034ACDR	SOIC	D	14	2500	367.0	367.0	38.0		
TL034AIDR	SOIC	D	14	2500	367.0	367.0	38.0		
TL034CDR	SOIC	D	14	2500	367.0	367.0	38.0		
TL034CNSR	SO	NS	14	2000	367.0	367.0	38.0		
TL034CPWR	TSSOP	PW	14	2000	367.0	367.0	35.0		
TL034IDR	SOIC	D	14	2500	367.0	367.0	38.0		

MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

Α. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. Ŗ. This drawing is subject to change without notice.

🛆 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconn	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.