

DLP2010NIR

DLPS059-MARCH 2015

DLP2010NIR (0.2 WVGA Near-Infrared DMD)

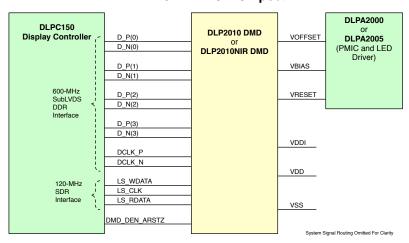
1 Features

- 0.2-Inch (5.29-mm) Diagonal Micromirror Array
 - 854 x 480 Array of Aluminum Micrometer-Sized Mirrors, in an Orthogonal Layout
 - 5.4-µm Micromirror Pitch
 - ±17° Micromirror Tilt (Relative to Flat Surface)
 - Side Illumination for Optimal Efficiency and Optical Engine Size
- Highly Efficient Steering of NIR light
 - Window Transmission Efficiency 96% Nominal (700 to 2000 nm, Single Pass Through Two Window Surfaces)
 - Window Transmission Efficiency 90% Nominal (2000 to 2500 nm, Single Pass Through Two Window Surfaces)
 - Polarization Independent Aluminum Micromirrors
- Dedicated DLPC150 Controller for Reliable Operation
 - Binary Pattern Rates up to 1512 Hz
 - Pattern Sequence Mode for Control over Each Micromirror in Array
- Dedicated Power Management Integrated Circuit (PMIC) DLPA2000 or DLPA2005 for Reliable Operation
- 15.9-mm x 5.3-mm x 4-mm Body Size for Portable Instruments

2 Applications

- Spectrometers (Chemical Analysis):
 - Portable Process Analyzers
 - Portable Equipment
- Compressive Sensing (Single Pixel NIR Cameras)
- 3D Biometrics
- Machine Vision
- Infrared Scene Projection
- Microscopes
- Laser Marking
- Optical Choppers
- · Optical Networking

3 Description


The DLP2010NIR digital micromirror device (DMD) acts as a spatial light modulator (SLM) to steer near-infrared (NIR) light and create patterns with speed, precision, and efficiency. Featuring high resolution in a compact form factor, the DLP2010NIR DMD is often combined with a grating single element detector to replace expensive InGaAs linear array-based detector designs, leading to high performance, cost-effective portable NIR Spectroscopy solutions. The DLP2010NIR DMD enables wavelength control and programmable spectrum and is well suited for low power mobile applications such as skin analysis, material identification and chemical sensing.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
DLP2010NIR	CLGA (40)	15.90 × 5.30 × 4.00 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

DLP® 0.2" WVGA Chipset

Table of Contents

1	Features 1	7.4 Device Functional Modes	20
2	Applications 1	7.5 Window Characteristics and Optics	20
3	Description 1	7.6 Micromirror Array Temperature Calculation	21
4	Revision History	7.7 Micromirror Landed-On/Landed-Off Duty Cycle	22
5	Pin Configuration and Functions	7.8 Chipset Component Usage Specification	23
6	Specifications	8 Application and Implementation	24
U	6.1 Absolute Maximum Ratings	8.1 Application Information	24
	6.2 Storage Conditions	8.2 Typical Application	24
	6.3 ESD Ratings	9 Power Supply Recommendations	27
	6.4 Recommended Operating Conditions	9.1 Power Supply Power-Up Procedure	27
	6.5 Thermal Information	9.2 Power Supply Power-Down Procedure	27
		9.3 Power Supply Sequencing Requirements	
	6.6 Electrical Characteristics	10 Layout	
	6.8 Switching Characteristics	10.1 Layout Guidelines	
	6.9 System Mounting Interface Loads	10.2 Layout Example	
	6.10 Physical Characteristics of the Micromirror Array. 16	11 Device and Documentation Support	
	6.11 Micromirror Array Optical Characteristics 17	11.1 Device Support	
	6.12 Window Characteristics	11.2 Related Links	
		11.3 Trademarks	
7	21	11.4 Electrostatic Discharge Caution	
′	Detailed Description	11.5 Glossary	
	7.1 Overview	12 Mechanical, Packaging, and Orderable	50
	7.2 Functional Block Diagram	Information	33
	7.3 Feature Description		50

4 Revision History

DATE	REVISION	RELEASE NOTES
March 2015	*	Initial Release

5 Pin Configuration and Functions

Pin Functions – Connector Pins⁽¹⁾

PIN		TYPE	SIGNAL	DATA RATE	DESCRIPTION	PACKAGE NET TRACE LENGTH ⁽²⁾ (mm)		
NAME	NO.					LENGTH (IIIII)		
DATA INPUTS, SUBLVDS INTERFACE								
D_N(0)	G4	I	SubLVDS	Double	Input Data Pair 0, Negative	7.03		
D_P(0)	G3	I	SubLVDS	Double	Input Data Pair 0, Positive	7.03		
D_N(1)	G8	I	SubLVDS	Double	Input Data Pair 1, Negative	7.03		
D_P(1)	G7	I	SubLVDS	Double	Input Data Pair 1, Positive	7.03		
D_N(2)	H5	I	SubLVDS	Double	Input Data Pair 2, Negative	7.02		
D_P(2)	H6	I	SubLVDS	Double	Input Data Pair 2, Positive	7.02		

⁽¹⁾ Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B.

⁽²⁾ Net trace lengths inside the package: Relative dielectric constant for the FQJ ceramic package is 9.8. Propagation speed = 11.8 / sqrt(9.8) = 3.769 inches/ns. Propagation delay = 0.265 ns/inch = 265 ps/inch = 10.43 ps/mm.

DLPS059 - MARCH 2015 www.ti.com

Pin Functions – Connector Pins⁽¹⁾ (continued)

PIN		ТҮРЕ	TYPE CICNAL DATA DATE DESCRIPTI		DESCRIPTION	PACKAGE NET TRACE
NAME	NO.	ITPE	SIGNAL	DATA RATE	DESCRIPTION	LENGTH ⁽²⁾ (mm)
D_N(3)	H1	1	SubLVDS	Double	Input Data Pair 3, Negative	7.00
D_P(3)	H2	I	SubLVDS	Double	Input Data Pair 3, Positive	7.00
DCLK_N	H9	I	SubLVDS	Double	Clock, Negative	7.03
DCLK_P	H10	1	SubLVDS	Double	Clock, Positive	7.03
CONTROL INPUTS,	LPSDR	INTERF	ACE			
DMD_DEN_ARSTZ	G12	I	LPSDR ⁽¹⁾		Active low asynchronous DMD reset signal. A low signal places the DMD in reset. A high signal releases the DMD from reset and places it in active mode.	5.72
LS_CLK	G19	- 1	LPSDR	Single	Clock for low-speed interface	3.54
LS_WDATA	G18	- 1	LPSDR	Single	Write data for low-speed interface	3.54
LS_RDATA	G11	0	LPSDR	Single	Read data for low-speed interface	8.11
POWER						
VBIAS ⁽³⁾	H17	Power			Supply voltage for Micromirror positive bias level	
VOFFSET ⁽³⁾	H13	Power			Supply voltage for High Voltage CMOS (HVCMOS) core logic. Includes: supply voltage for stepped high level at micromirror address electrodes and supply voltage for offset level at micromirrors.	
VRESET ⁽³⁾	H18	Power			Supply voltage for Micromirror negative reset level	
VDD ⁽³⁾	G20	Power				
VDD	H14	Power			Supply voltage for low voltage CMOS	
VDD	H15	Power			(LVCMOS) core logic. Includes supply voltage for LPSDR inputs and supply	
VDD	H16	Power			voltage for normal high level at micromirror	
VDD	H19	Power			address electrodes.	
VDD	H20	Power				
VDDI ⁽³⁾	G1	Power				
VDDI	G2	Power			Supply voltage for SubLVDS receivers	
VDDI	G5	Power			Supply voltage for SubEvBS receivers	
VDDI	G6	Power				
VSS ⁽³⁾	G9	Power				
VSS	G10	Power				
VSS	G13	Power				
VSS	G14	Power				
VSS	G15	Power				
VSS	G16	Power				
VSS	G17	Power			Ground. Common return for all power.	
VSS	НЗ	Power				
VSS	H4	Power				
VSS	H7	Power				
VSS	Н8	Power				
VSS	H11	Power				
VSS	H12	Power				

The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.

Pin Functions – Connector Pins⁽¹⁾ (continued)

PIN						PACKAGE NET TRACE
NAME	NO.	TYPE	SIGNAL	DATA RATE	DESCRIPTION	PACKAGE NET TRACE LENGTH ⁽²⁾ (mm)
RESERVED	•					
No Connect	A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19				Reserved pins. For proper device operation, leave these pins unconnected.	
No Connect	B2, B3, B17, B18				Reserved pins. For proper device operation, leave these pins unconnected.	
No Connect	C2, C3, C17, C18				Reserved pins. For proper device operation, leave these pins unconnected.	
No Connect	D2, D3, D17, D18				Reserved pins. For proper device operation, leave these pins unconnected.	
No Connect	E2, E3, E17, E18				Reserved pins. For proper device operation, leave these pins unconnected.	
No Connect	F1, F2, F3, F4, F5, F6, F7, F8, F10, F11, F12, F14, F15, F16, F17, F18,				Resereved pins. For proper device operation, leave these pins unconnected.	

TEXAS INSTRUMENTS

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

			MIN	MAX	UNIT
	VDD	Supply voltage for LVCMOS core logic and LPSDR low speed interface (2)	-0.5	2.3	V
	VDDI	Supply voltage for SubLVDS receivers (2)	-0.5	2.3	V
	VOFFSET	Supply voltage for HVCMOS and micromirror electrode (2) (3)	-0.5	10.6	V
Supply voltage	VBIAS	Supply voltage for micromirror electrode bias circuits ⁽²⁾	-0.5	19	V
	VRESET	Supply voltage for micromirror electrode reset circuits (2)	-15	0.3	V
	VDDI–VDD	Supply voltage delta (absolute value) ⁽⁴⁾		0.3	V
	VBIAS-VOFFSET	Supply voltage delta (absolute value) ⁽⁵⁾		11	V
	VBIAS-VRESET	Supply voltage delta (absolute value) ⁽⁶⁾		34	V
lanut valtaga	Input voltage for other inputs LPSDR (2)		-0.5	VDD + 0.5	V
Input voltage	Input voltage for other inputs SubLVDS ⁽²⁾ (7)		-0.5	VDDI + 0.5	V
Innut ning	VID	SubLVDS input differential voltage (absolute value) (7)		810	mV
Input pins	IID	SubLVDS input differential current		8.1	mA
Clock	f_{clock}	Clock frequency for low speed interface LS_CLK		130	MHz
frequency	$f_{ m clock}$	Clock frequency for high speed interface DCLK		620	MHz
	T and T	Temperature – operational (8)	-10	90	°C
Environmental	T _{ARRAY} and T _{WINDOW}	Temperature – non-operational ⁽⁸⁾	-40	90	°C
	T _{DP}	Dew Point (operating and non-operating)		81	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device is not implied at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure above or below Recommended Operating Conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET.
- (3) VOFFSET supply transients must fall within specified voltages.
- 4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.
- (5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.
- (6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.
- (7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.
- (8) The highest temperature of the active array (as calculated by the Micromirror Array Temperature Calculation), or of any point along the Window Edge as defined in Figure 19. The locations of thermal test points TP2 and TP3 in Figure 19 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, that test point should be used.

6.2 Storage Conditions

applicable before the DMD is installed in the final product.

		MIN	MAX	UNIT
T _{stg}	DMD storage temperature	-40	85	
	Storage Dew Point - long-term ⁽¹⁾		24	°C
IDP	Storage Dew Point - short-term (2)		28	

(1) Long-term is defined as the usable life of the device.

(2) Dew points beyond the specified long-term dew point are for short-term conditions only, where Short-term is defined as less than 60 cumulative days over the usable life of the device (operating, non-operating, or storage).

Submit Documentation Feedback

Product Folder Links: DLP2010NIR

6.3 ESD Ratings

www.ti.com

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1000	٧

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	NOM	MAX	UNIT
SUPPLY VOLTAGE RA	ANGE ⁽³⁾				
VDD	Supply voltage for LVCMOS core logic Supply voltage for LPSDR low-speed interface	1.65	1.8	1.95	V
VDDI	Supply voltage for SubLVDS receivers	1.65	1.8	1.95	V
VOFFSET	Supply voltage for HVCMOS and micromirror electrode (4)	9.5	10	10.5	V
VBIAS	Supply voltage for mirror electrode	17.5	18	18.5	V
VRESET	Supply voltage for micromirror electrode	-14.5	-14	-13.5	V
VDDI-VDD	Supply voltage delta (absolute value) (5)			0.3	V
VBIAS-VOFFSET	Supply voltage delta (absolute value) (6)			10.5	V
VBIAS-VRESET	Supply voltage delta (absolute value) ⁽⁷⁾			33	V
OUTPUT TERMINALS					
I _{OH}	High-level output current at Voh = 0.8 x VDD			-30	mA
I _{OL}	Low-level output current at Vol = 0.2 x VDD			30	mA
CLOCK FREQUENCY					
$f_{ m clock}$	Clock frequency for low speed interface LS_CLK ⁽⁸⁾	108		120	MHz
$f_{ m clock}$	Clock frequency for high speed interface DCLK ⁽⁹⁾	300		600	MHz
	Duty cycle distortion DCLK	44%		56%	
SUBLVDS INTERFACE	E (9)				
V _{ID}	SubLVDS input differential voltage (absolute value) Figure 8, Figure 9	150	250	350	mV
V_{CM}	Common mode voltage Figure 8, Figure 9	700	900	1100	mV
V _{SUBLVDS}	SubLVDS voltage Figure 8, Figure 9	575		1225	mV
Z _{LINE}	Line differential impedance (PWB/trace)	90	100	110	Ω
Z _{IN}	Internal differential termination resistance Figure 10	80	100	120	Ω
	100-Ω differential PCB trace	6.35		152.4	mm
LPSDR INTERFACE ⁽¹⁰))			*	
Z _{LINE}	Line differential impedance (PWB/trace)	61.2	68	74.8	Ω

⁽¹⁾ Recommended Operating Conditions are applicable after the DMD is installed in the final product.

The functional performance of the device specified in this datasheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits.

All voltage values are with respect to the ground pins (VSS).

VOFFSET supply transients must fall within specified max voltages.

⁽⁵⁾

To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than specified limit.

To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified limit.

To prevent excess current, the supply voltage delta |VBIAS – VRESET| must be less than specified limit.

LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.

Refer to the SubLVDS timing requirements in *Timing Requirements*.

⁽¹⁰⁾ Refer to the LPSDR timing requirements in *Timing Requirements*.

IEXAS INSTRUMENTS

Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	NOM	MAX	UNIT
ENVIRONMENTAL					
T _{ARRAY}	Array temperature – operational, long-term (11) (12) (13)	0	40	0 to 70 ⁽¹¹⁾	
	Array temperature – operational, short-term (14) (12) (13)	-10		75	°C
T _{WINDOW}	Window temperature – operational ⁽¹⁵⁾			90	°C
T _{DELTA}	Absolute Temperature difference between any point on the window edge and the ceramic test point TP1 (16)			30	°C
ILL _{UV&VIS}	Illumination, wavelength < 700 nm			0.68	mW/cm ²
ILL _{NIR}	Illumination, wavelength 700 - 2500 nm			2000	mW/cm ²
ILL _{IR}	Illumination, wavelength > 2500 nm			10	mW/cm ²

- (11) Per Figure 1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty cycle.
- (12) Long-term is defined as the usable life of the device.
- (13) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1 (TP1) shown in Figure 19 and the **package thermal resistance** using *Micromirror Array Temperature Calculation*.
- (14) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is defined as cumulative time over the usable life of the device and is less than 500 hours for temperatures between long-term maximum and 75°C, less than 500 hours for temperatures between 0°C and -10°C.
- (15) Window temperature is the highest temperature on the window edge shown in Figure 19. The locations of thermal test points TP2 and TP3 in Figure 19 are intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature, a test point should be added to that location.
- (16) Temperature delta is the highest difference from the ceramic test point 1 (TP1) and anywhere on the window edge shown in Figure 19. The window test points TP2 and TP3 shown in Figure 19 are intended to result in the worst case delta temperature. If a particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.

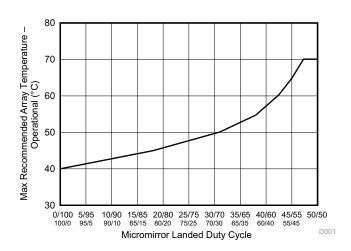


Figure 1. Max Recommended Array Temperature - Derating Curve

6.5 Thermal Information

	FQ	UNIT		
THERMAL METRIC ⁽¹⁾	40 PINS			
	MIN	TYP	MAX	
Thermal resistance Active area to test point TP1 (1)			7.9	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of maintaining the package within the temperature range specified in the *Recommended Operating Conditions*. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS (2)	MIN	TYP	MAX	UNIT
CURRENT	Г					
	0	VDD = 1.95 V			34.7	^
I _{DD}	Supply current: VDD ⁽³⁾ (4)	VDD = 1.8 V		27.5		mA
	Supply current: VDDI (3) (4)	VDDI = 1.95 V			9.4	A
I _{DDI}	Supply current. VDDI V	VDD = 1.8 V		6.6		mA
	Supply current: VOFFSET ⁽⁵⁾ (6)	VOFFSET = 10.5 V			1.7	mA
OFFSET	Supply current. VOFFSET 47 47	VOFFSET = 10 V		0.9		ША
	Supply current: VBIAS (5) (6)	VBIAS = 18.5 V			0.4	mA
I _{BIAS}	Supply current. VBIAS (** (**)	VBIAS = 18 V		0.2		mA
	Supply ourrent: VPESET(6)	VRESET = −14.5 V			2	mA
I _{RESET}	Supply current. VRESET	Supply current: VRESET ⁽⁶⁾ $VRESET = -14 \text{ V}$				ША
POWER ⁽⁷⁾)				·	
P_{DD}	Supply power dissipation: VDD ⁽³⁾ (4)	VDD = 1.95 V			67.7	mW
י טט		VDD = 1.8 V		49.5		IIIVV
D	Supply power dissipation: VDDI ⁽³⁾ (4)	VDDI = 1.95 V			18.3	mW
P_{DDI}	Supply power dissipation. VDDI V V	VDD = 1.8 V		11.9		IIIVV
D	Supply power dissipation: VOFFSET ⁽⁵⁾ (6)	VOFFSET = 10.5 V			17.9	mW
P _{OFFSET}	VOFFSET ⁽⁵⁾ (6)	VOFFSET = 10 V		9		IIIVV
D	Supply power dissipation: VBIAS (5) (6)	VBIAS = 18.5 V			7.4	mW
P _{BIAS}	Supply power dissipation. VBIAS	VBIAS = 18 V		3.6		IIIVV
D	Supply power dissipation: VRESET ⁽⁶⁾	VRESET = −14.5 V			29	mW
P _{RESET}	Supply power dissipation. VICESET	VRESET = -14 V		16.8		11100
P _{TOTAL}	Supply power dissipation: Total			90.8	140.3	mW
LPSDR IN	IPUT ⁽⁸⁾					
$V_{IH(DC)}$	DC input high voltage (9)		0.7 × VDD		VDD + 0.3	V
$V_{IL(DC)}$	DC input low voltage (9)		-0.3		0.3 × VDD	V
V _{IH(AC)}	AC input high voltage (9)		0.8 × VDD		VDD + 0.3	V
$V_{IL(AC)}$	AC input low voltage (9)		-0.3		0.2 × VDD	V
ΔV_{T}	Hysteresis (V _{T+} – V _{T-})	Figure 10	0.1 × VDD		0.4 × VDD	V

- (1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.
- (2) All voltage values are with respect to the ground pins (VSS).
- (3) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.
- 4) Supply power dissipation based on non-compressed commands and data.
- (5) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.
- (6) Supply power dissipation based on 3 global resets in 200 μs.
- (7) The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, VRESET.
- (8) LPSDR specifications are for pins LS_CLK and LS_WDATA.
- (9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.

Copyright © 2015, Texas Instruments Incorporated

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP MAX	UNIT
I _{IL}	Low-level input current	VDD = 1.95 V; V _I = 0 V	-100		nA
I _{IH}	High-level input current	VDD = 1.95 V; V _I = 1.95 V		100	nA
LPSDR C	OUTPUT ⁽¹⁰⁾				
V _{OH}	DC output high voltage	$I_{OH} = -2 \text{ mA}$	0.8 × VDD		V
V _{OL}	DC output low voltage	I _{OL} = 2 mA		0.2 × VDD	V
CAPACIT	ANCE				
0	Input capacitance LPSDR	f = 1 MHz		10	pF
C _{IN}	Input capacitance SubLVDS	f = 1 MHz		20	pF
C _{OUT}	Output capacitance	f = 1 MHz		10	pF
C _{RESET}	Reset group capacitance	f = 1 MHz; (480 × 108) micromirrors	95	113	pF

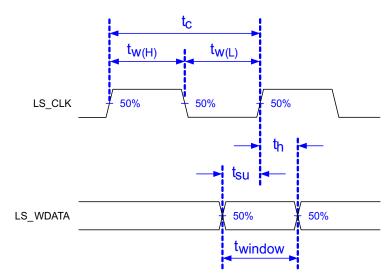
⁽¹⁰⁾ LPSDR specification is for pin LS_RDATA.

6.7 Timing Requirements

Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

		·	MIN	NOM	MAX	UNIT
LPSDR						
t _R	Rise slew rate ⁽¹⁾	(30% to 80%) × VDD, Figure 3	1		3	V/ns
t _V	Fall slew rate ⁽¹⁾	(70% to 20%) × VDD, Figure 3	1		3	V/ns
t _R	Rise slew rate ⁽²⁾	(20% to 80%) × VDD, Figure 3	0.25			V/ns
t _F	Fall slew rate ⁽²⁾	(80% to 20%) × VDD, Figure 3	0.25			V/ns
t _C	Cycle time LS_CLK,	Figure 2	7.7	8.3		ns
t _{W(H)}	Pulse duration LS_CLK high	50% to 50% reference points,Figure 2	3.1			ns
t _{W(L)}	Pulse duration LS_CLK low	50% to 50% reference points, Figure 2	3.1			ns
t _{SU}	Setup time	LS_WDATA valid before LS_CLK ↑, Figure 2	1.5			ns
t _H	Hold time	LS_WDATA valid after LS_CLK ↑, Figure 2	1.5			ns
t _{WINDOW}	Window time ^{(1) (3)}	Setup time + Hold time, Figure 2	3			ns
t _{DERATING}	Window time derating ⁽¹⁾	For each 0.25 V/ns reduction in slew rate below 1 V/ns, Figure 5		0.35		ns
SubLVDS					'	
t _R	Rise slew rate	20% to 80% reference points, Figure 4	0.7	1		V/ns
t _F	Fall slew rate	80% to 20% reference points, Figure 4	0.7	1		V/ns
t _C	Cycle time LS_CLK,	Figure 6	1.61	1.67		ns
t _{W(H)}	Pulse duration DCLK high	50% to 50% reference points, Figure 6	0.71			ns
t _{W(L)}	Pulse duration DCLK low	50% to 50% reference points, Figure 6	0.71			ns
t _{SU}	Setup time	D(0:3) valid before DCLK ↑ or DCLK ↓, Figure 6				
t _H	Hold time	D(0:3) valid after DCLK ↑ or DCLK ↓, Figure 6				
t _{WINDOW}	Window time	Setup time + Hold time, Figure 6,Figure 7			0.3	ns
t _{LVDS} - ENABLE+REFGEN	Power-up receiver ⁽⁴⁾				2000	ns

Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in Figure 3.


Product Folder Links: DLP2010NIR

ISTRUMENTS

Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 3. Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.

Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.

Low-speed interface is LPSDR and adheres to the *Electrical Characteristics* and AC/DC Operating Conditions table in JEDEC Standard No. 209B, *Low Power Double Data Rate (LPDDR)* JESD209B.

Figure 2. LPSDR Switching Parameters

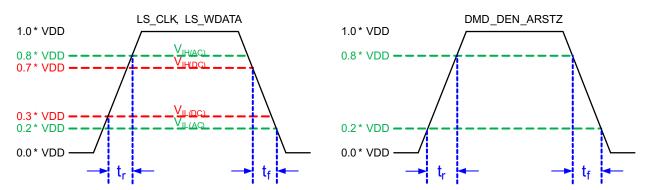


Figure 3. LPSDR Input Rise and Fall Slew Rate

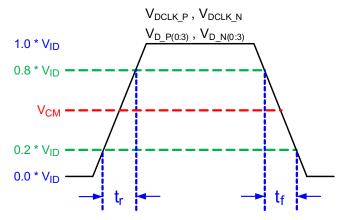
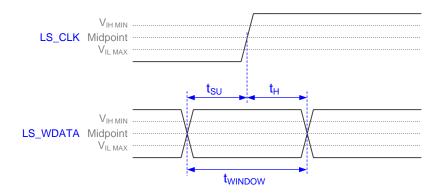



Figure 4. SubLVDS Input Rise and Fall Slew Rate

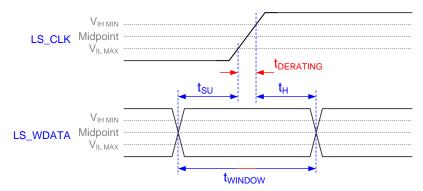


Figure 5. Window Time Derating Concept

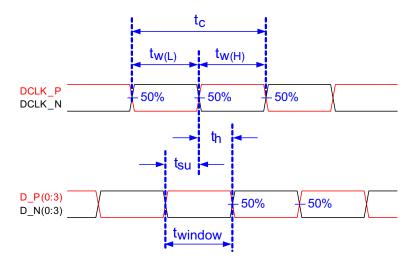
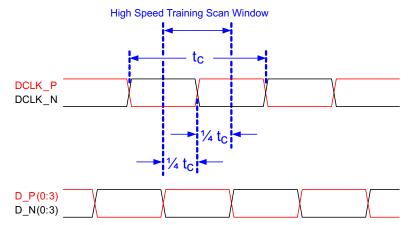



Figure 6. SubLVDS Switching Parameters

Note: Refer to High-Speed Interface for details.

Figure 7. High-Speed Training Scan Window

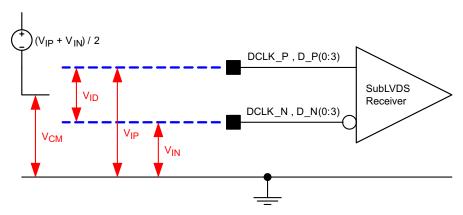


Figure 8. SubLVDS Voltage Parameters

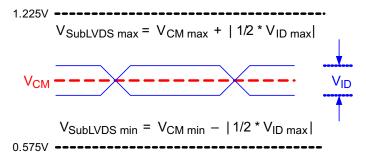


Figure 9. SubLVDS Waveform Parameters

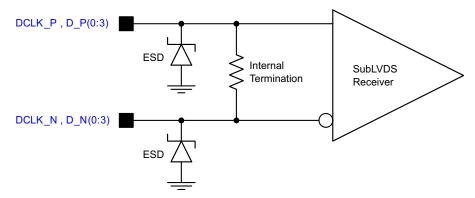


Figure 10. SubLVDS Equivalent Input Circuit

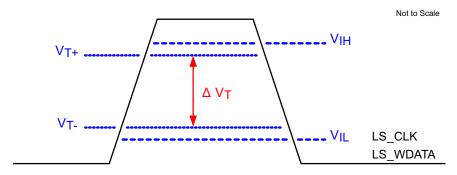


Figure 11. LPSDR Input Hysteresis

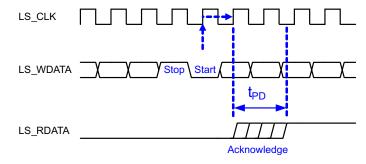
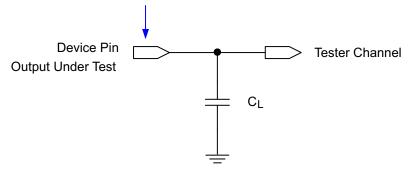



Figure 12. LPSDR Read Out

Data Sheet Timing Reference Point

See *Timing* for more information.

Figure 13. Test Load Circuit for Output Propagation Measurement

6.8 Switching Characteristics⁽¹⁾

Over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PD}	Output propagation, Clock to Q, rising	C _L = 5 pF			11.1	ns
	edge of LS_CLK input to LS_RDATA output. Figure 12	C _L = 10 pF			11.3	ns
		C _L = 85 pF			15	ns
	Slew rate, LS_RDATA		0.5			V/ns
	Output duty cycle distortion, LS_RDATA		40%		60%	

⁽¹⁾ Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

6.9 System Mounting Interface Loads

PARAMETER	MIN	NOM MA	X UNIT				
Maximum system mounting interface load to be applied to the:							
Connector area (see Figure 14)			15 N				
DMD mounting area uniformly distributed over 4 areas (see Figure 14)		1	00 N				

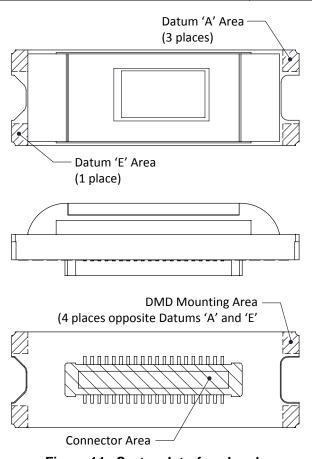
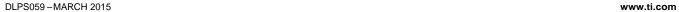



Figure 14. System Interface Loads

Copyright © 2015, Texas Instruments Incorporated

Instruments

6.10 Physical Characteristics of the Micromirror Array

			VALUE	UNIT
	Number of active columns	See Figure 15	854	micromirrors
	Number of active rows	See Figure 15	480	micromirrors
3	Micromirror (pixel) pitch	See Figure 16	5.4	μm
	Micromirror active array width	Micromirror pitch × number of active columns; see Figure 15	4.6116	mm
	Micromirror active array height	Micromirror pitch × number of active rows; see Figure 15	2.592	mm
	Micromirror active border	Pond of micromirror (POM) ⁽¹⁾	20	micromirrors/side

⁽¹⁾ The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

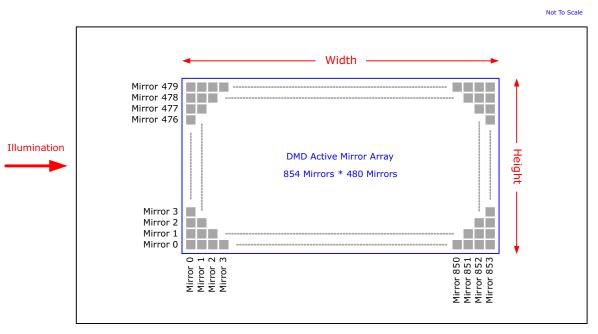


Figure 15. Micromirror Array Physical Characteristics

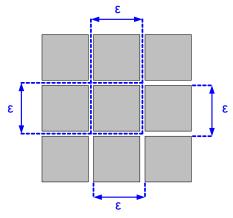


Figure 16. Mirror (Pixel) Pitch

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

DLPS059 - MARCH 2015 www.ti.com

Micromirror Array Optical Characteristics 6.11

PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
Micromirror tilt angle	DMD landed state ⁽¹⁾		17		0
Micromirror tilt angle tolerance ⁽¹⁾ (2) (3) (4) (5)		-1		1	o
Micromirror tilt direction ⁽⁶⁾ (7)	Landed ON state		180		0
	Landed OFF state		270		
Micromirror crossover time	Typical Performance		1.5	4	110
Micromirror switching time	Typical Performance			6	μs
Number of out-of-specification micromirrors ⁽⁸⁾	Adjacent micromirrors			0	
	Non-adjacent micromirrors			10	micromirrors

- Measured relative to the plane formed by the overall micromirror array.
- Additional variation exists between the micromirror array and the package datums.
- (3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.
- (4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different
- For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations.
- When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction.
- Micromirror tilt direction is measured as in a typical polar coordinate system: measuring counter-clockwise from a 0° reference which is aligned with the +X Cartesian axis.
- An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states within the specified Micromirror Switching Time.

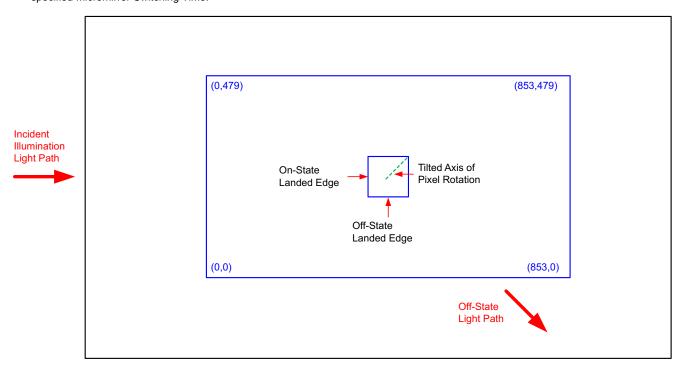
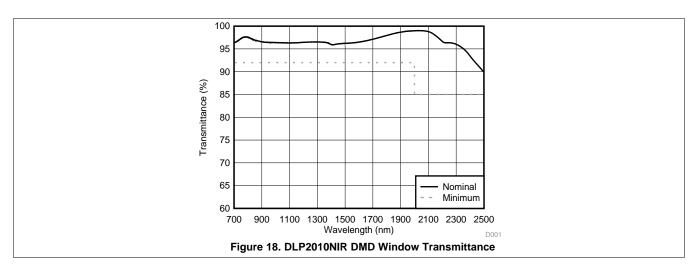


Figure 17. Landed Pixel Orientation and Tilt

Product Folder Links: DLP2010NIR


TEXAS INSTRUMENTS

6.12 Window Characteristics

PAR	AMETER ⁽¹⁾	MIN	NOM	MAX	UNIT
Window material designation			Corning Eagle XG		
Window refractive index		1.5119			
Window aperture ⁽²⁾				See (2)	
Illumination overfill (3)				See (3)	
Window transmittance, single-pass through both surfaces and glass	Minimum within the wavelength range 700 to 2000 nm. at 0° angle of incidence.	92	96		%
Window transmittance, single-pass through both surfaces and glass	Minimum within the wavelength range 2000 to 2500 nm. at 0° angle of incidence.	85	90		%

- (1) See Window Characteristics and Optics for more information.
- (2) See the package mechanical characteristics for details regarding the size and location of the window aperture.
- (3) The active area of the DLP2010NIR device is surrounded by an aperture on the inside of the DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause system performance degradation.

6.13 Typical Characteristics

7 Detailed Description

7.1 Overview

www.ti.com

The DLP2010NIR is a 0.2 inch diagonal spatial light modulator designed for near-infrared applications. Pixel array size is 854 columns by 480 rows in a square grid pixel arrangement. The electrical interface is Sub Low Voltage Differential Signaling (SubLVDS) data.

DLP2010NIR is one device in a chipset, which includes the DLP2010NIR DMD, the DLPC150 controller and the DLPA200X (DLPA2000 or DLPA2005) PMIC. To ensure reliable operation, the DLP2010NIR DMD must always be used with a DLPC150 controller and a DLPA200X PMIC.

7.2 Functional Block Diagram

Details omitted for clarity.

DLPS059 - MARCH 2015 www.ti.com

INSTRUMENTS

7.3 Feature Description

7.3.1 Power Interface

The power management IC, DLPA200X, contains 3 regulated DC supplies for the DMD reset circuitry: VBIAS, VRESET and VOFFSET, as well as the 2 regulated DC supplies for the DLPC150 controller.

7.3.2 Low-Speed Interface

The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS CLK is the low-speed clock, and LS_WDATA is the low speed data input.

7.3.3 High-Speed Interface

The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed DDR transfer and compression techniques to save power and time. The high-speed interface is composed of differential SubLVDS receivers for inputs, with a dedicated clock.

7.3.4 Timing

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. Figure 13 shows an equivalent test load circuit for the output under test. Timing reference loads are not intended as a precise representation of any particular system environment or depiction of the actual load presented by a production test. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving.

7.4 Device Functional Modes

DMD functional modes are controlled by the DLPC150 controller. See the DLPC150 controller data sheet or contact a TI applications engineer.

7.5 Window Characteristics and Optics

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

7.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections:

7.5.1.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the ON optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and/or active area could occur and affect system performance.

Product Folder Links: DLP2010NIR

Window Characteristics and Optics (continued)

7.5.1.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.5.1.3 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the particular system's optical architecture, overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.

7.6 Micromirror Array Temperature Calculation

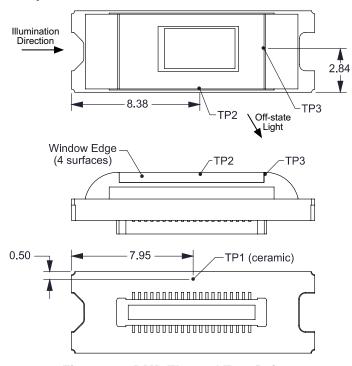


Figure 19. DMD Thermal Test Points

Micromirror array temperature can be computed analytically from measurement points on the outside of the package, the ceramic package thermal resistance, the electrical power dissipation, and the illumination heat load. The relationship between micromirror array temperature and the reference ceramic temperature is provided by the following equations:

$$T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$$
(1)

$$Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$$
 (2)

 $Q_{ILLUMINATION} = (A_{ILLUMINATION} \times P_{NIR} \times DMD$ absorption factor)

where

- T_{ARRAY} = Computed DMD array temperature (°C)
- T_{CERAMIC} = Measured ceramic temperature (°C), TP1 location in Figure 19
- R_{ARRAY-TO-CERAMIC} = DMD package thermal resistance from array to outside ceramic (°C/W) specified in Thermal Information

Copyright © 2015, Texas Instruments Incorporated

DLPS059 – MARCH 2015 www.ti.com

TEXAS INSTRUMENTS

Micromirror Array Temperature Calculation (continued)

- Q_{ARRAY} = Total DMD power; electrical, specified in *Electrical Characteristics*, plus absorbed (calculated) (W)
- Q_{ELECTRICAL} = Nominal DMD electrical power dissipation (W), specified in *Electrical Characteristics*
- A_{ILLUMINATION} = Illumination area (assumes 83.7% on the active array and 16.3% overfill)
- P_{NIR} = Illumination Power Density (W/cm²)

(3)

Electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies. Refer to the specifications in *Electrical Characteristics*. Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and the intensity of the light source. The DMD absorption constant of 0.42 assumes nominal operation with an illumination distribution of 83.7% on the DMD active array, and 16.3% on the DMD array border and window aperture.

A sample calculation is detailed below:

T_{CERAMIC} = 35 °C, assumed system measurement; see *Recommended Operating Conditions* for specification limits

 $P_{NIR} = 2 \text{ W/cm}^2$

Q_{ELECTRICAL} = 0.0908 W; See the table notes in *Recommended Operating Conditions* for details.

 $A_{ILLUMINATION} = 0.143 \text{ cm}^2$

 $Q_{ARRAY} = Q_{ELECTRICAL} + (Q_{ILLUMINATION} X DMD absorption factor) = 0.0908 W + (2 W/cm² X 0.143 cm² X 0.42) = 0.211 W$

 $T_{ARRAY} = 35 \text{ °C} + (0.211 \text{ W} \times 7.9 \text{ °C/W}) = 36.67 \text{ °C}$

7.7 Micromirror Landed-On/Landed-Off Duty Cycle

7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the On state versus the amount of time the same micromirror is landed in the Off state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On state 100% of the time (and in the Off state 0% of the time), whereas 0/100 would indicate that the pixel is in the Off state 100% of the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages) always add to 100.

7.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD's micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD's usable life.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

7.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD Temperature and Landed Duty Cycle interact to affect the DMD's usable life, and this interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMD's usable life. This is quantified in the de-rating curve shown in Figure 1. The importance of this curve is that:

- All points along this curve represent the same usable life.
- All points above this curve represent lower usable life (and the further away from the curve, the lower the

22

DLPS059 - MARCH 2015 www.ti.com

Micromirror Landed-On/Landed-Off Duty Cycle (continued)

usable life).

All points below this curve represent higher usable life (and the further away from the curve, the higher the usable life).

In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD should be operated at for a give long-term average Landed Duty Cycle.

7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in binary pattern display with value '1' or when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 Landed Duty Cycle during that time period. Likewise, a binary pattern display with value '0' or when displaying pure-black, the pixel will experience a 0/100 Landed Duty Cycle.

Table 1. Binary Pattern Mode Example: Binary Value and Landed Duty Cycle

Binary Value	Landed Duty Cycle
0	0/100
1	100/0

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

Landed Duty Cycle = ∑{Pattern[i]_Binary_Value} / {Total_Patterns}

where

Pattern[i] Binary Value represent a pixel's pattern and its corresponding binary value over all patterns in the pattern sequence: Total_Patterns.

For example, assume a pattern sequence with three patterns using pixel x. In this sequence the first pattern has pixel x on, the second pattern has pixel x off, and the third pattern has pixel x off. Thus, the Landed Duty Cycle is 33%.

7.8 Chipset Component Usage Specification

The DLP2010NIR is a component of one or more DLP chipsets. Reliable function and operation of the DLP2010NIR requires that it be used in conjunction with the other components of the applicable DLP chipset. including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

Product Folder Links: DLP2010NIR

DLPS059 – MARCH 2015 www.ti.com

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection or collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC150 controller. The new high tilt pixel in the side illuminated DMD increases device efficiency and enables a compact optical system. The DLP2010NIR DMD can be combined with a grating and single element detector to replace expensive InGaAs linear array detector designs, leading to high performance, cost-effective portable NIR Spectroscopy solutions. Applications of interest include machine vision systems, spectrometers, medical systems, skin analysis, material identification, chemical sensing, infrared projection, and compressive sensing.

DMD power-up and power-down sequencing is strictly controlled by the DLPA2000 or DLPA2005. Refer to *Power Supply Recommendations* for power-up and power-down specifications. DLP2010NIR DMD reliability is only specified when used with DLPC150 controller and DLPA2000 or DLPA2005 PMIC/LED Driver.

8.2 Typical Application

A typical embedded system application using the DLPC150 controller and DLP2010NIR is shown in Figure 20. In this configuration, the DLPC150 controller supports a 24-bit parallel RGB input, typical of LCD interfaces, from an external source or processor. Trigger inputs and outputs are used to synchronize the displayed images or pattern to a microprocessor sampling the data on a infrared detector.

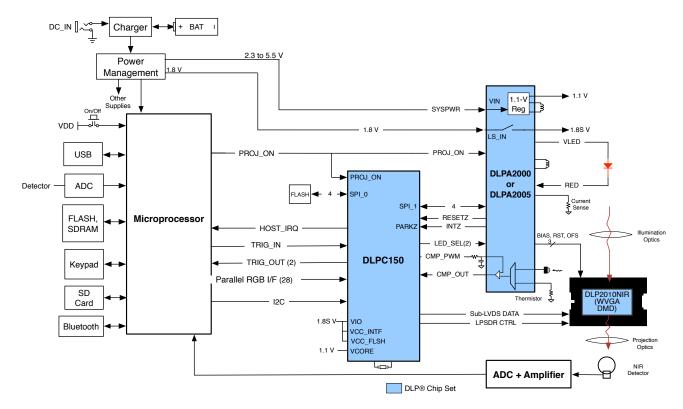


Figure 20. Typical Application Diagram

Submit Do

DLPS059 - MARCH 2015

Typical Application (continued)

8.2.1 Design Requirements

All applications using DLP 0.2-inch WVGA chipset require the DLPC150 controller, DLPA2000 or DLPA2005 PMIC, and DLP2010NIR DMD components for operation. The system also requires an external SPI flash memory device loaded with the DLPC150 Configuration and Support Firmware. The chipset has several system interfaces and requires some support circuitry. The following interfaces and support circuitry are required for the DLP2010NIR:

- DMD Interfaces:
 - DLPC150 to DLP2010NIR SubLVDS Digital Data
 - DLPC150 to DLP2010NIR LPSDR Control Interface
- DMD Power:
 - DLPA2000 or DLPA2005 to DLP2010NIR VBIAS Supply
 - DLPA2000 or DLPA2005 to DLP2010NIR VOFFSET Supply
 - DLPA2000 or DLPA2005 to DLP2010NIR VRESET Supply
 - DLPA2000 or DLPA2005 to DLP2010NIR VDDI Supply
 - DLPA2000 or DLPA2005 to DLP2010NIR VDD Supply

The illumination light that is applied to the DMD is typically from an infrared LED or lamp.

8.2.2 Detailed Design Procedure

For connecting together the DLPC150, the DLPA2005, and the DLP2010NIR DMD, see the TI DLP NIRscan Nano EVM reference design schematic.

8.2.3 Application Curves

The reflected light from the DMD is a function of the incident LED or lamp and the window transmittance at specific wavelengths of light. In a reflective spectroscopy application, a broadband light source illuminates a sample and the reflected light spectrum is dispersed onto the DMD. Electronic control of individual DMD mirrors reflect specific wavelengths of light to a single point detector. This system allows the measurement of the collected light and derives the wavelengths absorbed by the sample. This process leads to the absorption spectrum shown in Figure 21.

Typical Application (continued)

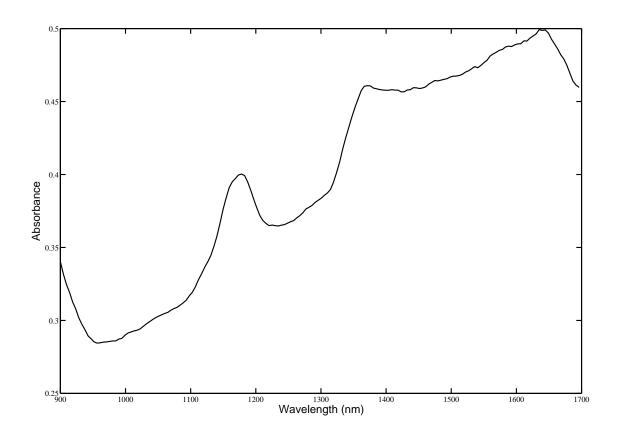


Figure 21. Sample DLP2010NIR Based Spectrometer Output

www.ti.com DLPS059 – MARCH 2015

9 Power Supply Recommendations

The following power supplies are all required to operate the DMD: VSS, VDD, VDDI, VOFFSET, VBIAS, and VRESET. DMD power-up and power-down sequencing is strictly controlled by the DLPA2000 or DLPA2005 device.

CAUTION

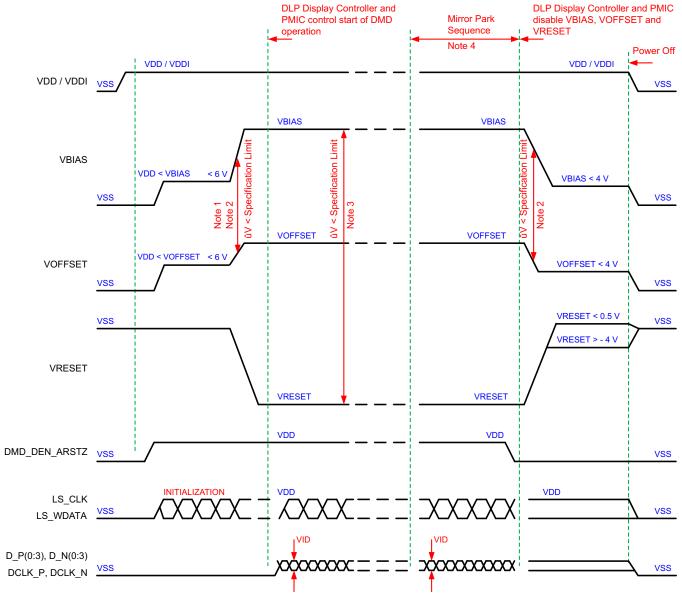
For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability.

VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power-up and power-down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD's reliability and lifetime. Refer to Figure 23. VSS must also be connected.

9.1 Power Supply Power-Up Procedure

- During power-up, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and VRESET voltages are applied to the DMD.
- During power-up, it is a strict requirement that the delta between VBIAS and VOFFSET must be within the specified limit shown in *Recommended Operating Conditions*. Refer to Table 2 and *Layout Example* for power-up delay requirements.
- During power-up, the DMD's LPSDR input pins shall not be driven high until after VDD and VDDI have settled at operating voltage.
- During power-up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS. Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the requirements listed previously and in Figure 22.

9.2 Power Supply Power-Down Procedure


- Power-down sequence is the reverse order of the previous power-up sequence. VDD and VDDI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.
- During power-down, it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement
 that the delta between VBIAS and VOFFSET must be within the specified limit shown in Recommended
 Operating Conditions (Refer to Note 2 for Figure 22).
- During power-down, the DMD's LPSDR input pins must be less than VDDI, the specified limit shown in Recommended Operating Conditions.
- During power-down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS.
- Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the requirements listed previously and in Figure 22.

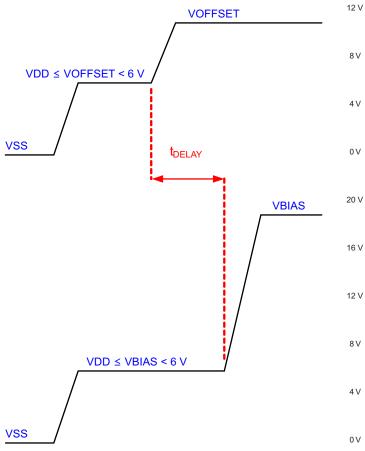
Product Folder Links: DLP2010NIR

DLPS059 – MARCH 2015 www.ti.com

TEXAS INSTRUMENTS

9.3 Power Supply Sequencing Requirements

- (1) Refer to Table 2 and Figure 23 for critical power-up sequence delay requirements.
- (2) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified in Recommended Operating Conditions. OEMs may find that the most reliable way to ensure this is to power VOFFSET prior to VBIAS during power-up and to remove VBIAS prior to VOFFSET during power-down. Refer to Table 2 and Figure 23 for power-up delay requirements
- (3) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit shown in Recommended Operating Conditions.
- (4) When system power is interrupted, the ASIC driver initiates hardware power-down that disables VBIAS, VRESET and VOFFSET after the Micromirror Park Sequence. Software power-down disables VBIAS, VRESET, and VOFFSET after the Micromirror Park Sequence through software control.
- (5) Drawing is not to scale and details are omitted for clarity.


Figure 22. Power Supply Sequencing Requirements (Power Up and Power Down)

Power Supply Sequencing Requirements (continued)

Table 2. Power-Up Sequence Delay Requirement

	PARAMETER	MIN	UNIT
t _{DELAY}	Delay requirement from VOFFSET power up to VBIAS power up	145	ms
V _{OFFSET}	Supply voltage level during power-up sequence delay (see Figure 23)	6	V
V_{BIAS}	Supply voltage level during power–up sequence delay (see Figure 23)	6	V

Refer to Table 2 for VOFFSET and VBIAS supply voltage levels during power-up sequence delay.

Figure 23. Power-Up Sequence Delay Requirement

DLPS059 – MARCH 2015 www.ti.com

10 Layout

10.1 Layout Guidelines

There are no specific layout guidelines for the DMD as typically DMD is connected using a board or board-to-board connector to a flex cable. For detailed layout guidelines refer to the layout design files. Some layout guideline for the flex cable interface with DMD are:

- Match lengths for the LS WDATA and LS CLK signals.
- Minimize vias, layer changes, and turns for the HS bus signals. Refer Figure 24.
- Minimum of 100-nF decoupling capacitor close to VBIAS. Capacitor C4 in Figure 25.
- Minimum of 100-nF decoupling capacitor close to VRESET. Capacitor C6 in Figure 25.
- Minimum of 220-nF decoupling capacitor close to VOFFSET. Capacitor C7 in Figure 25.
- Optional minimum 200- to 220-nF decoupling capacitor to meet the ripple requirements of the DMD. C5 in Figure 25.
- Minimum of 100-nF decoupling capacitor close to Vcci. Capacitor C1 in Figure 25.
- Minimum of 100-nF decoupling capacitor close to both groups of Vcc pins, for a total of 200 nF for Vcc. Capacitor C2/C3 in Figure 25.

10.2 Layout Example

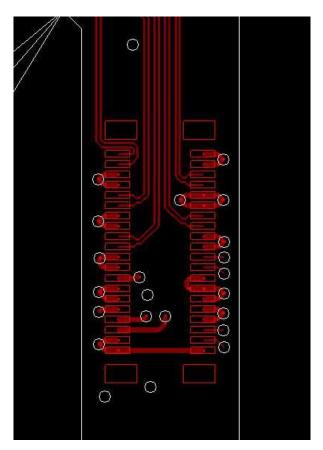


Figure 24. High-Speed (HS) Bus Connections

30

NSTRUMENTS

Layout Example (continued)

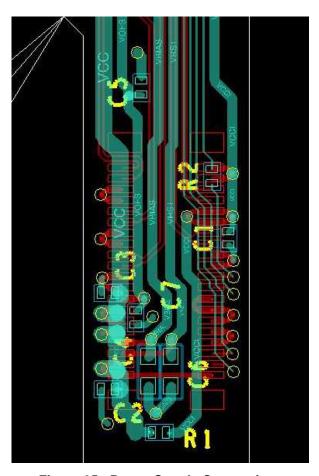


Figure 25. Power Supply Connections

DLPS059 – MARCH 2015 www.ti.com

11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

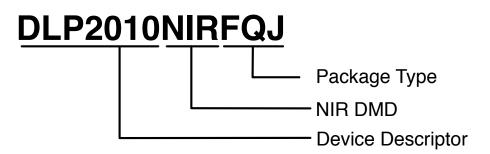


Figure 26. Part Number Description

11.1.2 Device Markings

Device Marking will include the human-readable character string GHJJJJK VVVV on the electrical connector. GHJJJJK is the lot trace code. VVVV is a 4 character encoded device part number

Figure 27. DMD Marking

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 3. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
DLPC150	Click here	Click here	Click here	Click here	Click here
DLPA2000	Click here	Click here	Click here	Click here	Click here
DLPA2005	Click here	Click here	Click here	Click here	Click here

11.3 Trademarks

DLP is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

www.ti.com

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

1-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DLP2010NIRFQJ	ACTIVE	CLGA	FQJ	40	1	Green (RoHS & no Sb/Br)	Call TI	Level-1-NC-NC			Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

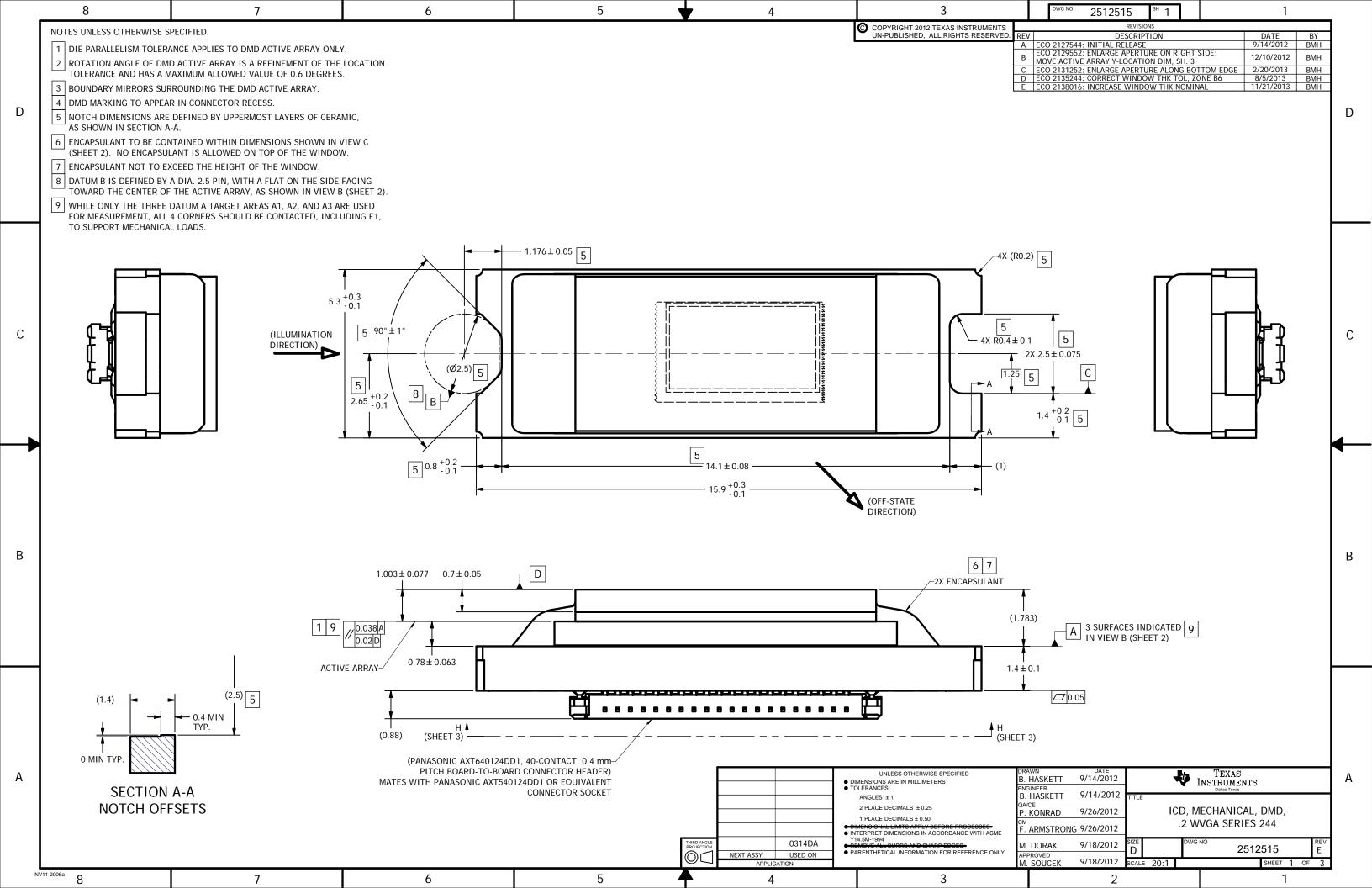
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

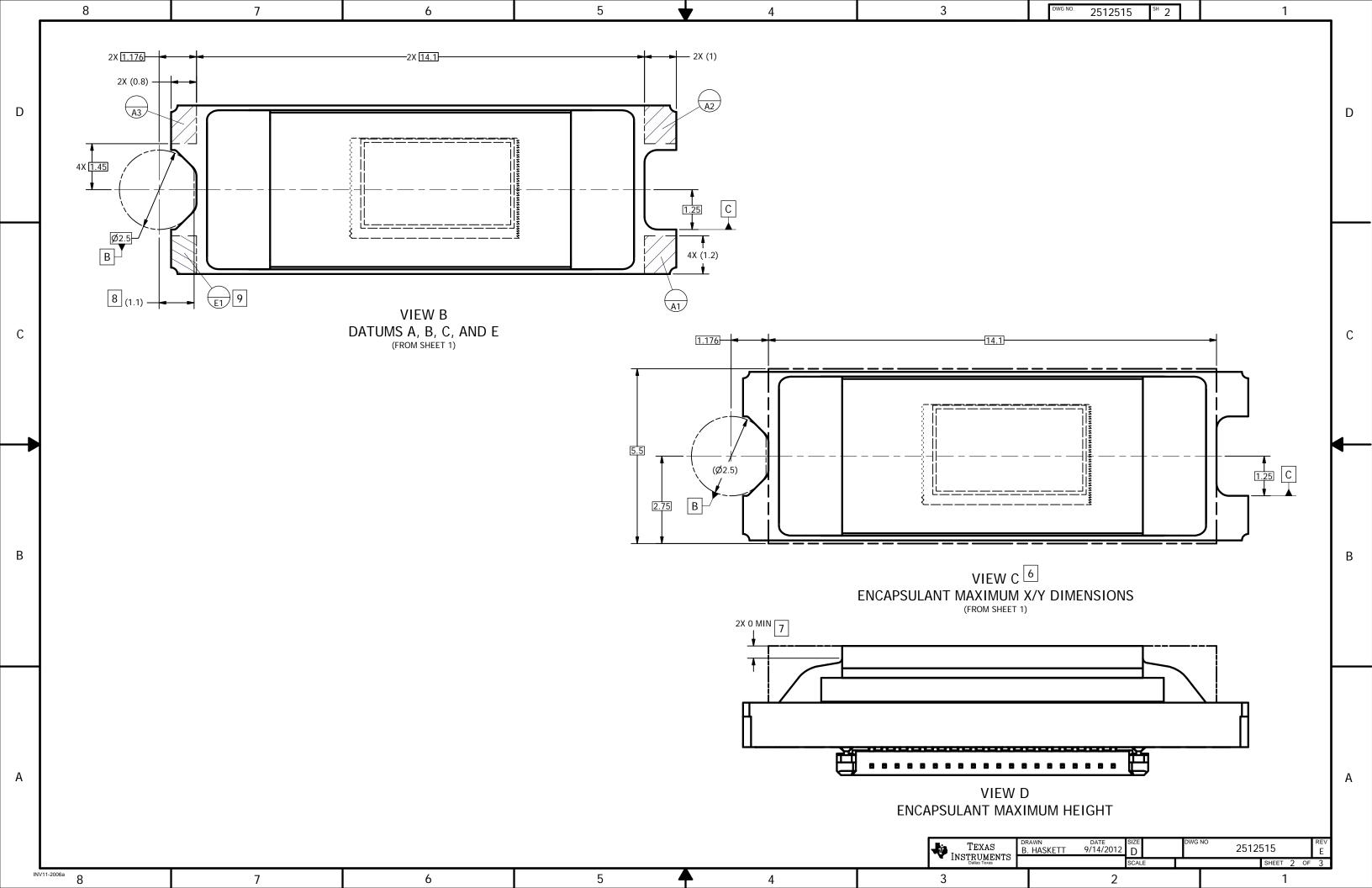
TBD: The Pb-Free/Green conversion plan has not been defined.

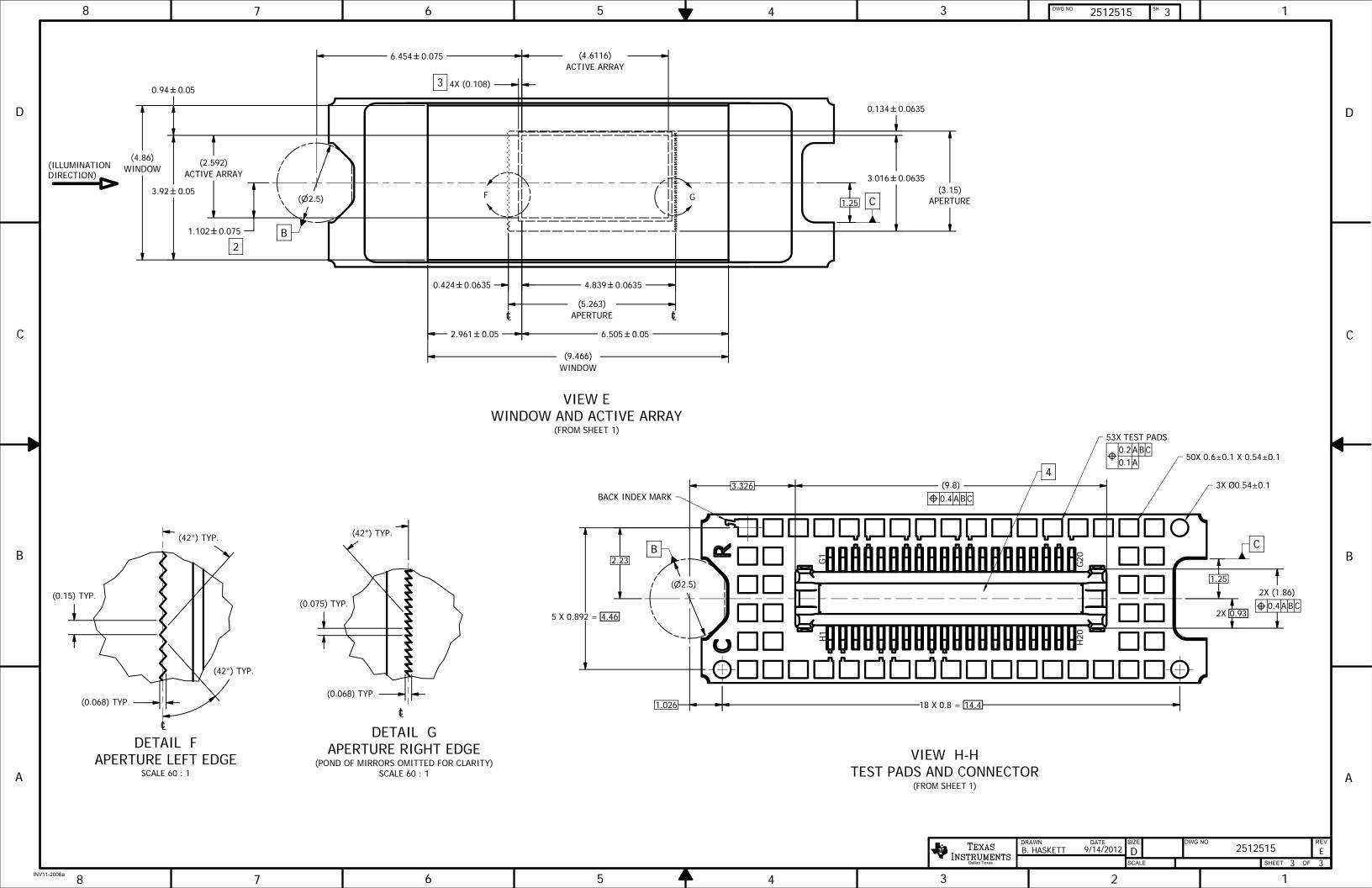
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



1-Apr-2015

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001:
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.