HYNIX SEMICONDUCTOR INC. 8-BIT SINGLE-CHIP MICROCONTROLLERS

GMS90C3X GMS90C5X GMS97C5X

User's Manual (Ver. 3.1a)

Version 3.1a Published by MCU Application Team ©2001 Hynix semiconductor All right reserved.

Additional information of this manual may be served by Hynix semiconductor offices in Korea or Distributors and Representatives listed at address directory.

Hynix semiconductor reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Device Naming Structure

Oct. 2000 Ver 3.1a

Operating	ROM si	ze (bytes)	RAM size	Device Name	Operating
Voltage (V)	MASK	OTP	(bytes)	Device Name	Frequency (MHz)
	RO	M-less	128 256	GMS90C31 GMS90C32	12/24/40 12/24/40
	4K 8K 16K 24K 32K	- - - -	128 256 256 256 256 256	GMS90C51 GMS90C52 GMS90C54 GMS90C56 GMS90C58	12/24/40 12/24/40 12/24/40 12/24/40 12/24/40
4.25~5.5	- - - - - - - - -	4K 4K 8K 8K 16K 16K 24K 24K 32K 32K	128 128 256 256 256 256 256 256 256 256 256	GMS97C51 GMS97C51H GMS97C52 GMS97C52H GMS97C54 GMS97C54H GMS97C56 GMS97C56H GMS97C58 GMS97C58 GMS97C58H	12/24 33 12/24 33 12/24 33 12/24 33 12/24 33 12/24 33
	RO	ROM-less		GMS90L31 GMS90L32	12/16 12/16
2.7~3.6	4K 8K 16K 24K 32K	- - - -	128 256 256 256 256	GMS90L51 GMS90L52 GMS90L54 GMS90L56 GMS90L58	12/16 12/16 12/16 12/16 12/16 12/16
	- - - -	4K 8K 16K 24K 32K	128 256 256 256 256	GMS97L51 GMS97L52 GMS97L54 GMS97L56 GMS97L58	12 12 12 12 12 12

GMS90 Series Selection Guide

GMS90C31/51, 97C51 GMS90L31/51, 97L51 (Low voltage versions)

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40MHz (for more detail, see "GMS90 Series Selection Guide")
- 4K × 8 (EP)ROM
- $128 \times 8 \text{ RAM}$
- 64K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Two 16-bit Timers / Counters
- USART
- Five interrupt sources, two priority levels
- · Power saving Idle and power down mode
- Quick pulse programming algorithm (in the OTP devices)
- 2-level program memory lock (in the OTP devices)
- 2.7Volt low voltage version available
- P-DIP-40, P-LCC-44, P-MQFP-44 package

Block Diagram

GMS90C32/52, 97C52 GMS90L32/52, 97L52 (Low voltage versions)

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40MHz (for more detail, see "GMS90 Series Selection Guide")
- 8K × 8 (EP)ROM
- $256 \times 8 \text{ RAM}$
- 64K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
- USART
- Six interrupt sources, two priority levels
- Power saving Idle and power down mode
- Quick pulse programming algorithm (in the OTP devices)
- 2-level program memory lock (in the OTP devices)
- 2.7Volt low voltage version available
- P-DIP-40, P-LCC-44, P-MQFP-44 package

Block Diagram

GMS90C54/56/58, 97C54/56/58 GMS90L54/56/58, 97L54/56/58 (Low voltage versions)

- Fully compatible to standard MCS-51 microcontroller
- Wide operating frequency up to 40MHz (for more detail, see "GMS90 Series Selection Guide")
- 16K/24K/32K bytes (EP)ROM
- $256 \times 8 \text{ RAM}$
- 64K external program memory space
- 64K external data memory space
- Four 8-bit ports
- Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
- USART
- · One clock output port
- Programmable ALE pin enable / disable
- · Six interrupt sources, two priority levels
- · Power saving Idle and power down mode
- Quick pulse programming algorithm (in the OTP devices)
- 2-level program memory lock (in the OTP devices)
- 2.7Volt low voltage version available
- P-DIP-40, P-LCC-44, P-MQFP-44 package

Oct. 2000 Ver 3.1a

PIN CONFIGURATION

44-PLCC Pin Configuration (top view)

40-PDIP Pin Configuration (top view)

44-MQFP Pin Configuration (top view)

GMS90 Series

ициіх

Logic Symbol Vcc XTAL1 -

	P	in Numbe	er	Input/		
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Output	Function	
P1.0-P1.7	2-9	1-8	40-44, 1-3	I/O	Port1 Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the pulls-ups (I_{IL} , in the DC characteristics). Pins P1.0 and P1.1 also. Port1 also receives the low-order address byte during program memory verification. Port1 also serves alternate functions of Timer 2.	
	2 3	1 2	40 41		P1.0 / T2 : Timer/counter 2 external count input P1.1 / T2EX : Timer/counter 2 trigger input	
	2	1	40		In GMS9XC54/56/58: P1.0 / T2, Clock Out : Timer/counter 2 external count input, Clock Out	
P3.0-P3.7	11, 13-19	10-17	5, 7-13	I/O	Port 3 Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 3 pins that are externally pulled low will source current because of the pulls-ups (I _{IL} , in the DC characteristics). Port 3 also serves the special features of the 80C51 family, as listed below.	
	11	10	5		P3.0 / RxD receiver data input (asynchronous) or data input output(synchronous) of serial interface 0	
	13	11	7		P3.1 / TxD transmitter data output (asynchronous) or clock output (synchronous) of the serial interface 0	
	14	12	8		P3.2 /INTO interrupt 0 input/timer 0 gate control	
	15	13	9		P3.3 / INT1 interrupt 1 input/timer 1 gate control	
	16	14	10		P3.4 /T0 counter 0 input	
	17 18	15 16	11 12		P3.5 /T1 counter 1 input P3.6 / WR the write control signal latches the data byte from port 0 into the external data memory	
	19	17	13		P3.7 /RD the read control signal enables the external data memory to port 0	
XTAL2	20	18	14	0	XTAL2 Output of the inverting oscillator amplifier.	

PIN DEFINITIONS AND FUNCTIONS

GMS90 Series

	F	in Numbe	er	Input/	
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Output	Function
XTAL1	21	19	15	I	XTAL1 Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
P2.0-P2.7	24-31	21-28	18-25	I/O	Port 2 Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (I _{IL} , in the DC characteristics).Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
PSEN	32	29	26	0	The Program Store Enable The read strobe to external program memory when the device is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET	10	9	4	I	RESET A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V_{SS} permits power-on reset using only an external capacitor to V_{CC} .

	F	in Numbe	er	Innut	
Symbol	PLCC- 44	PDIP- 40	MQFP- 44	Input/ Output	Function
ALE / PROG	33	30	27	0	The Address Latch Enable / Program pulse Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming.
					In GMS9XC54/56/58: If desired, ALE operation can be disabled by setting bit 0 of SFR location $8E_{H}$. With this bit set, the pin is weakly pulled high. The ALE disable feature will be terminated by reset. Setting the ALE-disable bit has no affect if the microcontroller is in external execution mode.
EA / Vpp	35	31	29	I	External Access Enable / Program Supply Voltage EA must be external held low to enable the device to fetch code from external program memory locations 0000_{H} to FFFF _H . If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming.
					Note; however, that if any of the Lock bits are programmed, EA will be internally latched on reset.
P0.0-P0.7	36-43	32-39	30-37	I/O	Port 0 Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97X5X. External pull-up resistors are required during program verification.
Vss	22	20	16	-	Circuit ground potential
V _{CC}	44	40	38	-	Supply terminal for all operating modes
N.C.	1,12 23,34	-	6,17 28,39	-	No connection

FUNCTIONAL DESCRIPTION

The GMS90 series is fully compatible to the standard 8051 microcontroller family.

It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics of the general 8051 family.

Figure 1 shows a block diagram of the GMS90 series

Figure 1. Block Diagram of the GMS90 series

CPU

The GMS90 series is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in $1.0\mu s$ (40MHz: 300ns).

Special Function Register PSW

Bi	it	Function
C	Y	Carry Flag
A	C	Auxiliary Carry Flag (for BCD operations)
F	0	General Purpose Flag
RS1 0 0 1 1	RSO 0 1 0 1	$\begin{array}{l} \textbf{Register Bank select control bits} \\ \text{Bank 0 selected, data address 00_H - 07_H} \\ \text{Bank 1 selected, data address 08_H - 0F_H} \\ \text{Bank 2 selected, data address 10_H - 17_H} \\ \text{Bank 3 selected, data address 18_H - 1F_H} \end{array}$
0	V	Overflow Flag
F	1	General Purpose Flag
P		Parity Flag Set/cleared by hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.

Reset value of PSW is 00_H.

SPECIAL FUNCTION REGISTERS

All registers, except the program counter and the four general purpose register banks, reside in the special function register area.

The 28 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.

All SFRs are listed in Table 1, Table 1, and Table 3.

In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the functional blocks of the GMS90 series. Table 3 illustrates the contents of the SFRs.

Address	Register	Contents after Reset	Address	Register	Contents after Reset
80H 81H 82H 83H 84H 85H 86H 87H	P0 1) SP DPL DPH reserved reserved reserved PCON	FFH 07H 00H XXH ²⁾ XXH ²⁾ XXH ²⁾ 0XX0000 _B ²⁾	90H 91H 92H 93H 94H 95H 96H 97H	P1 ¹⁾ reserved reserved reserved reserved reserved reserved	FF _H 00 _H XXH ²⁾ XXH ²⁾ XXH ²⁾ XXH ²⁾ XXH ²⁾ XXH ²⁾
88H 89H 8AH 8BH 8CH 8DH 8EH ³⁾ 8FH	TCON ¹⁾ TMOD TL0 TL1 TH0 TH1 + ³⁾ reserved	00H 00H 00H 00H 00H + ³⁾ XXH ²⁾	98H 99H 9AH 9BH 9CH 9DH 9EH 9FH	SCON ¹⁾ SBUF reserved reserved reserved reserved reserved reserved	00H XXH ²) XXH ²) XXH ²) XXH ²) XXH ²) XXH ²) XXH ²)

Table 1. Special Function Registers in Numeric Order of their Addresses

1) Bit-addressable Special Function Register.

2) X means that the value is indeterminate and the location is reserved.

3) The GMS9XX54/56/58 have the AUXR0 register at address $8E_{H}$.

GMS9XX51/52			GMS9XX54/56/58		
8E _H	reserved	XXXXXXXXXB ²⁾	8E _H	AUXR0	XXXXXXX0B ²⁾

Address	Register	Contents after Reset	Address	Register	Contents after Reset
A0H	P2 ¹⁾	FFH	C8H	T2CON ¹⁾	00H
A1H	reserved	XXH ²⁾	C9H ³⁾	T2MOD	+ 3)
A2H	reserved	XXH ²⁾	CAH	RC2L	00H
A3H	reserved	XXH ²⁾	CBH	RC2H	00H
A4H	reserved	XXH ²⁾	CCH	TL2	00H
A5H	reserved	XXH ²⁾	CDH	TH2	00H
A6H	reserved		CEH	reserved	XXH ²⁾
A7H	reserved	XXH ²⁾ XXH ²⁾	CFH	reserved	XXH ²⁾
A8H	IE ¹⁾	0X00000B ²⁾	D0H	PSW ¹⁾	00H
A9H	reserved	XXH ²⁾	D1H	reserved	XXH ²⁾
AAH	reserved	XXH ²⁾	D2H	reserved	XXH ²⁾
ABH	reserved	XXH ²⁾	D3H	reserved	XXH ²⁾
ACH		XXH ²⁾	D4H	reserved	XXH ²⁾
	reserved		D5H	reserved	XXH ²⁾
ADH	reserved	XXH ²⁾	D6H	reserved	
AEH	reserved	XXH ²⁾	D7H	reserved	XXH ²⁾
AFH	reserved	XXH ²⁾			XXH ²⁾
B0H	P3 ¹⁾	FFH	D8H	reserved	XXH ²⁾
B1H	reserved	XXH ²⁾	D9H	reserved	XXH ²⁾
B2H	reserved	XXH ²⁾	DAH	reserved	XXH ²⁾
B3H	reserved	XXH ²⁾	DBH	reserved	XXH ²⁾
B4H	reserved	XXH ²⁾	DCH	reserved	XXH ²⁾
B5H	reserved	XXH ²⁾	DDH	reserved	XXH ²⁾
B6H	reserved	XXH ²⁾	DEH	reserved	XXH ²⁾
B7H	reserved	XXH ²)	DFH	reserved	XXH ²)
B8H	IP ¹⁾	XX000000B ²⁾	E0H	ACC ¹⁾	00H
B9H			E1H		XXH ²⁾
BAH	reserved reserved	XXH ²⁾	E2H	reserved reserved	
BBH	reserved	XXH ²⁾	E3H	reserved	XXH ²⁾
BCH	reserved	XXH ²⁾	E4H	reserved	XXH ²⁾
BDH	reserved	XXH ²⁾	E5H	reserved	XXH ²⁾
BEH	reserved	XXH ²⁾	E6H	reserved	XXH ²⁾
BFH	reserved	XXH ²⁾	E7H	reserved	XXH ²⁾
	10001100	XXH ²⁾		10001700	XXH ²⁾
COH	reserved	ХХ _Н	E8H	reserved	XXH ²⁾
C1H	reserved	XXH ²⁾	E9H	reserved	XXH ²⁾
C2H	reserved	XXH ²⁾	EAH	reserved	XXH ²⁾
СЗН	reserved	XXH ²⁾	EBH	reserved	XXH ²⁾
C4H	reserved	XXH ²⁾	ECH	reserved	XXH ²⁾
C5H	reserved	XXH ²)	EDH	reserved	
C6H	reserved		EEH	reserved	XXH ²⁾
C7H	reserved	XXH ²⁾	EFH	reserved	XXH ²⁾
		XXH ²⁾			XXH ²⁾

Table 1. Special Function Registers in Numeric Order of their Addresses	cont'd)	
	00110 01	

GMS90 Series

Address	Register	Contents after Reset	Address	Register	Contents after Reset
F0H F1H F2H F3H F4H F5H F6H F7H	B 1) reserved reserved reserved reserved reserved reserved	00H XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2)	F8H F9H FAH FBH FCH FDH FEH FFH	reserved reserved reserved reserved reserved reserved reserved	XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2) XXH 2)

Table 1. Special Function Registers in Numeric Order of their Addresses (cont'd)

1) Bit-addressable Special Function Register.

2) X means that the value is indeterminate and the location is reserved.

3) Address C9_H is configured as below.

GMS9XX51/52

GMS9XX54/56/58

C9 _H	reserved	XXXXXXX0B ²⁾	C9 _H	T2MOD	XXXXXX00B ²⁾

Block	Symbol	Name	Address	Contents after Reset
CPU	ACC	Accumulator	E0H 1)	00H
	B	B-Register	F0H ¹⁾	00H
	DPH	Data Pointer, High Byte	83H	00H
	DPL	Data Pointer, Low Byte	82H	00H
	PSW	Program Status Word Register	D0H ¹⁾	00H
	SP	Stack Pointer	81H	07H
Interrupt System	IE	Interrupt Enable Register	A8H ¹⁾	0X00000B ²⁾
	IP	Interrupt Priority Register	B8H ¹⁾	XX000000B ²⁾
Ports	P0	Port 0	80H ¹⁾	FFH
	P1	Port 1	90H ¹⁾	FFH
	P2	Port 2	A0H ¹⁾	FFH
	P3	Port 3	B0H ¹⁾	FFH
Serial Channels	PCON ³⁾	Power Control Register	87H	0XXX0000B ²⁾
	SBUF	Serial Channel Buffer Reg.	99H	XXH ²⁾
	SCON	Serial Channel 0 Control Reg.	98H ¹⁾	00H
Timer 0/ Timer 1	TCON	Timer 0/1 Control Register	88H ¹⁾	00H
	TH0	Timer 0, High Byte	8CH	00H
	TH1	Timer 1, High Byte	8DH	00H
	TL0	Timer 0, Low Byte	8AH	00H
	TL1	Timer 1, Low Byte	8BH	00H
	TMOD	Timer Mode Register	89H	00H
Timer 2	T2CON	Timer 2 Control Register	C8H ¹⁾	00H
	T2MOD	Timer 2 Mode Register	C9H	00H
	RC2H	Timer 2 Reload Capture Reg., High Byte	CBH	00H
	RC2L	Timer 2 Reload Capture Reg., Low Byte	CAH	00H
	TH2	Timer 2, High Byte	CDH	00H
	TL2	Timer 2, Low Byte	CCH	00H
	AUXR0 ⁴⁾	Aux. Register 0	8EH	XXXXXX0B ²⁾
Power Saving Modes	PCON 3)	Power Control Register	87H	0XXX0000B ²⁾

Table 2. Special Function Registers - Functional Blocks

1) Bit-addressable Special Function register

2) X means that the value is indeterminate and the location is reserved

3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks

4) The AUXR0 is in the GMS9XX54/56/58 only.

Address	Register	Bit 7	6	5	4	3	2	1	0
80H	P0								
81H	SP								
82H	DPL								
83H	DPH								
87H	PCON	SMOD	-	-	-	GF1	GF0	PDE	IDLE
88H	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89H	TMOD	GATE	C/T	M1	MT	GATE	C/T	M1	M0
8AH	TL0								
8BH	TL1								
8CH	TH0								
8DH	TH1								
8EH	AUXR0 [†]	-	-	-	-	-	-	-	A0 †
90H	P1								
98H	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99H	SBUF								
A0H	P2								
A8H	IE	EA	-	ET2	ES	ET1	EX1	ET0	EX0
B0H	P3								
B8H	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0

Table 3. Contents of SFRs, SFRs in Numeric Order

† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.

- : this bit location is reserved

Address	Register	Bit 7	6	5	4	3	2	1	0
C8H	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
C9H	T2MOD	-	-	-	-	-	-	T20E †	DCEN
CAH	RC2L								
СВН	RC2H								
ССН	TL2								
CDH	TH2								
D0H	PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
E0H	ACC								
F0H	В								

Table 3. Contents of SFRs, SFRs in Numeric Order (cont'd)

† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.

TIMER / COUNTER 0 AND 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:

Table 4. Timer/Counter 0 and 1 Operating Modes

Mode	Description		тм	OD		Input Clock		
Wode	Description	Gate	C/T	M1	MO	internal	external (Max.)	
0	8-bit timer/counter with a divide-by-32 prescaler	х	х	0	0	f _{OSC} ÷(12×32)	f _{OSC} ÷(24×32)	
1	16-bit timer/counter	Х	Х	0	1	f _{OSC} ÷12	f _{OSC} ÷24	
2	8-bit timer/counter with 8-bit auto-reload	х	х	1	0	f _{OSC} ÷12	f _{OSC} ÷24	
3	Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops	x	х	1	1	f _{OSC} ÷12	f _{OSC} ÷24	

In the "timer" function (C/ \overline{T} = "0") the register is incremented every machine cycle. Therefore the count rate is $f_{OSC}/12$.

In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is $f_{OSC}/24$. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements. Figure 2 illustrates the input clock logic.

Figure 2. Timer/Counter 0 and 1 Input Clock Logic

Oct. 2000 Ver 3.1a

TIMER 2

Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit $C/\overline{T2}$ (T2CON.1). It has three operating modes as shown in Table 5.

Mode		T2CON		T2MO D	T2CON	P1.1/	Remarks	Input	Clock
Mode	RCLKor TCLK	CP/RL2	TR2	DCEN	EXEN2	T2EX	Reindiks	internal	external (P1.0/T2)
16-bit Auto- Reload	0	0	1	0	0	Х	reload upon over- flow		
	0	0	1	0	1	\downarrow	reload trigger (fall- ing edge)	f _{OSC} ÷ 12	Max. f _{OSC} ÷24
	0	0	1	1	Х	0	Down counting		
	0	0	1	1	Х	1	Up counting		
16-bit Capture	0	1	1	х	0	х	16 bit Timer/ Coun- ter (only up-count-	_	Max.
	0	1	1	х	1	\downarrow	ing) capture TH2,TL2 \rightarrow RC2H,RC2L	f _{OSC} ÷ 12	f _{OSC} ÷ 24
Baud Rate Generator	1	Х	1	х	0	Х	no overflow interrupt request		Max.
	1	х	1	х	1	\downarrow	(TF2) extra external inter- rupt ("Timer 2")	f _{OSC} ÷ 12	f _{OSC} ÷ 24
Off	Х	Х	0	Х	Х	Х	Timer 2 stops	-	-

Table 5. Timer/Counter 2 Operating Modes

Note: $\downarrow = \frown$ falling edge

SERIAL INTERFACE (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.

Mode	SC	ON	Baudrate	Description		
WOde	SM0			Description		
0	0	0	f _{osc} 12	Serial data enters and exits through RxD. TxD outputs the shift clock. 8-bit are transmit- ted/received (LSB first)		
1	0	1	Timer 1/2 overflow rate	8-bit UART 10 bits are transmitted (through TxD) or received (RxD)		
2	1	0	$\frac{f_{OSC}}{32}$ or $\frac{f_{OSC}}{64}$	9-bit UART 11 bits are transmitted (TxD) or received (RxD)		
3	1	1	Timer 1/2 overflow rate	9-bit UART Like mode 2 except the variable baud rate		

Table 6. USART Operating Modes

Baud Rate derived from	Interface Mode	Baudrate		
Oppillator	0	$\frac{f_{OSC}}{12}$		
Oscillator	2	$\frac{2^{SMOD}}{64} \times f_{OSC}$		
Timer 1 (16-bit timer)	1,3	$\frac{2^{SMOD}}{32} \times (Timer \ 1 \ overflow)$		
(8-bit timer with 8-bit auto reload)	1,3	$\frac{2^{SMOD}}{32} \times \frac{f_{OSC}}{12 \times [256 - (TH1)]}$		
Timer 2	1,3	f _{OSC} 32×[65536-(RC2H, RC2L)]		

INTERRUPT SYSTEM

The GMS90 series provides 5 (4K bytes ROM version) or 6 (above 8K bytes ROM version) interrupt sources with two priority levels. Figure 3 gives a general overview of the interrupt sources and illustrates the request and control flags.

Figure 3. Interrupt Request Sources

Source (Request Flags)	Vectors	Vector Address
RESET	RESET	0000H
IEO	External interrupt 0	0003H
TF0	Timer 0 interrupt	000BH
IE1	External interrupt 1	0013H
TF1	Timer 1 interrupt	001BH
RI + TI	Serial port interrupt	0023H
TF2 + EXF2	Timer 2 interrupt	002BH

Table 8. Interrupt Sources and their Corresponding Interrupt Vectors

A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.

Table 9. Interrupt Priority-Within-Level

Interru	Priority	
External Interrupt 0	IE0	High
Timer 0 Interrupt	TF0	\downarrow
External Interrupt 1	IE1	\downarrow
Timer 1 Interrupt	TF1	\downarrow
Serial Channel	RI + TI	\downarrow
Timer 2 Interrupt	TF2 + EXF2	Low

Power Saving Modes

Two power down modes are available, the Idle Mode and Power Down Mode.

The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.

Mode	Entering Instruction Example	Leaving by	Remarks
Idle mode	ORL PCON, #01H	- Enabled interrupt - Hardware Reset	CPU is gated off CPU status registers maintain their data. Peripherals are active
Power-Down mode	ORL PCON, #02H	Hardware Reset	Oscillator is stopped, contents of on- chip RAM and SFR's are maintained (leaving Power Down Mode means redefinition of SFR contents).

In the Power Down mode of operation, V_{CC} can be reduced to minimize power consumption. It must be ensured, however, that V_{CC} is not reduced before the Power Down mode is invoked, and that V_{CC} is restored to its normal operating level, before the Power Down mode is terminated. The reset signal that terminates the Power Down mode also restarts the oscillator. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Ambient temperature under bias (T _A)	40 to + 85 °C
Storage temperature (T _{ST})	65 to + 150 °C
Voltage on V_{CC} pins with respect to ground (V_{SS})	0.5V to 6.5V
Voltage on any pin with respect to ground (V _{SS})	$\dots -0.5V$ to $V_{CC} + 0.5V$
Input current on any pin during overload condition	15mA to +15mA
Absolute sum of all input currents during overload condition	100mA
Power dissipation	1.5W

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions ($V_{IN} > V_{CC}$ or $V_{IN} < V_{SS}$) the Voltage on V_{CC} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Oct. 2000 Ver 3.1a

DC Characteristics

DC Characteristics for GMS90C31/32, GMS90C51/52/54/56/58

 $V_{CC}=5V + 10\%$, -15%; $V_{SS}=0V$; $T_A=0^{\circ}C$ to 70°C

Demonster	Symbol Limit Values		Values	11	Test Conditions	
Parameter	Symbol	Min.	Max.	Unit	Test Conditions	
Input low voltage (except EA, RESET)	VIL	-0.5	0.2V _{CC} - 0.1	V	-	
Input low voltage (\overline{EA})	V _{IL1}	-0.5	0.2V _{CC} - 0.3	V	-	
Input low voltage (RESET)	V _{IL2}	-0.5	0.2V _{CC} + 0.1	V	-	
Input high voltage (except XTAL1, EA, RESET)	V _{IH}	0.2V _{CC} + 0.9	V _{CC} + 0.5	V	-	
Input high voltage to XTAL1	V _{IH1}	0.7V _{CC}	V _{CC} + 0.5	V	-	
Input high voltage to EA, RESET	V _{IH2}	0.6V _{CC}	V _{CC} + 0.5	V	-	
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45	V	I _{OL} = 1.6mA ¹⁾	
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45	V	I _{OL} = 3.2mA ¹⁾	
Output high voltage (ports 1, 2, 3)	V _{OH}	2.4 0.9V _{CC}	-	V	I _{OH} = -80μA I _{OH} = -10μA	
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.4 0.9V _{CC}	-	V	I _{OH} = -800μA ²⁾ I _{OH} = -80μA ²⁾	
Logic 0 input current (ports 1, 2, 3)	١ _{١Ľ}	-10	-50	μA	V _{IN} = 0.45V	
Logical 1-to-0 transition current (ports 1, 2, 3)	ITL	-65	-650	μA	V _{IN} = 2.0V	
Input leakage current (port 0, EA)	Ι _{LI}	-	±1	μA	$0.45 < V_{\text{IN}} < V_{\text{CC}}$	
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C	
Power supply current:						
Active mode, 12MHz 3)	Icc	-	21	mA	V _{CC} = 5V ⁴⁾	
Idle mode, 12MHz ³⁾	Icc	- 4.8		mA	V _{CC} = 5V ⁵⁾	
Active mode, 24 MHz 3)	Icc			$V_{CC} = 5V^{4}$		
ldle mode, 24MHz ³⁾	Icc			V _{CC} = 5V ⁵⁾		
Active mode, 40 MHz 3)	Icc	10 -		V _{CC} = 5V ⁴⁾		
ldle mode, 40 MHz ³⁾	Icc			mA	V _{CC} = 5V ⁵⁾	
Power Down Mode ³⁾	I _{PD}	-	50	μA	V _{CC} = 5V ⁶⁾	

GMS90 Series

- 1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL} of ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.
- 2) Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the 0.9V_{CC} specification when the address lines are stabilizing.
- 3) I_{CC} Max at other frequencies is given by: active mode: I_{CC} = $1.27 \times f_{OSC} + 5.73$ idle mode: I_{CC} = $0.28 \times f_{OSC} + 1.45$ (except OTP devices) where f_{OSC} is the oscillator frequency in MHz. I_{CC} values are given in mA and measured at V_{CC} = 5V.
- 4) I_{CC} (active mode) is measured with: XTAL1 driven with t_{CLCH}, t_{CHCL} = 5ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 = N.C.; \overline{EA} = Port0 = RESET = V_{CC}; all other pins are disconnected. I_{CC} would be slightly higher if a crystal oscillator is used (appr. 1mA).
- 5) I_{CC} (Idle mode) is measured with all output pins disconnected and with all peripherals disabled; XTAL1 driven with t_{CLCH}, t_{CHCL} = 5ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} - 0.5V; XTAL2 = N.C.; RESET = \overline{EA} = V_{SS}; Port0 = V_{CC}; all other pins are disconnected;
- I_{PD} (Power Down Mode) is measured under following conditions: EA = Port0 = V_{CC}; RESET = V_{SS}; XTAL2 = N.C.; XTAL1 = V_{SS}; all other pins are disconnected.

DC Characteristics for GMS97C51/52/54/56/58 (H)

 $V_{CC}=5V + 10\%$, -15%; $V_{SS}=0V$; $T_A=0^{\circ}C$ to $70^{\circ}C$

Demonster	Querra la cal	Limit	Values	1111	Test Conditions	
Parameter	Symbol	Min.	Max.	Unit		
Input low voltage (except EA, RESET)	V _{IL}	-0.5 0.2V _{CC} - 0.1 V		-		
Input low voltage (EA)	V _{IL1}	-0.5	0.2V _{CC} - 0.3	V	-	
Input low voltage (RESET)	V _{IL2}	-0.5	0.2V _{CC} + 0.1	V	-	
Input high voltage (except XTAL1, EA, RESET)	VIH	0.2V _{CC} + 0.9	V _{CC} + 0.5	V	-	
Input high voltage to XTAL1	VIH1	0.7V _{CC}	V _{CC} + 0.5	V	-	
Input high voltage to EA, RESET	V _{IH2}	0.6V _{CC}	V _{CC} + 0.5	V	-	
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45	V	I _{OL} = 1.6mA ¹⁾	
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45	V	I _{OL} = 3.2mA ¹⁾	
Output high voltage (ports 1, 2, 3)	V _{OH}	2.4 0.9V _{CC}	-	V	I _{OH} = -80μΑ I _{OH} = -10μΑ	
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.4 0.9V _{CC}	-	v	I _{OH} = -800µA ²⁾ I _{OH} = -80µA ²⁾	
Logic 0 input current (ports 1, 2, 3)	Ι _{ΙL}	-10	-50	μA	V _{IN} = 0.45V	
Logical 1-to-0 transition current (ports 1, 2, 3)	I_{TL}	-65	-650	μA	V _{IN} = 2.0V	
Input leakage current (port 0, EA)	ILI	-	±1	μA	$0.45 < V_{IN} < V_{CC}$	
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C	
Power supply current:						
Active mode, 12MHz 3)	I _{CC}	- 21 mA		mA	V _{CC} = 5V ⁴⁾	
ldle mode, 12MHz ³⁾	ICC	-	4.8	mA	V _{CC} = 5V ⁵⁾	
Active mode, 24 MHz 3)	Icc	-	36.2	mA	V _{CC} = 5V ⁴⁾	
ldle mode, 24MHz ³⁾	Icc	-	8.2	mA	V _{CC} = 5V ⁵⁾	
Active mode, 33 MHz 3)	Icc	-	45	mA	V _{CC} = 5V ⁴⁾	
ldle mode, 33 MHz ³⁾	Icc	-	10	mA	V _{CC} = 5V ⁵⁾	
Power Down Mode ³⁾	I _{PD}	- 50		μA	V _{CC} = 5V ⁶⁾	

GMS90 Series

DC Characteristics for GMS90L31/32, GMS90L51/52/54/56/58

 V_{CC} = 3.3V + 0.3V, -0.6V; V_{SS} =0V; T_A = 0°C to 70°C

Deveneeter	Cumhal	Limit	Values	l lucit	Test Conditions	
Parameter	Symbol	Min.	Max.	– Unit		
Input low voltage	V _{IL}	-0.5	0.8	V	-	
Input high voltage	VIH	2.0	V _{CC} + 0.5	V	-	
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45 0.30	V	I _{OL} = 1.6mA ¹⁾ I _{OL} = 100μA ¹⁾	
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45 0.30	V	I _{OL} = 3.2mA ¹⁾ I _{OL} = 200μA ¹⁾	
Output high voltage (ports 1, 2, 3)	V _{OH}	2.0 0.9V _{CC}	-	V	I _{OH} = -20μΑ I _{OH} = -10μΑ	
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.0 0.9V _{CC}	-	V	I _{OH} = -800μA ²⁾ I _{OH} = -80μA ²⁾	
Logic 0 input current (ports 1, 2, 3)	Ι _{ΙL}	-1	-50	μA	V _{IN} = 0.45V	
Logical 1-to-0 transition current (ports 1, 2, 3)	I _{TL}	-25	-250	μA	V _{IN} = 2.0V	
Input leakage current (port 0, EA)	ILI	-	±1	μA	$0.45 < V_{IN} < V_{CC}$	
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C	
Power supply current:						
Active mode, 16 MHz ³⁾	I _{CC}	-	- 15 mA V _C		V _{CC} = 3.6V ⁴⁾	
Idle mode, 16MHz ³⁾	Icc	-	5	mA	V _{CC} = 2.6V ⁵⁾	
Power Down Mode ³⁾	I _{PD}	-	10	μA	V _{CC} =2~ 5.5V ⁶⁾	

DC Characteristics for GMS97L51/52/54/56/58

 V_{CC} = 3.3V + 0.3V, -0.6V; V_{SS} =0V; T_A = 0°C to 70°C

Demonster	0h.e.l	Limit	Values		Test Conditions	
Parameter	Symbol	Min.	max.	– Unit		
Input low voltage	V _{IL}	-0.5	0.8	V	-	
Input high voltage	VIH	2.0	V _{CC} + 0.5	V	-	
Output low voltage (ports 1, 2, 3)	V _{OL}	-	0.45 0.30	V	I _{OL} = 1.6mA ¹⁾ I _{OL} = 100μA ¹⁾	
Output low voltage (port 0, ALE, PSEN)	V _{OL1}	-	0.45 0.30	V	I _{OL} = 3.2mA ¹⁾ I _{OL} = 200μA ¹⁾	
Output high voltage (ports 1, 2, 3)	Vон	2.0 0.9V _{CC}	-	V	I _{OH} = -20μΑ I _{OH} = -10μΑ	
Output high voltage (port 0 in external bus mode, ALE, PSEN)	V _{OH1}	2.0 0.9V _{CC}	-	V	I _{OH} = -800μA ²⁾ I _{OH} = -80μA ²⁾	
Logic 0 input current (ports 1, 2, 3)	Ι _{ΙL}	-1	-50	μA	V _{IN} = 0.45V	
Logical 1-to-0 transition current (ports 1, 2, 3)	I _{TL}	-25	-250	μA	V _{IN} = 2.0V	
Input leakage current (port 0, EA)	ILI	-	±1	μA	$0.45 < V_{IN} < V_{CC}$	
Pin capacitance	C _{IO}	-	10	pF	f _C = 1MHz T _A = 25°C	
Power supply current:						
Active mode, 12MHz ³⁾	I _{CC}	- 15 mA \		V _{CC} = 3.6V ⁴)		
ldle mode, 12MHz ³⁾	I _{CC}	-	- 5 mA V _{CC} = 2		V _{CC} = 2.6V ⁵⁾	
Power Down Mode ³⁾	I _{PD}	-	10	μA	V _{CC} =2~ 5.5V ⁶⁾	

AC Characteristics

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a 't' (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address	T: Time
C: Clock	V: Valid
D: Input Data	W: WR signal
H: Logic level HIGH	X: No longer a valid logic level
I: Instruction (program memory contents)	Z: Float
L: Logic level LOW, or ALE	
P: PSEN	For example,
Q: <u>Ou</u> tput Data	t _{AVLL} = Time from Address Valid to ALE Low
R: RD signal	$t_{LLPL} = Time from ALE Low to PSEN Low$

AC Characteristics for GMS90 series (12MHz version)

V _{CC} = 5V :	V_{CC} = 5V + 10%, - 15%; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and PSEN outputs = 100pF; C_L for all other outputs = 80pF)
V _{CC} = 3.3V :	V_{CC} = 3.3V + 0.3V, - 0.6V; V_{SS} = 0V; T_A = 0°C to 70°C (C _L for port 0. ALE and PSEN outputs = 50pF; C _L for all other outputs = 50pF)
Variable clock :	Vcc = 5V : $1/t_{CLCL}$ = 3.5 MHz to 12 MHz Vcc = 3.3V : $1/t_{CLCL}$ = 1 MHz to 12 MHz

External Program Memory Characteristics

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 12MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	127	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	43	-	t _{CLCL} -40	-	ns
Address hold after ALE	t _{LLAX}	30	-	t _{CLCL} -53	-	ns
ALE low to valid instruction in	t _{LLIV}	-	233	-	4t _{CLCL} -100	ns
ALE to PSEN	t _{LLPL}	58	-	t _{CLCL} -25	-	ns
PSEN pulse width	t _{PLPH}	215	-	3t _{CLCL} -35	-	ns
PSEN to valid instruction in	t _{PLIV}	-	150	-	3t _{CLCL} -100	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	63	-	t _{CLCL} -20	ns
Address valid after PSEN	t _{PXAV} †	75	-	t _{CLCL} -8	-	ns

Parameter	Symbol	12 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 12MHz		Unit
		Min.	Max.	Min.	Max.	
Address to valid instruction in	t _{AVIV}	-	302	-	5t _{CLCL} -115	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

[†] Interfacing the GMS90 series to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
AC Characteristics for GMS90 series (12MHz)

External Data Memory Characteristics

Parameter	Symbol	12 MHz 0	Oscillator	Variable 1/t _{CLCL} = 3.	Unit	
		Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	400	-	6t _{CLCL} -100	-	ns
WR pulse width	t _{WLWH}	400	-	6t _{CLCL} -100	-	ns
Address hold after ALE	t _{LLAX2}	53	-	t _{CLCL} -30	-	ns
\overline{RD} to valid data in	t _{RLDV}	-	252	-	5t _{CLCL} -165	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	97	-	2t _{CLCL} -70	ns
ALE to valid data in	t _{LLDV}	-	517	-	8t _{CLCL} -150	ns
Address to valid data in	t _{AVDV}	-	585	-	9t _{CLCL} -165	ns
ALE to \overline{WR} or \overline{RD}	tLLWL	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	203	-	4t _{CLCL} -130	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	43	123	t _{CLCL} -40	t _{CLCL} +40	ns
Data valid to WR transition	t _{QVWX}	33	-	t _{CLCL} -50	-	ns
Data setup before WR	t _{QVWH}	433	-	7t _{CLCL} -150	-	ns
Data hold after WR	t _{WHQX}	33	-	t _{CLCL} -50	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

Advance Information (12MHz)

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period (V_{CC} =5V) Oscillator period (V_{CC} =3.3V)	t _{CLCL} t _{CLCL}	83.3 83.3	285.7 1	ns
High time	t _{CHCX}	20	tCLCL - tCLCX	ns
Low time	t _{CLCX}	20	t _{CLCL} - t _{CHCX}	ns
Rise time	t _{CLCH}	-	20	ns
Fall time	t CHCL	-	20	ns

AC Characteristics for GMS90 series (16MHz version)

 $\begin{array}{l} V_{CC} = 3.3V + 0.3V, -0.6V; \ V_{SS} = 0V; \ \ T_A = 0^\circ C \ \ to \ 70^\circ C \\ (C_L \ for \ port \ 0. \ ALE \ and \ \overline{PSEN} \ outputs = 50 pF; \ C_L \ for \ all \ other \ outputs = 50 pF) \end{array}$

Parameter	Symbol	16 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 16MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	85	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	23	-	t _{CLCL} -40	-	ns
Address hold after ALE	t _{LLAX}	23	-	t _{CLCL} -40	-	ns
ALE low to valid instruction in	t _{LLIV}	-	150	-	4t _{CLCL} -100	ns
ALE to PSEN	t _{LLPL}	38	-	t _{CLCL} -25	-	ns
PSEN pulse width	t _{PLPH}	153	-	3t _{CLCL} -35	-	ns
PSEN to valid instruction in	t _{PLIV}	-	88	-	3t _{CLCL} -100	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	43	-	t _{CLCL} -20	ns
Address valid after PSEN	t _{PXAV} †	55	-	t _{CLCL} -8	-	ns
Address to valid instruction in	t _{AVIV}	-	198	-	5t _{CLCL} -115	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for GMS90 series (16MHz)

External Data Memory Characteristics

Parameter	Symbol	16 MHz C	Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 16MHz		
		Min.	Max.	Min.	Max.		
RD pulse width	t _{RLRH}	275	-	6t _{CLCL} -100	-	ns	
WR pulse width	t _{WLWH}	275	-	6t _{CLCL} -100	-	ns	
Address hold after ALE	t _{LLAX2}	23	-	t _{CLCL} -40	-	ns	
RD to valid data in	t _{RLDV}	-	183	-	5t _{CLCL} -130	ns	
Data hold after RD	t _{RHDX}	0	-	0	-	ns	
Data float after RD	t _{RHDZ}	-	75	-	2t _{CLCL} -50	ns	
ALE to valid data in	t _{LLDV}	-	350	-	8t _{CLCL} -150	ns	
Address to valid data in	t _{AVDV}	-	398	-	9t _{CLCL} -165	ns	
ALE to \overline{WR} or \overline{RD}	t _{LLWL}	138	238	3t _{CLCL} -50	3t _{CLCL} +50	ns	
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	120	-	4t _{CLCL} -130	-	ns	
$\overline{\text{WR}}$ or $\overline{\text{RD}}$ high to ALE high	t _{WHLH}	28	97	t _{CLCL} -35	t _{CLCL} +35	ns	
Data valid to WR transition	t _{QVWX}	13	-	t _{CLCL} -50	-	ns	
Data setup before WR	t _{QVWH}	288	-	7t _{CLCL} -150	-	ns	
Data hold after WR	t _{WHQX}	23	-	t _{CLCL} -40	-	ns	
Address float after RD	t _{RLAZ}	-	0	-	0	ns	

Advance Information (16MHz)

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	62.5	285.7	ns
High time	t _{CHCX}	17	t _{CLCL} - t _{CLCX}	ns
Low time	tCLCX	17	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	17	ns
Fall time	t _{CHCL}	-	17	ns

AC Characteristics for GMS90 series (24MHz version)

 V_{CC} = 5V + 10%, -15%; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and \overline{PSEN} outputs = 100pF; C_L for all other outputs = 80pF)

Parameter	Symbol	24 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 24MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	t _{LHLL}	43	-	2t _{CLCL} -40	-	ns
Address setup to ALE	t _{AVLL}	17	-	t _{CLCL} -25	-	ns
Address hold after ALE	t _{LLAX}	17	-	t _{CLCL} -25	-	ns
ALE low to valid instruction in	t _{LLIV}	-	80	-	4t _{CLCL} -87	ns
ALE to PSEN	t _{LLPL}	22	-	t _{CLCL} -20	-	ns
PSEN pulse width	t _{PLPH}	95	-	3t _{CLCL} -30	-	ns
PSEN to valid instruction in	t _{PLIV}	-	60	-	3t _{CLCL} -65	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	32	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	37	-	t _{CLCL} -5	-	ns
Address to valid instruction in	t _{AVIV}	-	148	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for GMS90 series (24MHz)

External Data Memory Characteristics

Parameter	Symbol	24 MHz C	Oscillator	Variable 1/t _{CLCL} = 3.	Unit	
	-	Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	180	-	6t _{CLCL} -70	-	ns
WR pulse width	t _{WLWH}	180	-	6t _{CLCL} -70	-	ns
Address hold after ALE	t _{LLAX2}	15	-	t _{CLCL} -27	-	ns
\overline{RD} to valid data in	t _{RLDV}	-	118	-	5t _{CLCL} -90	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	63	-	2t _{CLCL} -20	ns
ALE to valid data in	t _{LLDV}	-	200	-	8t _{CLCL} -133	ns
Address to valid data in	t _{AVDV}	-	220	-	9t _{CLCL} -155	ns
ALE to \overline{WR} or \overline{RD}	t _{LLWL}	75	175	3t _{CLCL} -50	3t _{CLCL} +50	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	67	-	4t _{CLCL} -97	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	17	67	t _{CLCL} -25	t _{CLCL} +25	ns
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -37	-	ns
Data setup before WR	t _{QVWH}	170	-	7t _{CLCL} -122	-	ns
Data hold after WR	t _{WHQX}	15	-	t _{CLCL} -27	-	ns
Address float after RD	t _{RLAZ}	-	0	-	0	ns

Advance Information (24MHz)

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	41.7	285.7	ns
High time	t _{CHCX}	12	tCLCL - tCLCX	ns
Low time	tCLCX	12	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	12	ns
Fall time	t _{CHCL}	-	12	ns

AC Characteristics for GMS90 series (33MHz version)

 V_{CC} = 5V + 10%, -15%; V_{SS} = 0V; T_A = 0°C to 70°C (C_L for port 0. ALE and \overline{PSEN} outputs = 100pF; C_L for all other outputs = 80pF)

Parameter	Symbol	33 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 33MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	40	-	2t _{CLCL} -20	-	ns
Address setup to ALE	t _{AVLL}	10	-	t _{CLCL} -20	-	ns
Address hold after ALE	t _{LLAX}	10	-	t _{CLCL} -20	-	ns
ALE low to valid instruction in	t _{LLIV}	-	56	-	4t _{CLCL} -65	ns
ALE to PSEN	t _{LLPL}	15	-	t _{CLCL} -15	-	ns
PSEN pulse width	t _{PLPH}	80	-	3t _{CLCL} -20	-	ns
PSEN to valid instruction in	t _{PLIV}	-	35	-	3t _{CLCL} -55	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	20	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	25	-	t _{CLCL} -5	-	ns
Address to valid instruction in	t _{AVIV}	-	91	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	0	-	0	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for GMS90 series (33MHz)

External Data Memory Characteristics

Parameter	Symbol	33 MHz C	Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 33MHz		
		Min.	Max.	Min.	Max.		
RD pulse width	t _{RLRH}	132	-	6t _{CLCL} -50	-	ns	
WR pulse width	t _{WLWH}	132	-	6t _{CLCL} -50	-	ns	
Address hold after ALE	t _{LLAX2}	10	-	t _{CLCL} -20	-	ns	
RD to valid data in	t _{RLDV}	-	81	-	5t _{CLCL} -70	ns	
Data hold after RD	t _{RHDX}	0	-	0	-	ns	
Data float after RD	t _{RHDZ}	-	46	-	2t _{CLCL} -15	ns	
ALE to valid data in	t _{LLDV}	-	153	-	8t _{CLCL} -90	ns	
Address to valid data in	t _{AVDV}	-	183	-	9t _{CLCL} -90	ns	
ALE to WR or RD	tLLWL	71	111	3t _{CLCL} -20	3t _{CLCL} +20	ns	
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	66	-	4t _{CLCL} -55	-	ns	
$\overline{\text{WR}}$ or $\overline{\text{RD}}$ high to ALE high	t _{WHLH}	10	40	t _{CLCL} -20	t _{CLCL} +20	ns	
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -25	-	ns	
Data setup before WR	t _{QVWH}	142	-	7t _{CLCL} -70	-	ns	
Data hold after WR	t _{WHQX}	10	-	t _{CLCL} -20	-	ns	
Address float after RD	t _{RLAZ}	-	0	-	0	ns	

Advance Information (33MHz)

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	30.3	285.7	ns
High time	t _{CHCX}	11.5	tCLCL - tCLCX	ns
Low time	tCLCX	11.5	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	5	ns
Fall time	t _{CHCL}	-	5	ns

AC Characteristics for GMS90 series (40MHz version)

$$\label{eq:VCC} \begin{split} V_{CC} = 5V + 10\%, -15\%; \ V_{SS} = 0V; \ \ T_A = 0^\circ C \ to \ 70^\circ C \\ (C_L \ for \ port \ 0. \ ALE \ and \ \overline{PSEN} \ outputs = 100 pF; \ C_L \ for \ all \ other \ outputs = 80 pF) \end{split}$$

Parameter	Symbol	40 MHz Oscillator		Variable Oscillator 1/t _{CLCL} = 3.5 to 40MHz		Unit
		Min.	Max.	Min.	Max.	
ALE pulse width	tLHLL	35	-	2t _{CLCL} -15	-	ns
Address setup to ALE	t _{AVLL}	10	-	t _{CLCL} –15	-	ns
Address hold after ALE	t _{LLAX}	10	-	t _{CLCL} -15	-	ns
ALE low to valid instruction in	t _{LLIV}	-	55	-	4t _{CLCL} -45	ns
ALE to PSEN	t _{LLPL}	10	-	t _{CLCL} –15	-	ns
PSEN pulse width	t _{PLPH}	60	-	3t _{CLCL} -15	-	ns
PSEN to valid instruction in	t _{PLIV}	-	25	-	3t _{CLCL} –50	ns
Input instruction hold after PSEN	t _{PXIX}	0	-	0	-	ns
Input instruction float after PSEN	t _{PXIZ} †	-	15	-	t _{CLCL} -10	ns
Address valid after PSEN	t _{PXAV} †	20	-	t _{CLCL} –5	-	ns
Address to valid instruction in	t _{AVIV}	-	65	-	5t _{CLCL} -60	ns
Address float to PSEN	t _{AZPL}	5	-	5	-	ns

External Program Memory Characteristics

[†] Interfacing the GMS90 series to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.

AC Characteristics for GMS90 series (40MHz)

External Data Memory Characteristics

Parameter	Symbol	at 40 MHz Clock		Variabl 1/t _{CLCL} = 3.	Unit	
		Min.	Max.	Min.	Max.	
RD pulse width	t _{RLRH}	120	-	6t _{CLCL} -30	-	ns
WR pulse width	t _{WLWH}	120	-	6t _{CLCL} -30	-	ns
Address hold after ALE	t _{LLAX2}	10	-	t _{CLCL} -15	-	ns
\overline{RD} to valid data in	t _{RLDV}	-	75	-	5t _{CLCL} -50	ns
Data hold after RD	t _{RHDX}	0	-	0	-	ns
Data float after RD	t _{RHDZ}	-	38	-	2t _{CLCL} -12	ns
ALE to valid data in	t _{LLDV}	-	150	-	8t _{CLCL} -50	ns
Address to valid data in	t _{AVDV}	-	150	-	9t _{CLCL} -75	ns
ALE to \overline{WR} or \overline{RD}	tLLWL	60	90	3t _{CLCL} -15	3t _{CLCL} +15	ns
Address valid to \overline{WR} or \overline{RD}	t _{AVWL}	70	-	4t _{CLCL} -30	-	ns
\overline{WR} or \overline{RD} high to ALE high	t _{WHLH}	10	40	t _{CLCL} -15	t _{CLCL} +15	ns
Data valid to WR transition	t _{QVWX}	5	-	t _{CLCL} -20	-	ns
Data setup before WR	t _{QVWH}	125	-	7t _{CLCL} -50	-	ns
Data hold after WR	t _{WHQX}	5	-	t _{CLCL} -20	-	ns
Address float after \overline{RD}	t _{RLAZ}	-	0	-	0	ns

Advance Information (40MHz)

Parameter	Symbol	Variable ((Freq. = 3.5	Unit	
		Min.	Max.	
Oscillator period	tCLCL	25	285.7	ns
High time	t _{CHCX}	10	tCLCL - tCLCX	ns
Low time	tCLCX	10	tCLCL - tCHCX	ns
Rise time	t _{CLCH}	-	10	ns
Fall time	t _{CHCL}	-	10	ns

Figure 4. External Program Memory Read Cycle

Figure 5. External Data Memory Read Cycle

Figure 6. External Data Memory Write Cycle

Oct. 2000 Ver 3.1a

Figure 7. AC Testing: Input, Output Waveforms

Figure 8. Float Waveforms

Figure 9. External Clock Cycle

OSCILLATOR CIRCUIT

Figure 10. Recommended Oscillator Circuits

Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

OTP ROM Verification Characteristics

ROM Verification Mode 1

Parameter	Symbol	Limit	Unit	
Parameter	Symbol	Min.	Max.	Unit
Address to valid data	t _{AVQV}	-	48t _{CLCL}	
ENABLE to valid data	tCLCL	-	48t _{CLCL}	ns
Data float after ENABLE	t _{EHQZ}	0	48t _{CLCL}	
Oscillator frequency	1/t _{CLCL}	4	6	MHz

Figure 11. OTP ROM Verification Mode 1

EPROM CHARACTERISTICS

The GMS97C5X, 97L5X are programmed by using a modified Quick-Pulse ProgrammingTM algorithm. It differs from older methods in the value used for V_{PP} (programming supply voltage) and in the width and number of the ALE/PROG pulses. The GMS97C5X, 97L5X contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as an manufactured by HME. Table 11 shows the logic levels for reading the signature byte, and for programming the program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figure 12 and Figure 13. Figure 14 show the circuit configuration for normal program memory verification.

Reading the Signature Bytes :

The GMS97X51/52 signature bytes in locations $030_{\rm H}$ and $031_{\rm H}$, the GMS97X54/56/58 signature bytes in locations $05E_{\rm H}$ and $07C_{\rm H}$. To read these bytes follow the procedure for EPROM verify, except that P3.6 and P3.7 need to be pulled to a logic low.

Device	Location	Contents	Remarks
GMS97X51	30 _Н	Е0 _Н	Manufacturer ID
	31 _Н	73 _Н	Device ID
GMS97X52	30 _Н	Е0 _Н	Manufacturer ID
	31 _Н	71 _Н	Device ID
GMS97X54	5Е _Н	Е0 _Н	Manufacturer ID
	7С _Н	54 _Н	Device ID
GMS97X56	5Е _Н	Е0 _Н	Manufacturer ID
	7С _Н	56 _Н	Device ID
GMS97X58	5Е _Н	Е0 _Н	Manufacturer ID
	7С _Н	58 _Н	Device ID

The values are:

Quick-pulse programming

The setup for microcontroller quick-pulse programming is shown in Figure 13. Note that the GMS97C5X, 97L5X is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.

The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 12. The code byte to be programmed into that location is applied to port 0, RST, <u>PSEN</u> and pins of port 2 and 3 in Table 11 are held at the "Program Code Data" levels indicated in Table 11. The ALE/PROG is pulsed low 25 times(10 times for 97X54/56/58) as shown Figure 13.

To program the encryption table, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence for addresses 0 through $1F_H(3F_H \text{ for } 97X54/56/58)$, using the "Program Encryption Table" levels. Do not forget that after the encryption table is programmed, verification cycles will produce only encrypted data.

To program the security bits, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence using the "Pgm Security Bit" levels after one security bit is programmed, further programming of the code memory and

encryption table is disabled. However, the other security bit can still be programmed. Note that the \overline{EA}/V_{PP} pin must not be allowed to go above the maximum specified V_{PP} level for any amount of time. Even a narrow glitch above that voltage can cause permanent damage to the device. The V_{PP} source should be well regulated and free glitches and overshoot.

Figure 12. Programming Configuration

Program Verification

If security bit 2 has not been programmed, the on-chip program memory can be read out for program verification. The address of the program memory location to be read is applied to ports 1 and 2 as shown in Figure 15. The other pins are held at the "Verify Code Data" levels indicated in Table 11. The contents of the address location will be emitted on port 0 for this operation. If the encryption table has been programmed, the data presented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out.

Program Memory Lock Bits

The two-level Program Lock system consists of 2 Lock bits and a 32-byte (64-byte for GMS97X54/ 56/58) Encryption Array which are used to protect the program memory against software piracy.

Encryption Array:

Within the EPROM array are 32 bytes (64 bytes for GMS97X54/56/58) of Encryption Array that $\overline{U: unprogrammed, P: programmed}$ are initially unprogrammed (all 1s). Every time that a byte is addressed during a verify, address

N	Mode	LB1	LB2	Protection Type		
	1	U	U	No program lock features		
	2	Ρ	U	Further programming of the EPROM is disabled		
	3	Ρ	Ρ	Same as mode 2, also verify is disabled		

Lock Bit Protection Modes

lines are used to select a byte of the Encryption array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte.

The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form, It is recommended that whenever the Encryption Array is used, at least one of the Lock Bits be programmed as well.

Program / Verify algorithms

Any algorithm in agreement with the conditions listed in Table 11, and which satisfies the timing specifications is suitable.

MODE	RST	PSEN	ALE/ PROG	EA/ V _{PP}	P2.7	P2.6	P3.7	P3.6
Read Signature	1	0	1	1	0	0	0	0
Program Code Data	1	0	0	V _{PP}	1	0	1	1
Verify Code Data	1	0	1	1	0	0	1	1
Program encryption table	1	0	0	V _{PP}	1	0	1	0
Program security bit 1	1	0	0	V _{PP}	1	1	1	1
Program security bit 2	1	0	0	V _{PP}	1	1	0	0

Table 11. EPROM programming modes

Notes:

1. "0" = Valid low for that pin, "1" = valid high for that pin.

2. V_{PP} = 12.75V ± 0.25V

3. V_{CC} = 5V ± 10% during programming and verification.

4. ALE/PROG receives 25 (10 for GMS97X54/56/58) programming pulses while VPP is held at 12.75V. Each programming pulse is low for 100 μ s (± 10 μ s) and high for a minimum of 10 μ s.

Figure 13. PROG Waveform

Figure 14. Program Verification

EPROM Programming and Verification Characteristics

 $T_A=21^{\circ}C$ to 27°C, $V_{CC}=5V + 10\%, -15\%$; $V_{SS}=0V$;

Denemation	Or work of	Limit	Limit Values		
Parameter	Symbol	Min.	Max.	Unit	
Programming supply voltage	V _{PP}	12.5	13.0	V	
Programming supply current	IPP	-	50	mA	
Oscillator frequency	1/t _{CLCL}	4	6	MHz	
Address setup to PROG low	t _{AVGL}	48t _{CLCL}	-	-	
Address hold after PROG	tGHAX	48t _{CLCL}	-	-	
Data setup to PROG	tDVGL	48t _{CLCL}	-	-	
Data hold after PROG	tGHDX	48t _{CLCL}	-	-	
P2.7 (ENABLE) high to V _{PP}	tEHSH	48t _{CLCL}	-	-	
V _{PP} setup to PROG	tSHGL	10	-	μs	
V _{PP} hold after PROG	tGHSL	10	-	μs	
PROG width	tGLGL	90	110	μs	
Address to data valid	t _{AVQV}	-	48t _{CLCL}	-	
ENABLE low to data valid	t _{ELQV}	-	48t _{CLCL}	-	
Data float after ENABLE	tehqz	0	48t _{CLCL}	-	
PROG high to PROG low	tGHGL	10	-	μs	

Figure 15. EPROM Programming and Verification

Oct. 2000 Ver 3.1a

Plastic Package P-LCC-44

(Plastic Leaded Chip-Carrier)

Plastic Package P-DIP-40

(Plastic Dual in-Line Package)

Plastic Package P-MPQF-44

(Plastic Metric Quad Flat Package)

		Date		Quantity	Hynix Confirmation
Customer Sample	YYYY	MM •	DD •	pcs	
Risk Order	YYYY	MM •	DD •	pcs	

5. ROM Code Verification

This box is written after "5.Verification".

			1
	YYYY	MM	DD
Approval Date:			
		•	•
I agree with your verifi make mask set.	cation data	and confir	m you to
Tel:	Fax:		
Name &			
Signature:			
Signature.			
		_	_
Hynix	semi	icono	ductor

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.