LY330ALH

MEMS motion sensor: high performance ±300 dps analog yaw-rate gyroscope

Features

- 2.7 V to 3.6 V single-supply operation
- Wide operating temperature range (-40 °C to +85 °C)
- High stability over temperature
- Analog absolute angular-rate outputs
- Integrated low-pass filters
- Low power consumption
- Sleep mode
- Embedded power-down
- Embedded self-test
- High shock and vibration survivability
- ECOPACK[®] RoHS and "Green" compliant

Applications

- Pointing devices, remote and game controllers
- Motion control with user interface
- GPS navigation systems
- Industrial and robotics

Description

The LY330ALH is a high performance low-power single-axis micro-machined gyroscope capable of measuring angular rate along the yaw axis.

It provides excellent temperature stability and high resolution over extended operating temperature range (-40 $^{\circ}$ C to +85 $^{\circ}$ C).

The LY330ALH has a full scale of \pm 300 dps and is capable of detecting rates with a -3 dB bandwidth up to 140 Hz.

The device includes a sensing element composed of a single driving mass, kept in continuous oscillation and capable of reacting, based on the Coriolis principle, when an angular rate is applied.

A CMOS IC provides the measured angular rate to the external world through an analog output voltage, allowing high levels of integration and production trimming to better match sensing element characteristics.

ST's family of gyroscopes leverages on the mature and robust manufacturing process already used for the production of micro-machined accelerometers.

ST is already in the field with several hundred million sensors which have received excellent acceptance from the market in terms of quality, reliability and performance.

The LY330ALH is available in a plastic land grid array (LGA) package, which ST successfully pioneered for accelerometers. Today ST has the widest manufacturing capability and strongest expertise in the world for production of sensors in plastic LGA packages.

Order code	Temperature range (°C)	Package	Packing
LY330ALH	-40 to +85	LGA-10 (3x5x1)	Tray
LY330ALHTR	-40 to +85	LGA-10 (3x5x1)	Tape and reel

Table 1: Device summary

Contents

1 Block diagram	5
2 Pin description	6
3 Mechanical and electrical characteristics	7
3.1 Mechanical characteristics	7
3.2 Electrical characteristics	
3.3 Absolute maximum ratings	
4 Terminology	10
4.1 Sensitivity	
4.2 Zero-rate level	10
4.3 Self-test	10
4.4 Sleep mode, self-test and power-down	10
5 Application hints	11
5.1 Output response vs. rotation	
5.2 Soldering information	
6 Package information	13
6.1 LGA-10 package mechanical data	
7 Revision history	

List of tables

Table 1. Device summary	1
Table 2. Pin description	
Table 3. Mechanical characteristics @ Vdd = 3 V, T = 25 °C unless otherwise noted	
Table 4. Electrical characteristics @ Vdd =3 V, T=25 °C unless otherwise noted	8
Table 5. Absolute maximum ratings	8
Table 6. Sleep mode, self-test and power-down mode configuration	10
Table 7. LGA-10 (3x5x1 mm) package dimensions	13
Table 8. Document revision history	15

List of figures

Figure 1. Block diagram	11
Figure 2. Pin connection	
Figure 3. Electrical connections and external component values	
Figure 4. Steady state position	12
Figure 5. Output response vs. rotation	
Figure 6. LGA-10 (3x5x1 mm) mechanical data	

1 Block diagram

Figure 1: Block diagram

2 Pin description

Figure 2: Pin connection

Table 2: Pin description

Pin #	Pin name	Analog function
1	Vdd	Power supply
2	ST	Self-test (see "Sleep mode, self test and power-down mode configuration" table)
3	VCONT	PLL filter connection
4	GND	0 V supply voltage
5	Res	Leave unconnected or connect to Vdd
6	OUTZ	Z axis output voltage
7	Vref	Reference voltage
8	SLEEP/PD	Sleep mode / power-down mode (see "Sleep mode, self test and power-down mode configuration" table)
9	Vdd	Power supply
10	Res	Leave unconnected or connect to Vdd

3 Mechanical and electrical characteristics

3.1 Mechanical characteristics

Table 3: Mechanical characteristics @ Vdd = 3 V, T = 25 °C unless otherwise noted

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
FS	Measurement range			±300		dps
So	Sensitivity ⁽²⁾			3.752		mV/dps
SoDr	Sensitivity change vs. temperature	Delta from 25°C		0.01		%/°C
Voff	Zero-rate level ⁽³⁾			1.5		V
OffDr	Zero-rate level change vs. temperature	Delta from 25°C		0.02		dps/°C
NL	Non linearity	Best fit straight line		±1		% FS
BW	Bandwidth ⁽³⁾			140		Hz
Vst	Self-test output change			400 ⁽⁴⁾		mV
Rn	Rate noise density			0.014		dps / √Hz
Тор	Operating temperature range		-40		85	°C

⁽¹⁾ Typical specifications are not guaranteed.

⁽²⁾ Sensitivity and zero-rate level are not ratiometric to supply voltage.

⁽³⁾ The product is capable of measuring angular rates extending from DC to the selected BW.

⁽⁴⁾Self test typical absolute value.

👉 Note:

The product is factory calibrated at 3 V. The operational power supply range is specified in the Electrical characteristics table.

DocID16568 Rev 2

3.2 Electrical characteristics

Table 4: Electrical characteristics @ Vdd =3 V, T=25 °C unless otherwise noted

Symbol	Parameter	Test condition	Min.	Тур. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		2.7	3	3.6	V
ldd	Supply current			4.2		mA
IddSI	Supply current sleep mode			2.2		mA
lddPdn	Supply current in power-down mode			5		μA
Vst	Self-test input	Logic 0 level	0		0.2*Vdd	V
		Logic 1 level	0.8*Vdd		Vdd	
Vpd	Power-down input	Logic 0 level	0		0.2*Vdd	V
		Logic 1 level	0.8*Vdd		Vdd	
Тор	Operating temperature range		-40		+85	°C

⁽¹⁾Typical specifications are not guaranteed

The product is factory calibrated at 3 V.

3.3 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table	5: Absolute	maximum	ratings
-------	-------------	---------	---------

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 6	V
Vin	Input voltage on any control pin (Sleep/PD, ST)	-0.3 to Vdd +0.3	V
A	Acceleration	3000 for 0.5 ms	g
		10000 for 0.1 ms	g

Symbol	Ratings	Maximum value	Unit
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part.

This is an ESD sensitive device, improper handling can cause permanent damage to the part.

4 Terminology

4.1 Sensitivity

An angular rate gyroscope is a device that produces a positive-going output voltage for counterclockwise rotation around the sensitive axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

4.2 Zero-rate level

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

4.3 Self-test

Self-test allows testing of the mechanical and electrical part of the sensor, allowing the seismic mass to be moved by means of an electrostatic test-force. The self-test function is off when the ST pin is connected to GND. When the ST pin is tied to Vdd, an actuation force is applied to the sensor, emulating a definite Coriolis force. In this case the sensor output exhibits a voltage change in its DC level which is also dependent on the supply voltage. When ST is active, the device output level is given by the algebraic sum of the signals produced by the velocity acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified in the Mechanical characteristics table, then the mechanical element is working properly and the parameters of the interface chip are within the defined specifications.

4.4 Sleep mode, self-test and power-down

The device enables advanced power-saving features thanks to the availability of three different operating modes. In addition to standard normal mode and Power-down mode, when the device is set in a sleep mode configuration, the reading chain is completely turned off, resulting in low power consumption. In this condition the device turn-on time is significantly reduced, allowing simple external power cycling. In accordance with the table below, the user can select the desired operating mode using two dedicated pins (ST and SLEEP/PD).

Operating mode	ST pin	SLEEP/PD pin
Normal mode	0	0
Sleep mode	0	1
Self-test	1	0
Power-down	1	1

Table 6 [.]	Sleen mode	self-test and	nower-down	mode	configuration
Table 0.	Sleep moue,	Sen-lest and		moue	conniguration

5 Application hints

Figure 3: Electrical connections and external component values

Power supply decoupling capacitors should be placed in combination with an LDO regulator (common design practice).

The device IC includes a PLL (phase-locked loop) circuit to synchronize driving and sensing interfaces. Capacitors and resistor must be added at **VCONT** pin 3 (see figure above) to implement a low-pass filter.

5.1 Output response vs. rotation

Figure 4: Steady state position

OUTZ = 1.5 V

Figure 5: Output response vs. rotation

🎸 Note:

Positive rotations as indicated by arrows increase output value over zero-rate level: OUTZ= 1.5 V + SoA*300 = 2.62 V

5.2 Soldering information

The LGA package is compliant with the ECOPACK[®], RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "pin 1 indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

6.1 LGA-10 package mechanical data

Figure 6: LGA-10 (3x5x1 mm) mechanical data

Ref.	Dimensions mm			
	A1			1.100
A2		0.855		
A3		0.200		
D1	2.850	3.000	3.150	
E1	4.850	5.000	5.150	
L		0.635		
L1		4.035		
L2		2.200		
N1		1.382		

Ref.	Dimensions				
	mm				
	Min.	Тур.	Max.		
N2		1.100			
М		0.100			
P1		1.300			
P2		0.500			
T1		0.600			
T2		0.700			
Т3		0.635			
d		0.200			
k		0.050			
h		0.100			

7 Revision history

Table 8: Document revision history

Date	Revision	Changes	
29-Oct-2009	1	Initial release.	
19-Feb-2010	2	Minor text changes and updated package information.	

Please Read Carefully

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom -United States of America

www.st.com

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.