NMH Series # Isolated 2W Dual Output DC/DC Converters ### **FEATURES** - RoHS compliant - Efficiency up to 86% - Power density up to 1.44W/cm³ - Wide temperature performance at full 2 watt load, −40°C to 85°C - Dual output from a single input rail - UL 94V-0 package material - No heatsink required - Footprint from 1.46cm² - Industry standard pinout - Power sharing on output - 1kVDC isolation - 5V, 12V, 24V & 48V input - 5V, 9V, 12V and 15V output - Internal SMD construction - Fully encapsulated with toroidal magnetics - No external components required - MTTF up to 1.5 million hours - No electrolytic or tantalum capacitors ## **DESCRIPTION** The NMH series of industrial temperature range DC/DC converters are the standard buliding blocks for on-board point-of-use power systems. They are ideally suited for providing dual rail supplies on single rail boards with the added benefit of galvanic isolation to reduce circuit noise. All of the rated power may be drawn from a single pin provided the total load does not exceed 2 watts. Pin compatibility with the NMA 1 watt series ensures minimal effort in upgrading distributed power systems. | SELECTION GI | UIDE | | | | | | | | | |---------------------|-----------------------------|-------------------|-------------------|-----------------------------------|------------|--------------------------|-------------------|------------------|--| | Order Code | Nominal
Input
Voltage | Output
Voltage | Output
Current | Input
Current at
Rated Load | Efficiency | Isolation
Capacitance | MTTF ¹ | Package
Style | | | | V | V | mA | mA | % | pF | kHrs | | | | NMH0505DC | 5 | ±5 | ±200 | 500 | 80 | 24 | 1574 | | | | NMH0509DC | 5 | ±9 | ±111 | 494 | 81 | 28 | 663 | DIP | | | NMH0512DC | 5 | ±12 | ±83 | 488 | 82 | 30 | 338 | DIF | | | NMH0515DC | 5 | ±15 | ±67 | 476 | 84 | 33 | 187 | | | | NMH0505SC | 5 | ±5 | ±200 | 500 | 80 | 24 | 1574 | | | | NMH0509SC | 5 | ±9 | ±111 | 494 | 81 | 28 | 663 | SIP | | | NMH0512SC | 5 | ±12 | ±83 | 488 | 82 | 30 | 338 | SIF | | | NMH0515SC | 5 | ±15 | ±67 | 476 | 84 | 33 | 187 | | | | NMH1205DC | 12 | ±5 | ±200 | 208 | 80 | 35 | 490 | | | | NMH1209DC | 12 | ±9 | ±111 | 201 | 83 | 55 | 343 | DIP | | | NMH1212DC | 12 | ±12 | ±83 | 198 | 84 | 63 | 229 | DIF | | | NMH1215DC | 12 | ±15 | ±67 | 198 | 84 | 66 | 148 | | | | NMH1205SC | 12 | ±5 | ±200 | 208 | 80 | 35 | 490 | | | | NMH1209SC | 12 | ±9 | ±111 | 201 | 83 | 55 | 343 | SIP | | | NMH1212SC | 12 | ±12 | ±83 | 198 | 84 | 63 | 229 | OIF | | | NMH1215SC | 12 | ±15 | ±67 | 198 | 84 | 66 | 148 | | | | NMH2405DC | 24 | ±5 | ±200 | 103 | 81 | 41 | 318 | | | | NMH2409DC | 24 | ±9 | ±111 | 98 | 85 | 75 | 249 | DIP | | | NMH2412DC | 24 | ±12 | ±83 | 97 | 86 | 95 | 183 | DIF | | | NMH2415DC | 24 | ±15 | ±67 | 97 | 86 | 104 | 127 | | | | NMH2405SC | 24 | ±5 | ±200 | 103 | 81 | 41 | 318 | | | | NMH2409SC | 24 | ±9 | ±111 | 98 | 85 | 75 | 249 | SIP | | | NMH2412SC | 24 | ±12 | ±83 | 97 | 86 | 95 | 183 | OII | | | NMH2415SC | 24 | ±15 | ±67 | 97 | 86 | 104 | 127 | | | | NMH4805DC | 48 | ±5 | ±200 | 51 | 82 | 45 | 235 | | | | NMH4809DC | 48 | ±9 | ±111 | 51 | 82 | 74 | 195 | DIP | | | NMH4812DC | 48 | ±12 | ±83 | 49 | 85 | 90 | 152 | DIF | | | NMH4815DC | 48 | ±15 | ±67 | 49 | 85 | 112 | 112 | | | | NMH4805SC | 48 | ±5 | ±200 | 51 | 82 | 45 | 235 | | | | NMH4809SC | 48 | ±9 | ±111 | 51 | 82 | 74 | 195 | SIP | | | NMH4812SC | 48 | ±12 | ±83 | 49 | 85 | 90 | 152 | SIP | | | NMH4815SC | 48 | ±15 | ±67 | 49 | 85 | 112 | 112 | | | | INPUT CHARACTERISTICS | | | | | | | | | |--------------------------|---------------------------------------|------|------|------|--------|--|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | | | Continuous operation, 5V input types | 4.5 | 5 | 5.5 | | | | | | Voltago rango | Continuous operation, 12V input types | 10.8 | 12 | 13.2 | V | | | | | Voltage range | Continuous operation, 24V input types | 21.6 | 24 | 26.4 | | | | | | | Continuous operation, 48V input types | 43.2 | 48 | 52.8 | | | | | | | 5V input types | | 50 | | | | | | | Reflected ripple current | 12V input types | | 70 | | mA p-p | | | | | nellected ripple current | 24V input types | | 130 | | | | | | | | 48V input types | | 200 | | | | | | ^{1.} Calculated using MIL-HDBK-217F with nominal input voltage at full load. All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified. | OUTPUT CHARACTERISTICS | S | | | | | | |-------------------------------|---|------|------|------|--------|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | Rated Power ¹ | T _A =-40°C to 85°C | | | 2 | W | | | Voltage Set Point Accuracy | NMH0505DC/SC | -5 | | 7.5 | % | | | | All other types | -5 | | 5 | 70 | | | Line regulation | High V _{IN} to low V _{IN} | | 1.0 | 1.2 | %/% | | | | 10% load to rated load, 5V output types | | 5 | 10 | | | | Load Regulation | 10% load to rated load, 9V output types | | | 10 | % | | | Loau negulation | 10% load to rated load, 12V output types | | 3 | | | | | | 10% load to rated load, 15V output types | | | | | | | | BW=DC to 20MHz, 5V output types | | 150 | 200 | | | | Dinnle and Naice | BW=DC to 20MHz, 9V output types | | 100 | 150 | | | | Ripple and Noise | BW=DC to 20MHz, 12V output types | | 80 | 150 | mV p-p | | | | BW=DC to 20MHz, 15V output types | | 70 | 150 | | | | ABSOLUTE MAXIMUM RATINGS | | |---|-------| | Lead temperature 1.5mm from case for 10 seconds | 300°C | | Internal power dissipation | 300mW | | Input voltage V _{IN} , NMH05 types | 7V | | Input voltage V _{IN} , NMH12 types | 15V | | Input voltage V _{IN} , NMH24 types | 28V | | Input voltage V _{IN} , NMH48 types | 54V | | ISOLATION CHARACTERISTICS | | | | | | | | | |---------------------------|---------------------------|------|------|------|-------|--|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | | Isolation test voltage | Flash tested for 1 second | 1000 | | | VDC | | | | | Resistance | Viso= 500V | 1 | 10 | | GΩ | | | | | GENERAL CHARACTERISTICS | | | | | | | | |-------------------------|-----------------------|------|------|------|-------|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | Switching frequency | 5V input types | | 95 | | | | | | | 12V input types | | 90 | | kHz | | | | | 24V & 48V input types | | 80 | | | | | | TEMPERATURE CHARACTERISTICS | | | | | | | | |--------------------------------|---------------------|------|------|------|-------|--|--| | Parameter | Conditions | Min. | Тур. | Max. | Units | | | | Specification | All output types | -40 | | 85 | | | | | Storage | | -50 | | 130 | °C | | | | Case Temperature above ambient | 5V output types | | 30 | | U | | | | Case lemperature above ambient | 12V output types | | 25 | | | | | | Cooling | Free air convection | | | | | | | **TOLERANCE ENVELOPE** +10% +5% , V_{NOM} Output Voltage Typical Load Line +2.5% -2.5% -7.5% ^{1.} See derating graph. # **NMH Series** ## Isolated 2W Dual Output DC/DC Converters ### **TECHNICAL NOTES** #### **ISOLATION VOLTAGE** 'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation. Murata Power Solutions NMH series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1kVDC for 1 second. A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?" For a part holding no specific agency approvals, such as the NMH series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements. #### REPEATED HIGH-VOLTAGE ISOLATION TESTING It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NMH series has toroidal isolation transformers, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyurethane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers. ### **ROHS COMPLIANCE INFORMATION** This series is compatible with RoHS soldering systems with a peak wave solder temperature of 300°C for 10 seconds. The pin termination finish on the SIP package type is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The DIP types are Matte Tin over Nickel Preplate. Both types in this series are backward compatible with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs ### **APPLICATION NOTES** #### Minimum load The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%. #### Capacitive loading and start up Typical start up times for this series, with a typical input voltage rise time of $2.2\mu s$ and output capacitance of $10\mu F$, are shown in the table below. The product series will start into a capacitance of $47\mu F$ with an increased start time, however, the maximum recommended output capacitance is $10\mu F$. | | Start-up time | | | |-----------|---------------|--|--| | | μs | | | | NMH0505SC | 1072 | | | | NMH0509SC | 2481 | | | | NMH0512SC | 3546 | | | | NMH0515SC | 5380 | | | | NMH1205SC | 672 | | | | NMH1209SC | 1152 | | | | NMH1212SC | 1580 | | | | NMH1215SC | 3150 | | | | | Start-up time | |-----------|---------------| | | μs | | NMH2405SC | 1064 | | NMH2409SC | 1544 | | NMH2412SC | 4398 | | NMH2415SC | 4230 | | NMH4805SC | 966 | | NMH4809SC | 1220 | | NMH4812SC | 2822 | | NMH4815SC | 4275 | | | | ### **APPLICATION NOTES (continued)** #### Ripple & Noise Characterisation Method Ripple and noise measurements are performed with the following test configuration. | C1 | 1μF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter | |-------------|---| | C2 | $10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100 \text{m}\Omega$ at 100kHz | | C3 | 100nF multilayer ceramic capacitor, general purpose | | R1 | 450Ω resistor, carbon film, ±1% tolerance | | R2 | 50Ω BNC termination | | T1 | 3T of the coax cable through a ferrite toroid | | RLOAD | Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires | | Measured va | ues are multiplied by 10 to obtain the specified values. | Differential Mode Noise Test Schematic ### **OUTPUT RIPPLE REDUCTION** By using the values of inductance and capacitance stated, the output ripple at the rated load is lowered to 5mV p-p max. ## **Component selection** Capacitor: Ceramic chip capacitors are recommended. It is required that the ESR (Equivalent Series Resistance) should be as low as possible, X7R types are recommended. The voltage rating should be at least twice (except for 15V output), the rated output voltage of the DC/DC converter. Inductor: The rated current of the inductor should not be less than that of the output of the DC/DC converter. At the rated current, the DC resistance of the inductor should be such that the voltage drop across the inductor is <2% of the rated voltage of the DC/DC converter. The SRF (Self Resonant Frequency) should be >20MHz. | Order Code | L (µH) | Inductor 0 | C (µF) | | |------------|--------|------------|--------------|--------| | Order Code | ι (μπ) | SMD | Through Hole | C (μΓ) | | NMH0505XC | 47 | 82473C | 11R473C | 4.7 | | NMH0509XC | 47 | 82473C | 11R473C | 2.2 | | NMH0512XC | 150 | 82154C | 11R154C | 3.3 | | NMH0515XC | 100 | 82104C | 11R104C | 3.3 | | NMH1205XC | 47 | 82473C | 11R473C | 4.7 | | NMH1209XC | 47 | 82473C | 11R473C | 2.2 | | NMH1212XC | 150 | 82154C | 11R154C | 3.3 | | NMH1215XC | 100 | 82104C | 11R104C | 3.3 | | NMH2405XC | 47 | 82473C | 11R473C | 4.7 | | NMH2409XC | 47 | 82473C | 11R473C | 2.2 | | NMH2412XC | 150 | 82154C | 11R154C | 3.3 | | NMH2415XC | 100 | 82104C | 11R104C | 3.3 | | NMH4805XC | 47 | 82473C | 11R473C | 4.7 | | NMH4809XC | 47 | 82473C | 11R473C | 2.2 | | NMH4812XC | 150 | 82154C | 11R154C | 3.3 | | NMH4815XC | 100 | 82104C | 11R104C | 3.3 | Product specification for MPS inductors can be found at: 1100R Series (Through Hole) http://www.murata-ps.com/data/magnetics/kmp_1100r.pdf 8200 Series (SMD) http://www.murata-ps.com/data/magnetics/kmp_8200c.pdf Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: http://www.murata-ps.com/requirements/ Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ## Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.