

TDA7512

AM/FM car radio tuner IC with intelligent selectivity system (ISS)

Features

FM part

- RF AGC generation by RF and IF detection
- I/Q mixer for 1st FM IF 10.7 MHz with image rejection
- 2 programmable IF-gain stages
- Mixer for 2nd IF 450 kHz
- Internal 450 kHz bandpass filter with three bandwidths controlled by ISS
- Fully integrated FM-demodulator with noise cancellation

AM part

- Wide and narrow AGC generation
- Preamplifier and mixer for 1st IF 10.7 MHz, AM up conversion
- Mixer for 2nd IF 450 kHz
- Integrated AM demodulate.
- Output for AM stered decoder

Additional features

- VCO for yurld tuning range
- Hicn performance fast PLL for RDS system
- Signal
- Quality detector for level, deviation, adjacent channel and multi path

Table 1.Device summary

- Quality detection informations as analog signals existinal available
- ISS (intelligent selectivity system) for cancellation of adjacent channel and noise influences
- Adjacent channel mute
- Fully electronic alignment
- All functions I²C bus controlled
- ISS filter status information I²C bus readable

Description

The TDA7512 is a high performance tuner circuit for AM/FM car radio. It contains mixer, IF amplifier, demodulator for AM and FM, quality detection, ISS filter and PLL synthesizer with IF counter on a single chip. Use of BiCMOS technology allows the implementation of several tuning functions and a minimum of external components.

Order code	Package	Packing
E-TDA7512	LQFP64	Tray

57

Contents

1	Bloc	k diagra	ım
2	Pin d	escript	ion
3	Elect	rical sp	ecifications
	3.1	Absolu	te maximum ratings
	3.2	Therma	al data
	3.3	Electric	al characteristics
	3.4	Electric	al characteristics (with f _{RF} , f _{MOD} in different conditions) 16
	3.5	Electric	al characteristics (additional parameters) 17
4	Func		escription
	4.1	FM sec	tion
		4.1.1	Mixer1, AGC and 1.IF
		4.1.2	Mixer2, limiter and denodulator
		4.1.3	Quality detection and iSS
		4.1.4	Soft mute control
	4.2	AM sec	tion
	4.3	PLL an	c দি counter section
		4.3.1	PLL frequency synthesizer block
		4.3.2	Frequency generation for phase comparison
105019	26	4.3.3	Three state phase comparator
	0	4.3.4	Charge pump current generator
we have a second		4.3.5	Inlock detector
		4.3.6	Low noise CMOS Op-amp
		4.3.7	IF counter block
		4.3.8	The IF-counter mode
		4.3.9	Sampling timer
		4.3.10	Intermediate frequency main counter
		4.3.11	Adjustment of the measurement sequence time
		4.3.12	Adjust of the frequency value
	4.4	I ² C bus	interface
		4.4.1	Data transition
		4.4.2	Start condition

	4.4.3	Stop condition	. 24
	4.4.4	Acknowledge	. 24
	4.4.5	Data transfer	. 24
	4.4.6	Device addressing	. 24
	4.4.7	Write operation	. 25
	4.4.8	Read operation	. 25
5	Software s	pecification	26
	5.1 Addre	ess organization	26
	5.2 Contr	ol register function	27
	5.3 Data	byte specification	30
6	Package in	formation	42
Appendix	x A Block d	liagrams	43
Appendix	x B Applica	tion notes	47
7	Revision hi	story	48
opsole	stepro	oucils	

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin description	. 7
Table 3.	Absolute maximum ratings	10
Table 4.	Thermal data	10
Table 5.	Electrical characteristics	10
Table 6.	Electrical characteristics (with f _{RF} , f _{MOD} in different conditions)	16
Table 7.	Electrical characteristics (additional parameters)	17
Table 8.	Address organization	26
Table 9.	Control register function	27
Table 10.	Subaddress.	29
Table 11.	Addr 0 charge pump control	30
Table 12.	Addr 1 PLL counter 1 (LSB)	30
Table 13.	Addr 2 PLL counter 2 (MSB).	31
Table 14.	$\Delta ddr 3 / 1 / 1 2 (Otteot referred to funing Voltade PUN28)$	
Table 15.	Addr 5 IF counter control 1	32
Table 16.	Addr 6 IF counter control 2	32
Table 17.	Addr 7 AM control	33
Table 18.	Addr 8 quality ISS filter	33
Table 19.	Addr 9 quality detection adjacent channel	34
Table 20.	Addr 10 quality detection multipath.	34
Table 21.	Addr 11 quality deviation detection.	35
Table 22.	Addr 12 softmute control 1	36
Table 23.	Addr 13 softmute control 2	36
Table 24.	Addr 14 VCODIV/PLLREF	37
Table 25.	Addr 15 FM AGC	37
Table 26.	Addr 16 AM AGC	38
Table 27.	Addr 17 FM demodurator fine adjust.	
Table 28.	Addr 18 S-meter sliger	39
Table 29.	Addr 19 'F G 4I V/Crystal adjust	40
Table 30.	Addr 20 iank adjust	40
Table 31.	Adu: 21 I/Q FM mixer1 adjust	41
Table 32.	Aguir 22 test control 1	41
Table 33.	Addr 23 test control 2	41
Tahle 34.	Addr 24 Test Control 3	41
Tahlo 35.	Addr 25 test control 4	41
Table 36.	Block diagram quality detection principle (without overdeviation correction)	45
Table 37.	Input signals modes	
Table 38.	Part list (application and measurement circuit)	45
Table 39.	Document revision history	

List of figures

	Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.	Block diagram 6 Pin connection (top view) 7 Software specification 26 LQFP64 mechanical data and package dimensions 42 Block diagram I/Q mixer 43	
	Figure 6. Figure 7. Figure 8. Figure 9.	Block diagram VCO 43 Block diagram keying AGC 44 Block diagram ISS function 44 Application circuit 46	
		oroductles	
		coleter	
		005	
		productle	
C)bsol	Block diagram keying AGC	

1 Block diagram

Doc ID 9300 Rev 4

2 Pin description

Table 2.	Pin description
----------	-----------------

	N°	Pin กลาเอ	Function
	1	ALM/IX1IN2	AM Input2 Mixer1
	2	AMMIX1IN1	AM Input1 Mixer1
10	5	AMRFAGCIN	Input AM RF AGC
cO^{\prime}	4	AMRFAGCOUT	Output AM RF AGC
~105	5	AMPINDR	AM PIN diode driver output
OF	6	FMPINDR	FM PIN diode driver output
	7	FMMIX1IN1	FM input1 mixer1
	8	GNDRF	RF ground
	9	FMMIX1IN2	FM input2 mixer1
	10	FMAGCTC	FM AGC time constant
	11	TV1	Tuning voltage preselection1
	12	TV2	Tuning voltage preselection2
	13	ADJCH	Ident. adjacent channel output
	14	FSU	Unweighted Fieldstrength output

Tab	ole 2.	Pin description (continued)	
N°		Pin name	Function
	15	ISSTC	Time constant for ISS filter switch
	16	VCCVCO	VCO supply
	17	GNDVCO	VCO ground
	18	VCOB	VCO input base
	19	VCOE	VCO output emitter
	20	DEVTC	Deviation detector time constant
	21	XTALG	Crystal oscillator to MOS gate
	22	XTALD	Crystal oscillator to MOS drain
	23	GNDVCC3	VCC3 ground
	24	SSTOP	Search stop output
	25	SDA	I ² C bus data
	26	SCL	I ² C bus clock
	27	VCC3	Supply tuning voltage
	28	LPOUT	Op. amp. output to PLL loop fi 'ers
	29	VREF2	Voltage reference for TL. cp. amp.
	30	LPAM	Op. amp. inp' t to FUL loop filters AM
	31	LPFM	Op. amp. input to PLL loop filters FM
	32	LPHC	Hiçh cu rent PLL loop filter input
	33	GNDVCC1	Digital ground
	34	AMS 7/1.1P	AM stereo out / ident. multipath output
	35	₽'S₩	Weighted Fieldstrength output
	36	VCC1	Digital supply
	57	MPX/AFAM	MPX output / AM AF output
	38	AMIFREF	Reference voltage AM IF amp.
	39	AMIFBPF	AM IF filter
	40	AMAGC2TC	AM AGC2 time constant
	41	AMDETC	AM detector capacitor
	42	MUTETC	Softmute time constant
	43	AMIF2IN	Input AM IF2
	44	REFDEMC FM/AM	Demodulator reference FM/AM
	45	FMMIX2IN2	FM IF1 MIX2 input1
	46	FMMIX2IN1	FM IF1 MIX2 input2
	47	GNDDEM	Ground FM demodulator
	48	VREF1	Reference 5V

 Table 2.
 Pin description (continued)

Doc ID 9300 Rev 4

N°		
	Pin name	Function
49	GNDVCC2	Analog ground
50	FMAMP2OUT	FM IF1 amplifier2 output
51	VCC2	Analog supply
52	FMAMP2IN	FM IF1 amplifier2 input
53	FMIF1REF	FM IF1 amplifier reference
54	FMAMP1OUT	FM IF1 amplifier1 output
55	AMMIX2OUT2	AM tank 450 kHz
56	AMMIX2OUT1	AM tank 450 kHz
57	FMAMP1IN	FM IF1 amplifier1 Input
58	AMIF1IN/ISS	AM IF1 input/ISS filter status
59	GNDIF1	FM IF1 ground
60	FMIF1AGCIN	FM IF1 AGC input
61	VCCIF1	IF1 supply
62	AMRFAGCTC	AM RF AGC Time constant
63	MIX1OUT2	MIX tank 10.7 MHz
64	MIX1OUT1	MIX tank 10. Mr '2
E E	produc	1(5)

 Table 2.
 Pin description (continued)

Electrical specifications 3

Absolute maximum ratings 3.1

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Supply voltage	10.5	V
T _{amb}	Ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature	-55 to +150	°C

3.2 **Thermal data**

Therma	al data		Jucth	51		
Table 4.	Thermal data		.00			
Symbol	Parameter		Value	Unit		
R _{th(j-amb)}	Thermal resistance junction to ambient	xO	68 max.	°C/W		
Electrical characteristics						

Electrical characteristics 3.3

 $T_{amb} = +25 \text{ °C}, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = V_{CCIF1} = 8.5 \text{ V}, f_{RF} = 98 \text{ MHz}, \\ dev. = 40 \text{ kHz}, f_{MOD} = 1 \text{ kHz}, f_{1F1} = 10.7 \text{ MHz}, f_{1F2} = 450 \text{ kHz}, f_{crystal} = 10.25 \text{ MHz}, \text{ in}$ application circuit, unless of urwise specified.

Table 5.	Electrical characteristics
----------	----------------------------

Symbol	Parame 'er	Test condition	Min.	Тур.	Max.	Unit
Supply	Pl		<u>.</u>			
V _{CC1}	Digital supply voltage	-	7.5	8.5	10	V
V _{CC2}	Ar alog supply voltage	-	7.5	8.5	10	V
1000	Analog tuning voltage	-	7.5	8.5	10	V
V _{ccvco}	VCO supply voltage	-	7.5	8.5	10	V
V _{CCMIX1}	MIX1 supply voltage	-	7.5	8.5	10	V
V _{CCMIX2}	MIX2 supply voltage	-	7.5	8.5	10	V
V _{CCIF1}	IF1 supply voltage	-	7.5	8.5	10	V
I _{CC1}	Supply current	FM ON	-	7.5	-	mA
I _{CC1}	Supply current	AM ON	-	10	-	mA
I _{CC2}	Supply current	FM ON / VCO:3	-	70	-	mA
I _{CC2}	Supply current	AM ON	-	70	-	mA
I _{CC3}	Supply current	-	-	2	-	mA
I _{CCVCO}	Supply current	-	-	9	-	mA

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{CCMIX1}	Supply current	FM ON	-	8	-	mA
I _{CCMIX1}	Supply current	AM ON	-	7	-	mA
I _{CCMIX2}	Supply current	AM ON	-	7	-	mA
I _{CCIF1}	Supply current	-	-	6	-	mA
Reference	e voltages				•	•
V _{REF1}	Internal reference voltage	I _{REF1} = 0 mA	-	5	-	V
V _{REF2}	Internal reference voltage	I _{REF2} = 0 mA	-	2.5		v
Wide ban	d RF AGC				.19	5
V ₇₋₉	Lower threshold start	V ₁₀ = 2.5 V	-	85	C	dBµ\
V ₇₋₉	Upper threshold start	V ₁₀ = 2.5 V	-	ક્ર	-	dBµ∖
Narrow ba	and IF & Keying AGC		20	5		
V ₆₀	Lower threshold start	KAGC = off, $V_{7-9} = 0 \text{ mV}_{RMS}$	-	86	-	dBµ\
V ₆₀	Upper threshold start	KAGC = off, V ₇₋₉ = 0 n [•] V _{18/18}	-	98	-	dBµ\
V ₆₀	Lower threshold start with KAGC	KAGC = max, V _{7 ☉} = 0 nV _{RMS,} ∆f _{IF} =300 kH₂	-	98	-	dBµ۱
V ₃₅	Startpoint KAGC	KAGC = max, V ₇₋₉ = 0 mV _{RMS,} \f _{IF} =200 kHz IfIF1 generate FSW level at V ₃₅	-	3.6	-	v
D	Control range KAGC	∆V ₃₅ = +0.4V	-	16	-	dB
R _{IN}	Input resistance	-	-	10	-	kΩ
C _{IN}	Input capacitance	-	-	2.5	-	pF
AGC time	constant cutput				1	
V ₁₀	wax AGC output voltage	V ₇₋₉ = 0 mV _{RMS}	-	-	V _{REF1} +V _{BE}	v
V:n	Min. AGC output voltage	V ₇₋₉ = 50 mV _{RMS}	-	-	0.5	V
1 ₁₀	Min. AGC charge current	V ₇₋₉ = 0 mV _{RMS} ,V ₁₀ = 2.5 V	-	-12.5	-	μA
I ₁₀	Max. AGC discharge current	V ₇₋₉ = 50 mV _{RMS} , V ₁₀ = 2.5 V	-	1.25	-	mA
AGC pin c	liode driver output					
I ₆	AGC OUT, current min.	$V_{7-9} = 0 \text{ mV}_{RMS}, V_6 = 2.5 \text{ V}$	-	50	-	μA
I ₆	AGC OUT, current max.	V ₇₋₉ = 50 mV _{RMS} , V ₆ = 2.5 V	-	-20	-	mA
I/Q Mixer1	(10.7 MHz)			•		
R _{IN}	Input resistance	differential	-	10	-	kΩ
C _{IN}	Input capacitance	differential	-	4	-	pF
R _{OUT}	Output resistance	differential	100	-	-	kΩ

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{7,9}	Input dc bias	-	-	3.2	-	V
9 _m	Conversion transconductance	-	-	17	-	mS
F	Noise figure	400 Ω generator resistance	-	3	-	dB
CP _{1dB}	1 dB compression point	referred to diff. mixer input	-	100	-	dBµ∖
IIP3	3 rd order intermodulation	-	-	122	-	dBµV
IQG	I/Q gain adjust	G	-1	-	+1	%
IQP	I/Q phase adjust	РН	-7	-	+8	0
IRR	Image rejection ratio	ratio wanted/image	30	40	ī	дB
IRR	Image rejection ratio	with gain and phase adjust	40	46		† ∣ dB
IF1 Ampli	fier1 +2 (10.7 MHz)	1		2V		
G _{min}	Min. gain	IFG		18	-	dB
G _{max}	Max. gain	IFG	7 -	26	-	dB
R _{IN}	Input resistance	·	-	330	-	Ω
R _{OUT}	Output resistance		-	330	-	Ω
CP _{1dB}	1 dB compression point	referred to 3300 referred to 3300 referred to	-	105	-	dBµ∖
IIP3	3 rd order Intermodulation	referred to 3: 0.2 input	-	126	-	dBµ∖
Mixer2 (45	50 kHz)		1		I	1
R _{IN}	Input impedance	51	-	330	-	W
V ₄₆	Max. input voltage	-	-	900	-	mV _{RMS}
V ₄₈	Limiting sensitivity	S/N = 20 dB	-	25	-	μV
G	Mixer gain	-	-	18	-	dB
Limiter 1 ((450 k'.:-)		1			
G _{Limiter}	Cain	-	-	80	-	dB
	ator, audio output		1			1
THD		Dev.= 75 kHz, V ₄₆ = 10 mV _{RMS}	-	-	0.1	%
V _{MPX}	MPX output signal	Dev.= 75 kHz	-	500	-	mV _{RM}
R _{OUT}	Output resistance	-	-	50	-	W
l∆VI _{min}	DC offset fine adjust	DEM, MENA=1	-	8.5	-	mV
l∆VI _{max}	DC offset fine adjust	DEM, MENA=1	-	264	-	mV
S/N		Dev.= 40 kHz,V ₄₆ = 10 mV _{RMS}	-	76	-	dB
QUALITY	DETECTION		1	I	1	1
	Inweighted Fieldstrength					

 Table 5.
 Electrical characteristics (continued)

Table 5.	Electrical characteristics	(continued)			-	
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V ₁₄	Fieldstrength output	$V_{46} = 0V_{RMS}$	-	0.1	-	V
V ₁₄	Fieldstrength output	$V_{46} = 1V_{RMS}$	-	4.9	-	V
ΔV_{14}	voltage per decade	SMSL = 0	-	1	-	V
ΔV_{14}	voltage per decade	SMSL = 1	-	1.5	-	V
ΔV_{14}	S-meter offset	SL, SMSL=1	-15		15	dB
R _{OUT}	Output resistance	-	-	200	-	Ω
ТК	Temp coeff.	-	-	0	-	ppm/K
S-meter, v	veighted Fieldstrength	·			10	1
V ₃₅	Fieldstrength output	$V_{46} = 0V_{RMS}$	-	2.5		V
V ₃₅	Fieldstrength output	V ₄₆ = 1V _{RMS}	-	<u>.</u> 9		V
R _{OUT}	Output resistance	-		12	-	kΩ
Adjacent	Channel Gain		-0			
G _{min}	Gain minimum	ACG=0	-	32	-	dB
G _{max}	Gain maximum	ACG=1	-	38	-	dB
	channel filter	~10 ⁵				
f _{HP}	-3 dB frequency highpass	ACF=0	-	100	-	kHz
f _{BP}	Centre frequency	ACF=1	-	100	-	kHz
f _{-20dB}	Attenuation 20 dB		-	70	-	kHz
Adjacent	channel output			1		1
V ₁₃	Output voltage I ow	-	-	0.1	-	V
V ₁₃	Output voltage high	-	-	4.9	-	V
R _{OUT}	Output resistance	-	-	4	-	kΩ
	thannel gain			1		
G _{m a}	Gain minimum	MPG=0	-	12	-	dB
G _{max}	Gain maximum	MPG=1	-	23	-	dB
	bandpass filter				l	
f _{Lower}	Centre frequency low	MPF=0	-	19	-	kHz
f _{Upper}	Centre frequency up	MPF=1	-	31	-	kHz
Q	Quality factor	-	5	-	10	-
Multipath	-	<u></u>		1	<u> </u>	I
V ₃₄	Output voltage low	-	-	0.1	-	V
V ₃₄	Output voltage high	-	-	4.9	-	V
R _{OUT}	Output resistance	-	-	2.5	-	kΩ

 Table 5.
 Electrical characteristics (continued)

Table 5.	Electrical characteristics (continued)
----------	--

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
ISS (intelli	gent Selectivity System)					
Filter 450	kHz					
f _{centre}	Centre frequency	f _{REF_intern} = 450 kHz	-	450	-	kHz
BW 3 dB	Bandwidth, -3 dB	ISS80 = 1	-	80	-	kHz
BW 20 dB	Bandwidth, -20 dB	ISS80 = 1	-	150	-	kHz
BW 3 dB	Bandwidth, -3 dB	ISS80 = 0	-	120	-	kHz
BW 20 dB	Bandwidth, -20 dB	ISS80 = 0	-	250		kHz
BW 3 dB	Bandwidth weather band	ISS30 = 1	-	30		h Hz
BW 20 dB	-20 dB weather band	ISS30 = 1	-	80	0.2	kHz
Adjacent o	channel ISS filter threshold			20		
V _{NTH}	Internal low threshold	ACNTH	0	0	-	V
V _{NTH}	Internal high threshold	ACNTH	-	0.3	-	V
V _{WTH}	Internal low threshold	ACWTH	-	0.25	-	V
V _{WTH}	Internal high threshold	ACWTH	-	0.95	-	V
Multipath	threshold	003		1		1
V _{THMP}	Internal low threshold	МРТН	-	0.50	-	V
V _{THMP}	Internal high threshold	МГТН	-	1.25	-	V
ISS filter t	time constant			I		
I ₁₅	Charge current low a.ia	TISS, ISSCTL = 1	-	-74	-	μA
I ₁₅	Charge currer a nig 1 mid	TISS, ISSCTL = 1	-	-60	-	μA
I ₁₅	Charge current low narrow	TISS, ISSCTL = 1	-	-124	-	μA
I ₁₅	Charge current high narrow	TISS, ISSCTL = 1	-	-110	-	μA
I ₁₅	2:scharge current low	TISS, ISSCTL = 0	-	1	-	μA
115	Discharge current high	TISS, ISSCTL = 0	-	15	-	μA
V ₁₅	Low voltage	ISSCTL = 0	-	0.1	-	V
V ₁₅	High voltage	ISSCTL = 1	-	4.9	-	V
ISS filter s	witch threshold				•	
V ₁₅	Threshold ISS on	ISSCTL = 0	-	3	-	V
V ₁₅	Threshold ISS off	ISSCTL = 0	-	1	-	V
V ₁₅	Threshold ISS narrow on	ISSCTL = 0	-	4	-	V
V ₁₅	Threshold ISS narrow off	ISSCTL = 0	-	2	-	V
I ₂₀	Charge current low	TDEV	-	-20	-	μA
I ₂₀	Charge current high	TDEV	-	-34	-	μA

I ₂₀ Dis DEV _{WTH} Int DEV _{WTH} Int RATIO _{min} Re	scharge current low scharge current high ternal low threshold ternal high threshold eferred to threshold eferred to threshold	TDEV TDEV DWTH DWTH DTH		6 20 30 75		μΑ μΑ kHz
DEV _{WTH} Inte DEV _{WTH} Inte RATIO _{min} Re RATIO _{ma} Re	ternal low threshold ternal high threshold eferred to threshold	DWTH DWTH	-	30		kHz
DEV _{WTH} Inte RATIO _{min} Re RATIO _{ma} Re	ternal high threshold eferred to threshold	DWTH	-			
RATIO _{min} Re RATIO _{ma} Re	eferred to threshold			75	-	6.1
RATIO _{ma} x		DTH				kHz
x	eferred to threshold		-	1	-	-
Softmute		DTH	-	1.5	-	-
V _{ANT} Up	oper startpoint	SMTH, SMD, SLOPE = 0	-	10		l dBμ\
V _{ANT} low	wer startpoint	SMTH, SMD, SLOPE = 0	-	3	$\overline{\mathcal{D}}$.	dBµ\
a _{SMmin} Mir	in. softmute depth	SMD, SLOPE = 0, SMTH _{Upper}	- (15	-	dB
a _{SMmax} Ma	ax. softmute depth	SMD, SLOPE = 0, SMTH _{Upper}	7.7	36	-	dB
a _{SMTHISS} Mu	ute depth threshold for ISS filter า	SMCTH	0.2	-	2	dB
V _{ACTH} Inte	ternal AC mute threshold	ACM	60	-	340	mV
a _{SMAC} AC	C mute depth	ACMD	4	-	10	dB
I ₄₂ Ch	harge current	· 0*	-	-47.5	-	μA
I ₄₂ Dis	scharge current	-	-	2.5	-	μA
S/N over all		21				
S/N Sig	gnal to noise ratio	$V_{ANT_min} = 60 \text{ dB}_{\mu}V$, dev.= 40 kHz,LP=15 kHz de-emphasis t = 50 μ s	66	-	-	dB

Table 5. Electrical characteristics (continued)

3.4 Electrical characteristics (with f_{RF}, f_{MOD} in different conditions)

 $\begin{array}{l} T_{amb}=+25 \ ^{\circ}C, \ V_{CC1}=V_{CC2}=V_{CC3}=V_{CCVCO}=V_{CCMIX1}=V_{CCMIX2}=8.5 \ \text{V}, \ f_{RF}=1 \ \text{MHz}, \\ f_{MOD}=400 \ \text{Hz} \ \text{at} \ 30 \ ^{\circ} \ \text{AM} \ f_{IF1}=10.7 \ \text{MHz}, \ f_{IF2}=450 \ \text{kHz}, \ f_{crystal}=10.25 \ \text{MHz}, \ \text{in} \\ \text{application circuit, (unless otherwise noted, V_{INRF} antenna input).} \end{array}$

Table 6.	Electrical characteristics	(with f _{RF} , f _{MOD} in different conditions)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Global						•
V _{ANT} min	Max. sensitivity	Ref.: $V_{INRF} = 60 \text{ dB}_{\mu}\text{V}$,	-	19	-	₹BμV
$V_{ANT}us$	Usable sensitivity	(S+N)/N = 20 dB	30	26		dBµV
ΔV_{ANT}	IF2 AGC Range	Ref.: $V_{INRF} = 60 \text{ dB}_{\mu}\text{V}$,	56		0.	dB
(S+N)/N	Signal to Noise Ratio	Ref.: $V_{INRF} = 60 \text{ dB}_{\mu}V$	50	- 25	-	dB
a _{lF}	IF rejection	Ref: $V_{INRF} = 60 \text{ dB}_{\mu}\text{V}$, IF1 = 10.7 MHz IF2 = 450 kHz	100 100		-	dB dB
f _{AF}	Frequency response	Ref.: $V_{INRF} = 60 \text{ dB}\mu'\prime$, $\Delta V_{AF} = -3 \text{ dB}$	-	3.6	-	kHz
THD	Total Harmonic Distortion	$V_{INRF} = 60 \text{ dE } \mu \text{ , } m = 0.8$ m = 0.3 $V_{INRF} = 120 \text{ dB}\mu\text{V}, m = 0.8$ m = 0.3	-	0.5 0.3 1.0 0.3	-	%
V ₃₇	Output level	V _{INRF} = 60 dBμV	-	220	-	mV _{RMS}
V ₃₄	Output level	$V_{INRF} = 60 \text{ dB}_{\mu}\text{V}, \text{ m}=\text{off}$	-	190	-	mV _{RMS}
V ₃	Min. RF AGC Larechold Max. RF AciC threshold	WAGC	-	90 109	-	dBµV
V ₅₈	Min. I.: AGC threshold	WAGC	-	90 109	-	dBµV
VEd	Min. DAGC threshold Max. DAGC threshold	DAGC	-	74 96	-	dBµV
II _{40max} I	AGC2 charge current	seek	-	160	-	μA
CCR	Charge current ratio	seek/seek off	-	30	-	-
AGC volt	age driver output					
V ₄	Max. AGC output voltage	-	3.5		-	V
V ₄	Min. AGC output voltage	-	-		0.5	V
₄	AGC current	-	-	100	-	μA
AGC pin	diode driver output					
I_5	AGC driver current	-	-	-2	-	mA

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
AM Mixer	1 (10.7 MHz)					
R _{IN}	Input resistance	differential	-	1.2	-	kΩ
C _{IN}	Input capacitance	differential	-	4	-	pF
R _{OUT}	Output impedance	differential	100		-	kΩ
CP _{1dB}	1 dB compression point	referred to diff. mixer input	-	115	-	dBµV
IIP3	3 rd order intermodulation	-	-	132	-	dBµV
F	Noise figure	-	-	8	-	dB
А	Gain	-	-	26	-10	ι'B
C _{min}	Min. capacitance step	IF1T	-	0.55	7.5	pF
C _{max}	Max. capacitance	IF1T	-	8.:`5	-	pF
C ₃₁₋₆₄		IF1T		2	-	pF
AM Mixer	⁻ 2 (450 kHz)		<u> </u>			
R ₅₈	Input resistance	-	-	10	-	kΩ
C ₅₈	Input capacitance	-	-	2.5	-	pF
CP _{1dB}	1 dB compression point	referred to dif. mixer input	-	120	-	dBµV
IIP3	3 rd order intermodulation	· 0	-	132	-	dBµV
F	Noise figure	-	-	12	-	dB
А	Max. gain	w x∈r2 tank output	-	34	-	dB
Δ A	Gain control range	-	-	20	-	dB
C _{min}	Min. cap step	IF2T	-	1.6	-	pF
C _{max}	Max. cap	IF2T	-	24	-	pF
C ₅₅₋₅₆		IF2T	-	2	-	pF

Table 6. Electrical characteristics (with f_{RF}, f_{MOD} in different conditions) (continued)

3.5

Electrical characteristics (additional parameters)

 Table 7.
 Electrical characteristics (additional parameters)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit			
Output of	Output of tuning voltages (TV1,TV2)								
V _{OUT}	Output voltage	ТVО	0.5	-	V _{CC3} - 0.5	V			
R _{OUT}	Output impedance	-	-	20	-	kΩ			
Crystal re	eference oscillator								
f _{LO}	Reference frequency	C _{Load} = 15 pF	-	10.25	-	MHz			
C _{Step}	Min. cap step	Crystal	-	0.75	-	рF			

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
C _{max}	Max. cap	Crystal	-	23.25	-	pF
∆f/f	Deviation versus VCC2	$\Delta V_{CC2} = 1 V$	-	1.5	-	ppm/V
∆f/f	Deviation versus temp	-40°C < T < +85°C	-	0.2	-	ppm/K
l ² C bus ir	nterface					
f _{SCL}	Clock frequency	-	-	-	400	kHz
V _{IL}	Input low voltage	-	-	-	1	V
V _{IH}	Input high voltage	-	3	-		V
I _{IN}	Input current	-	-5	-	5	Aı,
Vo	Output acknowledge voltage	I _O = 1.6 mA	-	-	0.1	V
Loop filt	er input/output	•		- 27		
-I _{IN}	Input leakage current	V _{IN} = GND, PD _{OUT} = Tristate	C í	D .	0.1	μA
I _{IN}	Input leakage current	V _{IN} = VREF1 PD _{OUT} = Tristate	-0.1	-	0.1	μA
V _{OL}	Output voltage Low	I _{OUT} = -0.2 mA	-	0.05	0.5	V
V _{OH}	Output voltage High	I _{OUT} = 0.2 m ²	V _{CC3} - 0.5	V _{CC3} - 0.05	-	v
I _{OUT}	Output current, sink	V _{OUT} = 1 .	-	-	10	mA
I _{OUT}	Output current, source	$V_{OL'T} = 1 V \text{ to } V_{CC3} - 1 V$	-10	-	-	mA
Voltage of	controlled oscillator (VCO)		·			
f _{VCOmin}	Minimum VCO frequency	-	50	-	-	MHz
f _{VCOmax}	Maximum VCO frequency	-	-	-	260	MHz
C/N	Carrier to Noise	f _{VCO} = 200 MHz, ∆f=1 kHz, B=1 Hz, closed loop	-	80	-	dBc
SSTOP v	uppert (open collector)					
V_1	Output voltage low	I ₂₄ = -200 μA	-	0.2	0.5	V
V ₂₄	Output voltage high	-	-	-	5	V
-I ₂₄	Output leakage current	V ₂₄ = 5 V	-0.1	-	0.1	μA
I ₂₄	Output current, sink	V ₂₄ = 0.5 V to 5 V	-	-	1	mA

 Table 7.
 Electrical characteristics (additional parameters) (continued)

Functional description 4

4.1 FM section

4.1.1 Mixer1, AGC and 1.IF

FM guadrature I/Q-mixer converts FM RF to IF1 of 10.7 MHz. The mixer provides inherent image rejection and wide dynamic range with low noise and large input signal performance. The mixer1 tank can be adjusted by software (IF1T). For accurate image rejection the gainand phase-error generated as well in mixer as VCO stage can be compensated by software (G,PH)

It is capable of tuning the US FM, US weather, Europe FM, Japan FM and East Europe FM Product bands

- US FM = 87.9 to 107.9 MHz
- US weather = 162.4 to 162.55 MHz
- Europe FM = 87.5 to 108 MHz
- Japan FM = 76 to 91 MHz
- East Europe FM = 65.8 to 74 MHz

The AGC operates on different sensitivities and bar awidths in order to improve the input sensitivity and dynamic range. AGC thresholds are programmable by software (RFAGC, IFAGC, KAGC). The output signal is a controlled current for double pin diode attenuator.

Two 10.7 MHz programmable amplifiers (IFG1, IFG2) correct the IF ceramic insertion loss and the costumer level plan application.

4.1.2 Mixer2, limiter and demodulator

In this 2. mixer stage the first 10.7 MHz IF is converted into the second 450 kHz IF. A multistage 'im ter generates signals for the complete integrated demodulator without external tank. M.2X output DC offset versus noise DC level is correctable by software (DEM).

Quality detection and ISS 4.1.3

Fieldstrength

Parallel to mixer2 input a 10.7 MHz limiter generates a signal for digital IF counter and a fieldstrength output signal. This internal unweighted fieldstrength is used for keying AGC, adjacent channel and multipath detection and is available at PIN14 (FSU) after +6 dB buffer stage. The behavior of this output signal can be corrected for DC offset (SL) and slope (SMSL). The internal generated unweighted fieldstrength is filtered at PIN35 and used for softmute function and generation of ISS filter switching signal for weak input level (sm).

Adjacent channel detector

The input of the adjacent channel detector is AC coupled from internal unweighted fieldstrength. A programmable highpass or bandpass (ACF) and amplifier (ACG) as well as rectifier determines the influences. This voltage is compared with adjustable comparator1 thresholds (ACWTH, ACNTH). The output signal of this comparator generates a DC level at PIN15 by programmable time constant. Time control (TISS) for a present adjacent channel

is made by charge and discharge current after comparator1 in an external capacitance. The charge current is fixed and the discharge current is controlled by I²C Bus. This level produces digital signals (ac, ac+) in an additional comparator4. The adjacent channel information is available as analog output signal after rectifier and +8 dB output buffer.

Multipath detector

The input of the multipath detector is AC coupled from internal unweighted fieldstrength. A programmable bandpass (MPF) and amplifier (MPG) as well as rectifier determines the influences. This voltage is compared with an adjustable comparator2 thresholds (MPTH). The output signal of this comparator2 is used for the "Milano" effect. In this case the adjacent channel detection is switched off. The "Milano" effect is selectable by I²C bus (MPOFF). The multipath information is available as analog output signal after rectifier and +8 dB output buffer.

450 kHz IF narrow bandpass filter (ISS filter)

The device gets an additional second IF narrow bandpass filter for suppression of noise and adjacent channel signal influences. This narrow filter has three switchable bandwidths, narrow range of 80 kHz, mid range of 120 kHz and 30 kHz for weather band information. Without ISS filter the IF bandwidth (wide range) is defined only by ceramic filter chain. The filter is switched in after mixer2 before 450 kHz limiter stage. The centre frequency is matching to the demodulator center frequency.

Deviation detector

In order to avoid distortion in audio or the signal the narrow ISS filter is switched OFF for present overdeviation. Hence the demodulator output signal is detected. A lowpass filtering and peak rectifier generates a signal that is defined by software controlled current (TDEV) in an external capacitance. The value is compared with a programmable comparator3 thresholds (DWTH, DTH, and generates two digital signals (dev, dev+). For weak signal condition deviation threshold is proportional to FSU.

ISS switch logic

All digit a signals coming from adjacent channel detector, deviation detector and softmute are acting via switching matrix on ISS filter switch. The IF bandpass switch mode is controlled by software (ISSON, ISS30, ISS80, CTLOFF). The switch ON of the IF bandpass is also available by external manipulation of the voltage at PIN15. Two application modes are available (APPM). The conditions are described in *Table 5*.

.4 Soft mute control

The external fieldstrength signal at PIN35 is the reference for mute control. The startpoint and mute depth are programmable (SMTH, SMD) in a wide range. The time constant is defined by external capacitance. Additional adjacent channel mute function is supported. A highpass filter with -3 dB threshold frequency of 100 kHz, amplifier and peak rectifier generates an adjacent noise signal from MPX output with the same time constant for softmute. This value is compared with comparator 5 thresholds (ACM). For present strong adjacent channel the MPX signal is additional attenuated (ACMD).

4.2 AM section

The up/down conversion is combined with gain control circuit sensing three input signals, narrow band information at PIN39, up conversion signal (IFAGC) at PIN58 and wide band information (RFAGC) at PIN3. This gain control gives two output signals. The first one is a current for pin diode attenuator and the second one is a voltage for preamplifier. Time constant of RF- and IF-AGC is defined by internal 100k resistor and external capacitor at PIN 62. The intervention points for AGC (DAGC,WAGC) are programmable by software. In order to avoid a misbehavior of AGC intervention point it is important to know that the DAGC threshold has to be lower than WAGC threshold!

The oscillator frequency for upconcersion-mixer1 is generated by dividing the FM VCO frequency after VCO (VCOD) and AM predivider (AMD). It is possible to put in a separate narrow bandpass filter before mixer2 at PIN58. In this case input P58 needs the DC-operation point from PIN53 via resistance matched with filter impedance. Additionality is possible to use second 10,7 MHz ceramic filter by internal switch between mixer2 input and PIN 52. This feature increases 900 kHz attenuation.

In mixer2 the IF1 is down converted into the IF2 450 kHz. After filtering by ceramic filter a 450 kHz amplifier is included with an additional gain control of 1F2 below DAGC threshold. Time constant is defined by capacitance at PIN40

Mixer1 and mixer2 tanks are software controlled adjust. b'e (IF1T, IF2T).

The demodulator is a peak detector to generate the audio output signal.

A separate output is available for AMIF stereo (AMST).

4.3 PLL and IF counter section

4.3.1 PLL frequency synthesizer block

This part contains a frequency synthesizer and a loop filter for the radio tuning system. Only one VCO is recurred to build a complete PLL system for FM world tuning and AM up conversion. For auto search stop operation an IF counter system is available.

The counter works in a two stages configuration. The first stage is a swallow counter with a two modulus (32/33) pre counter. The second stage is an 11-bit programmable counter.

The circuit receives the scaling factors for the programmable counters and the values of the reference frequencies via an I²C bus interface. The reference frequency is generated by an adjustable internal (Crystal) oscillator followed by the reference divider. The main reference and step-frequencies are free selectable (RC, PC).

Output signals of the phase detector are switching the programmable current sources. The loop filter integrates their currents to a DC voltage.

The values of the current sources are programmable by 6 bits also received via the I^2C bus (A, B, CURRH, LPF).

To minimize the noise induced by the digital part of the system, a special guard configuration is implemented.

The loop gain can be set for different conditions by setting the current values of the charge pump generator.

4.3.2 Frequency generation for phase comparison

The RF signals applies a two modulus counter (32/33) pre-scaler, which is controlled by a 5bit A-divider. The 5-bit register (PC0 to PC4) controls this divider. In parallel the output of the prescaler connects to an 11-bit B-divider. The 11-bit PC register (PC5 to PC15) controls this divider

Dividing range:

 $f_{VCO} = [33 \text{ x A} + (B + 1 - A) \text{ x 32}] \text{ x } f_{REF}$

 $f_{VCO} = (32 \times B + A + 32) \times f_{REF}$

Important: For correct operation: $A \le 32$; $B \ge A$

4.3.3 Three state phase comparator

The phase comparator generates a phase error signal according to phase difference between f_{SYN} and f_{REF} . This phase error signal drives the charge pump current generator.

4.3.4 Charge pump current generator

This system generators signed pulses of current. The phace error signal decides the duration and polarity of those pulses. The current absolute values are programmable by A register for high current and B register for low current

4.3.5 Inlock detector

Switching the charge pump in low current mode can be done either via software or automatically by the inlock detector, by setting bit LDENA to "1".

After reaching a phase difference about lower than 40 ns the charge pump is forced in low current mode. A new $^{9}L^{1}$ divider alternation by $I^{2}C$ bus will switch the charge pump in the high current mode.

4.3.6 Low acise CMOS Op-amp

Ar Puternal voltage divider at pin VREF2 connects the positive input of the low noise opa.mp. The charge pump output connects the negative input. This internal amplifier in cooperation with external components can provide an active filter. The negative input is switchable to three input pins, to increase the flexibility in application. This feature allows two separate active filters for different applications.

While the high current mode is activated LPHC output is switched on.

4.3.7 IF counter block

The aim of IF counter is to measure the intermediate frequency of the tuner for AM and FM mode. The input signal for FM and AM up conversion is the same 10.7 MHz IF level after limiter. AM 450 kHz signal is coming from narrow filtered IF2 before demodulation. A switch controlled by IF counter mode (IFCM) is chosing the input signal for IF counter.

The grade of integration is adjustable by eight different measuring cycle times. The tolerance of the accepted count value is adjustable, to reach an optimum compromise for search speed and precision of the evaluation.

4.3.8 The IF-counter mode

The IF counter works in 3 modes controlled by IFCM register.

4.3.9 Sampling timer

A sampling timer generates the gate signal for the main counter. The basically sampling time are in FM mode 6.25 kHz (t_{TIM} =160 µs) and in AM mode 1 kHz (t_{TIM} =1ms). This is followed by an asynchronous divider to generate several sampling times.

4.3.10 Intermediate frequency main counter

This counter is a 11 - 21-bit synchronous auto reload down counter. Five bits (CF) are programmable to have the possibility for an adjust to the centre frequency of the IF-filter. The counter length is automatic adjusted to the chosen sampling time and the counter mode (FM, AM-UPC, AM).

At the start the counter will be loaded with a defined value which is an environment to the divider value ($t_{Sample} \ge f_{IF}$).

If a correct frequency is applied to the IF counter frequency in out at the end of the sampling time the main counter is changing its state from 0h to 1FFEFE.

This is detected by a control logic and an external search stop output is changing from LOW to HIGH. The frequency range inside which a successful count result is adjustable by the EW bits.

```
 \begin{split} t_{CNT} &= (CF + 1696 + 1) \ / \ f_{IF} & FM \ \text{mode} \\ t_{CNT} &= (CF + 10688 + 1) \ / \ f_{IF} & AM \ \text{cp} \ \text{conversion mode} \\ t_{CNT} &= (CF + 488 + 1) \ / \ f_{IF} & AM \ \text{mode} \end{split}
```

```
Counter result succeeded: t_{TIM} \ge t_{CNT} + t_{CBF}
```

```
t_{\text{TIM}} \le t_{CNT} + \lambda_{ERR}
```

Counter result failed:

 $t_{TIM} > t_{CNT} + t_{ERR}$

ί_{TIM} < t_{CNT} - t_{ERR}

 $t_{TIM} = IF$ timer cycle time (sampling time)

 $t_{CNT} = IF$ counter cycle time

t_{ERR} = discrimination window (controlled by the EW registers)

The IF counter is only started by inlock information from the PLL part. It is enabled by software (IFENA).

4.3.11 Adjustment of the measurement sequence time

The precision of the measurements is adjustable by controlling the discrimination window. This is adjustable by programming the control registers EW.

The measurement time per cycle is adjustable by setting the registers IFS.

10501e

4.3.12 Adjust of the frequency value

The center frequency of the discrimination window is adjustable by the control registers CF.

4.4 I²C bus interface

The TDA7512 supports the I^2C bus protocol. This protocol defines any device that sends data onto the bus as a transmitter, and the receiving device as the receiver. The device that controls the transfer is a master and device being controlled is the slave. The master will always initiate data transfer and provide the clock to transmit or receive operations.

4.4.1 Data transition

Data transition on the SDA line must only occur when the clock SCL is LOW. SDA transitions while SCL is HIGH will be interpreted as START or STOP condition.

4.4.2 Start condition

A start condition is defined by a HIGH to LOW transition of the SDA line while SCL is at a stable HIGH level. This "START" condition must precede any command and initiate a data transfer onto the bus. The device continuously monitors the SDA and SCL lines for a valid START and will not response to any command if this or ndition has not been met.

4.4.3 Stop condition

A STOP condition is defined by a LOW to HIGH transition of the SDA while the SCL line is at a stable HIGH level. This condition terminates the communication between the devices and forces the bus-interface of the device into the initial condition.

4.4.4 Acknowledge

Indicates a successful data transfer. The transmitter will release the bus after sending 8 bits of datc. I using the 9th clock cycle the receiver will pull the SDA line to LOW level to indicate it receives the eight bits of data.

4.4.5 Data transfer

During data transfer the device samples the SDA line on the leading edge of the SCL clock. Therefore, for proper device operation the SDA line must be stable during the SCL LOW to HIGH transition.

4.4.6 Device addressing

To start the communication between two devices, the bus master must initiate a start instruction sequence, followed by an eight bit word corresponding to the address of the device it is addressing.

The most significant 6 bits of the slave address are the device type identifier.

The TDA7512 device type is fixed as "110001".

The next significant bit is used to address a particular device of the previous defined type connected to the bus.

Doc ID 9300 Rev 4

The state of the hardwired PIN41 defines the state of this address bit. So up to two devices could be connected on the same bus. When PIN41 is connected to VCC2 the address bit "1" is selected. In this case the AM part doesn't work. Otherwise the address bit "0" is selected (FM and AM is working). Therefor a double FM tuner concept is possible.

The last bit of the start instruction defines the type of operation to be performed:

- When set to "1", a read operation is selected
- When set to "0", a write operation is selected

The TDA7512 connected to the bus will compare their own hardwired address with the slave address being transmitted, after detecting a START condition. After this comparison, the TDA7512 will generate an "acknowledge" on the SDA line and will do either a read or a write operation according to the state of R/W bit.

4.4.7 Write operation

Following a START condition the master sends a slave address word with the P/W bit set to "0". The device will generate an "acknowledge" after this first transmission and will wait for a second word (the word address field). This 8-bit address field provides an access to any of the 32 internal addresses. Upon receipt of the word address the 1.0A7512 slave device will respond with an "acknowledge". At this time, all the following words transmitted to the TDA7512 will be considered as Data. The internal address will be automatically incremented. After each word receipt the TDA7512 vill answer with an "acknowledge".

4.4.8 Read operation

If the master sends a slave address word with the R/W bit set to "1", the TDA7512 will transit one 8-bit data word. This data word includes the following informations:

- bit0 (ISS filter, $1 = ON \ C = OFF$)
- bit1 (ISS filter band vicitn, 1 = 80 kHz, 0 = 120 kHz)
- bit2 (MPOUT,1: multipath present, 0 = no multipath)
- bit3 (1 = PLL is locked in, 0 = PLL is locked out).
- bit + (fieldstrength indicator, 1 = lower as softmute threshold, 0 = higher as softmute threshold)
- nito (adjacent channel indicator, 1 = adjacent channel present, 0 = no adjacent channel)
- bit6 (deviation indicator, 1 = strong overdeviation present, 0 = no strong overdeviation)
- bit7 (deviation indicator, 1 = overdeviation present, 0 = no overdeviation)

5 Software specification

The interface protocol comprises:

- start condition (S)
- chip address byte
- subaddress byte
- sequence of data (N bytes + Acknowledge)
- stop condition (P)

Figure 3. Software specification

5.1 Address organization

Table 8. Address organization

Function	Addr	50	6	5	4	3	2	1	0
CHARGE PUMP	0	LDENA	CURRH	B1	B0	A3	A2	A1	A0
PLi O	77	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
COUNTER	2	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8
TV1	3	TV107	TV106	TV105	TV1O4	TV1O3	TV102	TV1O1	TV1O0
TV2	4	TV207	TV2O6	TV2O5	TV2O4	TV2O3	TV2O2	TV2O1	TV2O0
IFC CTRL 1	5	LM	CASF	IFCM1	IFCM0	IFENA	IFS2	IFS1	IFS0
IFC CTRL 2	6	EW2	EW1	EW0	CF4	CF3	CF2	CF1	CF0
AM CTL	7	-	-	-	-	AMD1	AMD0	AMST	AMSEEK
QUALITYISS	8	TISS2	TISS1	TISS0	TVWB	ISS30	ISS80	ISSON	CTLOFF
QUALITY AC	9	ACNTH1	ACNTH0	ACWTH2	ACWTH1	ACWTH0	ACG	ACF	-
QUALITY MP	10	MPAC	APPM2	APPM1	MPTH1	MPTH0	MPG	MPF	MPOFF
QUALITYDEV	11	BWCTL	DTH1	DTH0	DWTH1	DWTH0	TDEV2	TDEV1	TDEV0
MUTE1	12	MENA	SMD3	SMD2	SMD1	SMD0	SMTH2	SMTH1	SMTH0

Function	Addr	7	6	5	4	3	2	1	0
MUTE2	13	F100K	ACM3	ACM2	ACM1	ACM0	ACMD1	ACMD0	SMCTH
VCO/PLLREF	14	LPF	AMON	RC2	RC1	RC0	VCOD2	VCOD1	VCOD0
FMAGC	15	-	KAGC2	KAGC1	KAGC0	IFAGC1	IFAGC0	RFAGC1	RFAGC0
AMAGC	16	DAGC3	DAGC2	DAGC1	DAGC0	WAGC3	WAGC2	WAGC1	WAGC0
DEM ADJ	17	DNB1	DNB0	DEM5	DEM4	DEM3	DEM2	DEM1	DEM0
LEVEL	18	ODSW	AMIN	SMSL	SL4	SL3	SL2	SL1	SL0
IF1/XTAL	19	XTAL4	XTAL3	XTAL2	XTAL1	XTAL0	IFG11	IFG10	IFG2
TANK ADJ	20	IF1T3	IF1T2	IF1T1	IF1T0	IF2T3	IF2T2	IF2T1	!F∠T0
I/Q ADJ	21	ODCUR	-	G1	G0	PH3	PH2	PH1	PH0
TESTCTRL1	22	-	ISSIN	TOUT	TIN	CLKSEP	TEST3	TERIZ	TEST1
TESTCTRL2	23	OUT7	OUT6	OUT5	OUT4	OUT3	OUT∠	OUT1	OUT0
TESTCTRL3	24	-	TINACM	TINMP	TINAC	OUT11	CU110	OUT9	OUT8
TESTCTRL4	25	-	-	-	OUT16	OUT15	OUT14	OUT13	OUT12
	Contr	-	ster fur	(105C	966		<u>.</u>	

Table 8. Address organization (continued)

Control register function 5.2

Control register function Table 9.

	Register name	Function					
	A	Ct. arge pump high current					
	ACF	Adjacent channel filter select					
	ACG	Adjacent channel filter gain					
	/.Ci 1	Threshold for startpoint adjacent channel mute					
	ACMD	Adjacent channel mute depth					
16	ACNTH	Adjacent channel narrow band threshold					
SO'	ACWTH	Adjacent channel wide band threshold					
05	AMD	AM prescaler					
U	AMIN	AM IF1 input select					
	AMON	AM-FM switch					
	AMSEEK	Set short time constant of AGC in AM seek mode					
	AMST	AM stereo select					
	APPM	Application mode quality detection					
	В	Charge pump low current					
	BWCTL	ISS filter fixed bandwidth (ISS80) in automatic control					
	CASF	Check alternative station frequency					
	CF	Center frequency IF counter					

		register function (continued)				
	Register name	Function				
	CLKSEP	Clock separation (only for testing)				
	CTLOFF	Switch off automatic control of ISS filter				
	CURRH	Set current high charge pump				
	DAGC	AM narrow band AGC threshold				
	DEM	Demodulator offset				
	DNB	Demodulator noise spike blanking				
	DTH	Deviation detector threshold for ISS filter "OFF"				
	DWTH	Deviation detector threshold for ISS filter narrow/wide				
	EW	Frequency error window IF counter				
	F100K	Corner frequency of AC-mute high pass filter				
	G	I/Q mixer gain adjust				
	IF1T	FM/AM mixer1 tank adjust				
	IF2T	AM mixer2 tank adjust				
	IFAGC	FM IF AGC				
	IFCM	IF counter mode				
	IFENA	IF counter enable				
	IFG	IF1 amplifier gain (וט.7 MHz)				
	IFS	IF courtier sampling time				
	ISSIN	Tes' in put for ISS filter				
	ISSON	'SS filter "ON"				
	ISS3)	ISS filter 30 kHz weather band				
	!3S80	ISS filter narrow/mid switch				
	KAGC	FM keying AGC				
26	LDENA	Lock detector enable				
SO	LM	Local mode FM seek stop				
005	LPF	Loop filter input select				
	MENA	Softmute enable				
	MPAC	Adjacent channel control by multipath				
	MPF	Multipath filter frequency				
	MPG	Multipath filter gain				
	MPOFF	Multipath control "OFF"				
	MPTH	Multipath threshold				
	ODCUR	Current for overdeviation-correction				
	ODSW	Overdeviation-correction enable				
	OUT	Test output (only for testing)				

 Table 9.
 Control register function (continued)

Register name	Function
PC	Counter for PLL (VCO frequency)
PH	I/Q mixer phase adjust
RC	Reference counter PLL
RFAGC	FM RF AGC
SL	S meter slider
SMCTH	Softmute capacitor threshold for ISS "ON"
SMD	Softmute depth threshold
SMSL	S meter slope
SMTH	Softmute startpoint threshold
TDEV	Time constant for deviation detector
TEST	Testing PLL/IFC (only for testing)
TIN	Switch FSU PIN to TEST input (only for tesing)
TINAC	Test input adjacent channel (only for testing)
TINACM	Test input adjacent channel mune (only for testing)
TINMP	Test input multipath (only for testing)
TISS	Time constant for ISE nitter "ON"/"OFF"
TOUT	Switch FSU PIN to rest output (only for testing)
TVO	Tuning voltage offset for prestage
TVWB	Terring voltage offset for prestage (weather band mode)
VCOD	VCO divider
WAGC	AM wide band AGC
	Crystal frequency adjust

 Table 9.
 Control register function (continued)

Table 10. Subaddress

	MSB	0,						LSB	Function
\sim	0	0	Ι	A 4	A3	A2	A 1	A 0	Function
	-	-	-	0	0	0	0	0	Charge pump control
	-	-	-	0	0	0	0	1	PLL lock detector
	-	-	-	-	-	-	-	-	-
	-	-	-	1	0	1	0	1	I/Q ADJ
	-	-	0	-	-	-	-	-	Page mode "OFF"
	-	-	1	-	-	-	-	-	Page mode enable

5.3 Data byte specification

Table 11.	Addr 0 charge pump control
-----------	----------------------------

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	0	0	0	0	High current = 0 mA
-	-	-	-	0	0	0	1	High current = 0.5 mA
-	-	-	-	0	0	1	0	High current = 1 mA
-	-	-	-	0	0	1	1	High current = 1.5 mA
-	-	-	-	-	-	-	-	-
-	-	-	-	1	1	1	1	High current = 7.5 mA
-	-	0	0	-	-	-	-	Low current = 0 µA
-	-	0	1	-	-	-	-	Low current = 50 µA
-	-	1	0	-	-	-	-	Low current = 100 µA
-	-	1	1	-	-	-	-	Low current = 150 µA
-	0	-	-	-	-	-	-	Select low current
-	1	-	-	-	-	-	-	Select high current
0	-	-	-	-	-	-	-	Luck natestor disable
1	-	-	-	-	-	-	-	Louix detector enable

Table 12. Addr 1 PLL counter 1 (LSE)

	MSB					(77	LSB	Function
	D7	D6	D5	D4	ח3	D2	D1	D0	Function
	0	0	0	0		0	0	0	LSB = 0
	0	0	0	U	0	0	0	1	LSB = 1
	0)	÷.	0	0	0	1	0	LSB = 2
	C	07	-	-	-	-	-	-	-
	07	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	1	0	1	LSB = 253
	1	1	1	1	1	1	1	0	LSB = 254
	1	1	1	1	1	1	1	1	LSB = 255

	-					· -	/	
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
0	0	0	0	0	0	0	0	MSB = 0
0	0	0	0	0	0	0	1	MSB = 256
0	0	0	0	0	0	1	0	MSB = 512
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	MSB = 64768
1	1	1	1	1	1	0	1	MSB = 65024
1	1	1	1	1	1	1	0	MSB = 65280
1	1	1	1	1	1	1	1	MSB = 65536
Note:	MSB + 32							
Table	14.	Addr	· 3,4 T	V1,2 (offset	refer	red to	tuning voltage PIN28)
MSB							I SB	. 0.

Table 13. Addr 2 PLL counter 2 (MSB)

Table 14.	Addr 3,4 TV1,2 (offset referred to tuning voltage PIN28)
-----------	--

MSB							LSB	Function			
D7	D6	D5	D4	D3	D2	D1	D0	Function			
-	0	0	0	0	0	0	0	Tuning Voltage Offset = 0			
-	0	0	0	0	0	0	1	1 /O = 25 mV			
-	0	0	0	0	0	1	0	TVO = 50 mV			
-	-	-	-	-	-	x	51	-			
-	1	1	1	1	. 1	1	1	TVO = 3175 mV			
0	-	-	-	-	5	-	-	-TVO			
1	-	-	0		-	-	-	+TVO			

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i dictori
-	-	-	-	-	0	0	0	t _{Sample} = 20.48 ms (FM)128 ms (AM)
-	-	-	-	-	0	0	1	t _{Sample} = 10.24 ms (FM)64 ms (AM)
-	-	-	-	-	0	1	0	t _{Sample} = 5.12 ms (FM)32 ms (AM)
-	-	-	-	-	0	1	1	t _{Sample} = 2.56 ms (FM)16 ms (AM)
-	-	-	-	-	1	0	0	t _{Sample} = 1.28 ms (FM)8 ms (AM)
-	-	-	-	-	1	0	1	t _{Sample} = 640 μs (FM)4 ms (AM)
-	-	-	-	-	1	1	0	t _{Sample} = 320 μs (FM)2 ms (AM)
-	-	-	-	-	1	1	1	t _{Sample} = 160 μs (FM)1 ms (AM)
-	-	-	-	0	-	-	-	IF counter disable / stand by
-	-	-	-	1	-	-	-	IF counter enable
-	-	0	0	-	-	-	-	Not valid
-	-	0	1	-	-	-	-	IF counter FM mode
-	-	1	0	-	-	-	-	IF counter AM ແກນພະ (450 kHz)
-	-	1	1	-	-	-	-	IF counter AU mode (10.7 MHz)
-	0	-	-	-	-	-	-	Lisab e mute & AGC on hold in FM mode
-	1	-	-	-	-		-	Enable mute & AGC on hold in FM mode
0	-	-	-	-	-		57	Disable local mode
1	-	-	-	-	-	172	-	Enable local mode (PIN diode current = 0.5 mA) "ON"

Table 15. Addr 5 IF counter control 1

Table 16.	Addr 6 IF counter control	2

MSB			2				LSB	Function
D7	D6	קב	D4	D3	D2	D1 D0		Function
-		7 .	0	0	0	0	0	f _{Center} = 10.60625 MHz (FM) / 10.689 MHz; 449 kHz (AM)
		-	0	0	0	0	1	f _{Center} = 10.61250 MHz (FM) / 10.690 MHz; 450 kHz (AM)
2	-	-	-	-	-	-	-	-
-	-	-	0	1	0	1	1	f _{Center} = 10.67500 MHz (FM) / 10.700 MHz; 460 kHz (AM)
-	-	-	0	1	1	0	0	f _{Center} = 10.68125 MHz (FM) / 10.701 MHz; 461 kHz (AM)
-	-	-	0	1	1	0	1	f _{Center} = 10.68750 MHz (FM) / 10.702 MHz; 462 kHz (AM)
-	-	-	0	1	1	1	0	f _{Center} = 10.69375 MHz (FM) / 10.703 MHz; 463 kHz (AM)
-	-	-	0	1	1	1	1	f _{Center} = 10.70000 MHz (FM) / 10.704 MHz; 464 kHz(AM)
-	-	-	-	-	-	-	-	-
-	-	-	1	1	1	1	1	f _{Center} = 10.80000 MHz (FM) / 10.720 MHz;480 kHz (AM)
0	0	0	-	-	-	-	-	Not valid
0	0	1	-	-	-	-	-	Not valid

Doc ID 9300 Rev 4

			• · · ·				(
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	-	-	-	-	-	Not valid
0	1	1	-	-	-	-	-	∆f = 6.25 kHz (FM) 1 kHz (AM)
1	0	0	-	-	-	-	-	∆f = 12.5 kHz (FM) 2 kHz (AM)
1	0	1	-	-	-	-	-	∆f = 25 kHz (FM) 4 kHz (AM)
1	1	0	-	-	-	-	-	∆f = 50 kHz (FM) 8 kHz (AM)
1	1	1	-	-	-	-	-	∆f = 100 kHz (FM) 16 kHz (AM)

Table 16. Addr 6 IF counter control 2 (continued)

Table 17. Addr 7 AM control

Table	17.	Addr	7 AM	cont	rol			*(5)
MSB LSB								
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0	Normal AGC time constant
-	-	-	-	-	-	-	1	Short time constant for Aiv seek stop
-	-	-	-	-	-	0	-	Multipath information available FM at PIN34
-	-	-	-	-	-	1	-	AM stere ouput available at PIN34
-	-	-	-	0	0	-	-	Prescaler ratio 10
-	-	-	-	0	1	-	-	Prescaler ratio 8
-	-	-	-	1	0			Prescaler ratio 6
-	-	-	-	1	1		-	Prescaler ratio 4

Table 18. Addr 8 quality (S.3 iilter

MSB			0	Ū,			LSB	Function
D7	D6	Do	D4	D3	D2	D1	D0	Function
-			-	-	-	-	0	ISS filter control "ON"
. C		-	-	-	-	-	1	ISS filter control "OFF"
	-	-	-	-		0	-	Switch ISS filter "OFF"
-	-	-	-	-		1	-	Switch ISS filter "ON"
-	-	-	-	-	0	-	-	Switch "OFF" ISS filter 120 kHz
-	-	-	-	-	1	-	-	Switch "ON" ISS filter 80 kHz
-	-	-	-	0	-	-	-	Switch "OFF" ISS filter 30 kHz for weatherband
-	-	-	-	1	-	-	-	Switch "ON" ISS filter 30 kHz for weatherband
-	-	-	0	-	-	-	-	Disable TV offset for weather band
-	-	-	1	-	-	-	-	Enable TV offset for weather band (+4V)
0	0	0		-	-	-	-	discharge current 1µA, charge current mid 74µA narrow124µA
0	0	1		-	-	-	-	discharge current $3\mu A$, charge current mid $72\mu A$ narrow $122\mu A$

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i unction
0	1	0	-	-	-	-	-	discharge current 5 $_\mu A,$ charge current mid 70 $_\mu A$ narrow120 $_\mu A$
0	1	1	-	-	-	-	-	discharge current 7 $_\mu A,$ charge current mid 68 μA narrow118 μA
-	-	-	-	-	-	-	-	-
1	1	1	-	-	-	-	-	discharge current 15 $\mu A,$ charge current mid 60 μA narrow 110 μA

Table 18. Addr 8 quality ISS filter (continued)

Table 19.	Addr 9 quality detection adjacent channel
-----------	---

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1 D0		
-	-	-	-	-	-	-	0/1	Not valid
-	-	-	-	-	-	0	-	AC highpass frequency 10L k+.z
-	-	-	-	-	-	1	-	AC bandpass frequenc / :00 kHz
-	-	-	-	-	0	-	-	AC gain 32 dB
-	-	-	-	-	1	-	-	AC gain 35 d3
-	-	0	0	0	-	-	-	AC wice Land threshold 0.25 V
-	-	0	0	1	-	-	-	AC wide band threshold 0.35 V
-	-	0	1	0	-	10		AC wide band threshold 0.45 V
-	-	-	-	-	-			-
-	-	1	1	1			-	AC wide band threshold 0.95 V
0	0	-	-	0		-	-	AC narrow band threshold 0.0 V
0	1	-	0	-	-	-	-	AC narrow band threshold 0.1 V
1	0	×C	-	-	-	-	-	AC narrow band threshold 0.2 V
1		5-	-	-	-	-	-	AC narrow band threshold 0.3 V

	\mathbf{U} -	-	-	-	-	-	AC
Table 20). Addr	[.] 10 qı	uality	detect	tion m	nultipa	th

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0	Multipath control "ON"
-	-	-	-	-	-	-	1	Multipath control "OFF"
-	-	-	-	-	-	0	-	MP bandpass frequency 19 kHz
-	-	-	-	-	-	1	-	MP bandpass frequency 31 kHz
-	-	-	-	-	0	-	-	MP gain 12 dB
-	-	-	-	-	1	-	-	MP gain 23 dB
-	-	-	0	0	-	-	-	MP threshold 0.50 V

Doc ID 9300 Rev 4

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	0	1	-	-	-	MP threshold 0.75 V
-	-	-	1	0	-	-	-	MP threshold 1.00 V
-	-	-	1	1	-	-	-	MP threshold 1.25 V
-	0	0	-	-	-	-	-	Application mode 1
-	0	1	-	-	-	-	-	Application mode 2
0	-	-	-	-	-	-	-	Multipath eliminates ac
1	-	-	-	-	-	-	-	Multipath eliminates ac and ac+
Table	21.	Addr	່ 11 qເ	ality	devia	tion d	etecti	on
MCB							ICR	

Addr 10 quality detection multipath (continued) Table 20.

Table 21. Addr 11 quality deviation detection	า
---	---

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	0	0	0	charge current 34 µA cischarge current 6µA
-	-	-	-	-	0	0	1	charge current 3? IA, discharge current 8 µA
-	-	-	-	-	0	1	0	charge current 50 μA, discharge current 10 μA
-	-	-	-	-	0	1	1	c'ıarç a current 28 μA, discharge current 12 μA
-	-	-	-	-	-	-	-	
-	-	-	-	-	1	10		charge current 20 µA, discharge current 20 µA
-	-	-	0	0			-	DEV threshold for ISS narrow/wide 30 kHz
-	-	-	0	1		-	-	DEV threshold for ISS narrow/wide 45 kHz
-	-	-	1	0	· -	-	-	DEV threshold for ISS narrow/wide 60 kHz
-	-	-	-7-	1	-	-	-	DEV threshold for ISS narrow/wide 75 kHz
-	0) -	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.5
-	L	1	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.4
S		0	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.3
Q.	1	1	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1
0	-	-	-	-	-	-	-	Disable ISS filter to fixed bandwidth (ISS80) in automatic control
1	-	-	-	-	-	-	-	Enable ISS filter to fixed bandwidth (ISS80) in automatic control

TUDIC		7100	12 30					
MSB	B LSB							Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	0	0	0	Startpoint mute 0 in application about 3 dB $_{\mu}V$ antenna level
-	-	-	-	-	0	0	1	Startpoint mute 1in application about 4 $dB_{\mu}V$ antenna level
-	-	-	-	-	-	-	-	-
-	-	-	-	-	1	1	1	Startpoint mute 7in application about 10 $dB_{\mu}V$ antenna level
-	0	0	0	0	-	-	-	Mute depth 0 in application 18 dB
-	0	0	0	1	-	-	-	Mute depth 1 in application 20 dB
-	0	0	1	0	-	-	-	Mute depth 2 in application 22 dB
-	0	0	1	1	-	-	-	Mute depth 3 in application 24 dB
-	-	-	-	-	-	-	-	- (logarithmically behavior)
-	1	1	1	1	-	-	-	Mute depth 15 in application ?6 IE
0	-	-	-	-	-	-	-	Mute disable
1	-	-	-	-	-	-	-	Mute enable

Table 22. Addr 12 softmute control 1

Table 23. Addr 13 softmute control 2

I	-	-	-	-	-	-		
Table	23.	Addr	13 sc	oftmut	e con	trol 2		6010
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
-	-	-	-	-	-		50	Disable mute threshold for ISS filter "ON"
-	-	-	-	-	-		1	Enable mute threshold for ISS filter "ON"
-	-	-	-		0	0	-	AC mute depth 10 dB
-	-	-		0	0	1	-	AC mute depth 8 dB
-	-	-	-	-	1	0	-	AC mute depth 6 dB
-	-	2.2	- 1	-	1	1	-	AC mute depth 4 dB
-	<u> </u>	0	0	0	-	-	-	AC mute threshold 60 mV
3	0	0	0	1	-	-	-	AC mute threshold 80 mV
2	0	0	1	0	-	-	-	AC mute threshold 100 mV
-	-	-	-	-	-	-	-	-
-	0	1	1	1	-	-	-	AC mute threshold 340 mV
-	1	1	1	1	-	-	-	AC mute "OFF"
0	-	-	-	-	-	-	-	AC mute filter 110 kHz
1	-	-	-	-	-	-	-	AC mute filter 100 kHz

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	0	0	not valid (only for testing)
-	-	-	-	-	-	0	1	VCO frequency divided by 2
-	-	-	-	-	-	1	0	VCO frequency divided by 3
-	-	-	-	-	-	1	1	original VCO frequency
-	-	-	-	-	0	-	-	VCO" I" signal 0 degree
-	-	-	-	-	1	-	-	VCO "l" signal 180 degree
-	-	1	0	0	-	-	-	PLL reference frequency 50 kHz
-	-	1	0	1	-	-	-	PLL reference frequency 25 kHz
-	-	1	1	0	-	-	-	PLL reference frequency 10 kHz
-	-	1	1	1	-	-	-	PLL reference frequency 9 kHz
-	-	0	0	0	-	-	-	PLL reference frequency 2 kHz
-	0	-	-	-	-	-	-	Select FM mode
-	1	-	-	-	-	-	-	Select AM mode
0		-	-	-	-	-	-	Select PLL low pass filter FM
1		-	-	-	-	-	-	Select PLI_!c v r ass filter AM
Fable	25	Addr	15 FN			•	0/03	

Table 24. Addr 14 VCODIV/PLLREF

Table 25. Addr 15 FM AGC

MSB						10	LSB	Function
D7	D6	D5	D4	D3	D2	ס:	D0	Function
-	-	-	-	- >		0	0	RFAGC threshold V_{7-9TH} = 85 (77 ANT) dB _µ V
-	-	-	-	G		0	1	RFAGC threshold V _{7-9TH} = 90 (82 ANT) dB _µ V
-	-	-	0		-	1	0	RFAGC threshold V _{7-9TH} = 94 (86 ANT) dB _µ V
-	-	10	-	-	-	1	1	RFAGC threshold V _{7-9TH} = 96 (88 ANT) dB _µ V
-	50		-	0	0	-	-	IFAGC threshold V_{60TH} = 86 (60 ANT) dB _µ V
-		-	-	0	1	-	-	IFAGC threshold V_{60TH} = 92 (66 ANT) dB _µ V
		-	-	1	0	-	-	IFAGC threshold V _{60TH} = 96 (70 ANT) dB _µ V
	-	-	-	1	1	-	-	IFAGC threshold V_{60TH} = 98 (72 ANT) dB _µ V
-	0	0	0	-	-	-	-	KAGC threshold 80 dBµV
-	0	0	1	-	-	-	-	KAGC threshold 82 dBµV
-	0	1	0	-	-	-	-	KAGC threshold 84 dBµV
-	0	1	1	-	-	-	-	KAGC threshold 86 dBµV
-	1	0	0	-	-	-	-	KAGC threshold 88 dBµV
-	1	0	1	-	-	-	-	KAGC threshold 90 dBµV
-	1	1	0	-	-	-	-	KAGC threshold 92 dBµV
-	1	1	1	-	-	-	-	Keying AGC "OFF"
0	-	-	-	-	-	-	-	has to be "0"

Table 26. Addr 16 AM AGC

MSB					30		LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	0	0	0	0	WAGC V _{3TH} = 90(65 ANT) dB μ V _{58TH} = 90(60 ANT) dB μ
-	-	-	-	0	0	0	1	WAGC V _{3TH} = 94(69 ANT) dBμ V _{58TH} = 94(64 ANT) dBμ
-	-	-	-	0	0	1	0	WAGC V _{3TH} = 97(72 ANT) dBµ V _{58TH} = 96.5(66.5 ANT) dBµ
-	-	-	-	0	0	1	1	WAGC V _{3TH} = 98.5(73.5 ANT) dB _µ V _{58TH} = 98.5(68.5 ANT) dB _µ
-	-	-	-	0	1	0	0	WAGC V _{3TH} = 100(75 ANT) dB $_{\mu}$ V _{58TH} = 100(70 ANT) dB $_{\mu}$
-	-	-	-	0	1	0	1	WAGC V _{3TH} = 101.5(76.5 ANT) dB _µ V _{58TH} = 101(71 ANT) dB _µ
-	-	-	-	0	1	1	0	WAGC V _{3TH} = 102.5(77.5 ANT) dB _µ V _{58TH} = 102.5(72.5 ANT) dB _µ
-	-	-	-	0	1	1	1	WAGC V _{3TH} = 103.5(78.5 ANT) dB _µ V _{58TH} = 103.5(73.5 ANT) dB _µ
-	-	-	-	1	0	0	0	WAGC V _{3TH} = 104.5(79.5 ANT) dBμ V _{58T'1} = 124(74 ANT) dBμ
-	-	-	-	1	0	0	1	WAGC V _{3TH} = 105(80 ANT) dBμ ^V _{5ε Th} = 05(75 ANT) dBμ
-	-	-	-	1	0	1	0	WAGC V _{3TH} = 106(81 ANT) dB _µ V _{58TH} = 105.5(75.5 ANT) dB _µ
-	-	-	-	1	0	1	1	WAGC V _{3TH} = 106.5(81 こ ムバ7) dB _µ V _{58TH} = 106.5(76.5 ANT) dB
-	-	-	-	1	1	0	0	WAGC V _{3TH} = 107(92 AiVT) dBμ V _{58TH} = 107(77 ANT) dBμ
-	-	-	-	1	1	0	1	WAGC V _{31,6} = 108(83 ANT) dB _µ V _{58TH} = 107.5(77.5 ANT) dB _µ
-	-	-	-	1	1	1	0	WAC C V JTH= 108.5(83.5 ANT) dBµ V _{58TH} = 108(78 ANT) dBµ
-	-	-	-	1	1	1	4	WAGC V _{3TH} = 109(84 ANT) dBµ V _{58TH} = 108.5(78.5 ANT) dBµ
0	0	0	0	-	-	-	5	DAGC V _{58TH} = 74(44 ANTTENNA) dB _µ
0	0	0	1	-	-	G	-	DAGC V _{58TH} = 77(47 ANTTENNA) dB _µ
0	0	1	0	-		-	-	DAGC V _{58TH} = 79(49 ANTTENNA) dBµ
0	0	1	1	<u>70</u>		-	-	DAGC V _{58TH} = 80.5(50.5 ANTTENNA) dBμ
0	1	0	0		-	-	-	DAGC V _{58TH} = 82(52 ANTTENNA) dB _µ
0	1	$\overline{\mathbf{v}}$	1	-	-	-	-	DAGC V _{58TH} = 83.5(53.5 ANTTENNA) dBμ
0		1	0	-	-	-	-	DAGC V _{58TH} = 85(55 ANTTENNA) dBµ
$\overline{1}$	1	1	1	-	-	-	-	DAGC V _{58TH} = 86.5(56.5 ANTTENNA) dBμ
1	0	0	0	-	-	-	-	DAGC V _{58TH} = 88(58 ANTTENNA) dBµ
1	0	0	1	-	-	-	-	DAGC V _{58TH} = 89(59 ANTTENNA) dB _µ
1	0	1	0	-	-	-	-	DAGC V _{58TH} = 90(60 ANTTENNA) dBµ
1	0	1	1	-	-	-	-	DAGC V _{58TH} = 91(61 ANTTENNA) dBµ
1	1	0	0	-	-	-	-	DAGC V _{58TH} = 92(62 ANTTENNA) dB _µ
1	1	0	1	-	-	-	-	DAGC V _{58TH} = 93(63 ANTTENNA) dBµ
1	1	1	0	-	-	-	-	DAGC V _{58TH} = 94(64 ANTENNA) dBµ
1	1	1	1	-	-	-	-	DAGC V _{58TH} = 96(66 ANTENNA) dBμ

Table	-	Addi	., .,		Joaun		ie auj	
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	0	0	0	0	0	0	0 mV
-	-	0	0	0	0	0	1	+8.5 mV
-	-	0	0	0	0	1	0	+17 mV
-	-	-	-	-	-	-	-	-
-	-	0	1	1	1	1	1	+263.5 mV
-	-	1	0	0	0	0	0	0 mV
-	-	1	0	0	0	0	1	-8.5 mV
-	-	1	0	0	0	1	0	-17 mV
-	-	-	-	-	-	-	-	
-	-	1	1	1	1	1	1	-263.5 mV
0	0	-	-	-	-	-	-	Spike cancellation "OFF"
0	1	-	-	-	-	-	-	Threshold for spike cenceliation 270 mV
1	0	-	-	-	-	-	-	Threshold for ancellation 520 mV
1	1	-	-	-	-	-	-	Threshein for spike cancellation 750 mV

P

Table 27.	Addr 17 FM demodulator fine adjust
	Addi 17 1 M demodulator fine dajust

Table 28. Addr 18 S-meter slider

MSB						10	L3B	Function
D7	D6	D5	D4	D3	D2	ר <u>ר</u> .	D0	Function
-	-	-	-	0	0	0	0	S meter slider offset SL = 0 dB
-	-	-		0	0	0	1	S meter offset SL = 1 dB
-	-	-	-	0	0	1	0	S meter offset SL = 2 dB
-	-	<u>.</u>	-	-	-	-	-	-
-		<i>7</i> .	-	1	1	1	1	S meter offset SL=15 dB
		-	0	-	-	-	-	S meter offset -SL
	-	-	1	-	-	-	-	S meter offset +SL
-	-	0		-	-	-	-	S Meter slope 1V/decade
-	-	1	-	-	-	-	-	S meter slope 1.5V/decade
-	0	-	-	-	-	-	-	Select external AM-IF input
-	1	-	-	-	-	-	-	Select internal AM-IF input
0	-	-	-	-	-	-	-	Overdeviation correction "ON"
1	-	-	-	-	-	-	-	Overdeviation correction "OFF"

Table	29.	Auui	1916	GAIN	/Ci y 3	iai au	Jusi	
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	-	-	-	-	-	-	0	IF1 gain2 9 dB
-	-	-	-	-	-	-	1	IF1 gain2 11 dB
-	-	-	-	-	0	0	-	IF1 gain1 9 dB
-	-	-	-	-	0	1	-	IF1 gain1 11 dB
-	-	-	-	-	1	0	-	IF1 gain1 12 dB
-	-	-	-	-	1	1	-	IF1 gain1 15 dB
0	0	0	0	0	-	-	-	C _{Load} 0 pF
0	0	0	0	1	-	-	-	C _{Load} 0.75 pF
0	0	0	1	0	-	-	-	C _{Load} 1.5 pF
0	0	0	1	1	-	-	-	C _{Load} 2.25 pF
0	0	1	0	0	-	-	-	C _{Load} 3 pF
-	-	-	-	-	-	-	-	-
1	1	1	1	1	-	-	-	C _{Load} 23.25 p7
Table	30.	Addr	20 ta	nk ad	just			005

Table 29. Addr 19 IF GAIN/Crystal adjust

Addr 20 tank adjust Table 30.

Table	50.	Addr	20 la	nik auj	usi			
MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	L0	Function
-	-	-	-	0	0	0	0	450 kHz 0 pF
-	-	-	-	0	0	0	1	450 kHz 1.6 pF
-	-	-		0	0	1	0	450 kHz 3.2 pF
-	-	-		0	0	1	1	450 kHz 4.8 pF
-	-	<u>.</u>	- 1	-	-	-	-	-
-		Ø.	-	1	1	1	1	450 kHz 24 pF
6	0	0	0	-	-	-	-	10.7 MHz 0 pF
0	0	0	1	-	-	-	-	10.7 MHz 0.55 pF
0	0	1	0	-	-	-	-	10.7 MHz 1.1 pF
0	0	1	1	-	-	-	-	10.7 MHz 1.65 pF
-	-	-	-	-	-	-	-	-
1	1	1	1	-	-	-	-	10.7 MHz 8.25 pF

MSB Function D7 D6 D5 D4 D3 D2 D1 D0 - - - 0 0 0 0 -7 degree - - - 0 0 0 1 -6 degree - - - 0 0 1 0 -5 degree - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 0 1 +2 degree - - - 1 1 1 +8degree - - 0 0 - - - - - - 1						IIIXOI			
D7 D6 D5 D4 D3 D2 D1 D0 - - - 0 0 0 -7 degree - - - 0 0 0 1 -6 degree - - - 0 0 1 0 -5 degree - - - - 0 1 1 0 -5 degree - - - - - - - - - - - 0 1 1 1 0 degree - - - 1 0 0 +1 degree - - - 1 1 1 +2 degree - - - - - - - - - 0 0 - - - - - 0 0 - - - -<	MSB							LSB	Function
- - - 0 0 1 -6 degree - - - 0 0 1 0 -5 degree - - - - - - - - - - - - - - - - - - - - - - - - 0 1 1 0 degree - - - 1 0 0 +1 degree - - - 1 0 0 1 +2 degree - - - - - - - - - - - 1 1 1 +8degree - - 0 0 - - - 0% - - 0 1 - - - - - - - 0 0 - - - - - - - 0 </th <th>D7</th> <th>D6</th> <th>D5</th> <th>D4</th> <th>D3</th> <th>D2</th> <th>D1</th> <th>D0</th> <th>Function</th>	D7	D6	D5	D4	D3	D2	D1	D0	Function
- - - 0 0 1 0 -5 degree - - - - - - - - - - 0 1 1 1 0 degree - - - 0 1 1 1 0 degree - - - 1 0 0 0 +1 degree - - - 1 0 0 1 +2 degree - - - - - - - - - - - 1 1 1 +8degree - - 0 0 - - - 0% - - 0 1 - - - 1% - - 1 0 - - - 1% - - 1 1 - - - 1% - - 0% - - - 0% <td< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-7 degree</td></td<>	-	-	-	-	0	0	0	0	-7 degree
- - - - - - - - - - - - - - - - - 0 1 1 1 0 degree - - - 1 0 0 0 +1 degree - - - 1 0 0 1 +2 degree - - - 1 1 1 1 +8degree - - - 1 1 1 +8degree - - - - - - - - - 0 0 - - - - - 0 0 - - - - 0 1 - - - - - - - 0 1 - - - - - - - 0 - - - - - - - 1	-	-	-	-	0	0	0	1	-6 degree
- - - 0 1 1 1 0 degree - - - 1 0 0 0 $+1$ degree - - - 1 0 0 1 $+2$ degree - - - 1 0 0 1 $+2$ degree - - - 1 1 1 1 $+3$ degree - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 0 - - - 0% - 1 0 - - - - 0% - 1 1 - - - - 0% - - - - - 0% - - - - <th< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td><td>0</td><td>1</td><td>0</td><td>-5 degree</td></th<>	-	-	-	-	0	0	1	0	-5 degree
- - - 1 0 0 +1 degree - - - 1 0 0 1 +2 degree - - - 1 0 0 1 +2 degree - - - - - - - - - - - - - - - 1 1 1 +8degree - - 0 0 - - 0% - - 0 1 - - - 0% - - 1 0 - - - 0% - - 1 0 - - +1% - - 1 - - - 0% - x - - - - not used	-	-	-	-	-	-	-	-	-
- - - 1 0 0 1 +2 degree - - - 1 0 0 1 +2 degree - - - - - - - - - - 1 1 1 +8 degree - - - 1 1 1 +8 degree - - 0 0 - - 0% - - 0 1 - - - 0% - - 1 0 - - - - 1% - - 1 0 - - - +1% - - 1 1 - - 0% - - x - - - - 0% -	-	-	-	-	0	1	1	1	0 degree
- - - - - - - - - - - - - - - - - 1 1 1 1 +8degree - - 0 0 - - - 0% - - 0 1 - - - 0% - - 0 1 - - - 0% - - 0 1 - - - - 0% - - 1 0 - - - +1% - - 1 1 - - 0% - - x - - - - not used -	-	-	-	-	1	0	0	0	+1 degree
- - - 1 1 1 1 +8degree - - 0 0 - - 0% - - 0 1 - - - 0% - - 0 1 - - - - 0% - - 0 1 - - - - 0% - - 1 0 - - - - - 1% - - 1 1 - - - - 0% - - 1 1 - - - +1% - - 1 1 - - 0% - - 0% - x - - - - not used - -	-	-	-	-	1	0	0	1	+2 degree
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	-	-	-	-	-	-	
- - 0 1 - + 1% - - - + 1% - - 0% - - 0% - - 0% - - - not used - - - not used -	-	-	-	-	1	1	1	1	+8degree
- 1 0 - - - +1% - - 1 1 - - - 0% - x - - - - not used	-	-	0	0	-	-	-	-	0%
- 1 1 - - 0% - x - - - - not used	-	-	0	1	-	-	-	-	-1%
- x not used	-	-	1	0	-	-	-	-	+1%
	-	-	1	1	-	-	-	-	0%
0 Overdeviation correction current max=45 μA	-	х	-	-	-	-	-	-	not used
	0	-	-	-	-	-	-	-	Overdeviation, רט rection current max=45 µA
1 Οverdevision correction current max=90 μA	1	-	-	-	-	-	-	-	Overdevision correction current max=90 µA

Table 31.Addr 21 I/Q FM mixer1 adjust

Table 32. Addr 22 test control 1

MSB						10	LSB	Function
D7	D6	D5	D4	D3	D2	ס:	D0	Function
х	х	х	х	x	x	х	х	Only for testing (have to be set to 0)

Table 33. Addr 23 'est control 2

MSB		20					LSB	Function
D7	L)6	Ŀö	D4	D3	D2	D1	D0	i unction
Y		х	х	х	х	х	х	Only for testing (have to be set to 0)

Table 34.Addr 24 Test Control 3

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i unction
х	х	х	х	х	х	х	х	Only for testing (have to be set to 0)

Table 35.Addr 25 test control 4

MSB LSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
х	х	х	х	х	х	х	x X Only for testing (have to be set to 0)	

Doc ID 9300 Rev 4

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

57

Appendix A Block diagrams

Figure 5. Block diagram I/Q mixer

Figure 6. Block diagram. VCO

correction						
Signal	LOW	HIGH				
ac	No adjacent channel	Adjacent channel present				
ac+	No strong adjacent channel	Adjacent channel higher as ac				
sm	Fieldstrength higher as softmute threshold	Fieldstrength lower as softmute threshold				
dev	Deviation lower as threshold DWTH	Deviation higher as threshold DWTH				
dev+	Deviation lower as threshold DTH*DWTH	Deviation higher as threshold DTH*DWTH				
inton	ISS filter off by logic (wide)	ISS filter on by logic				
int80	ISS filter 120 kHz (mid)	ISS filter 80 kHz (narrow,				

Table 36.Block diagram quality detection principle (without overdeviation correction)

Table 37. Input signals modes

	-	put Signa			Mode1			107	Mode2	
ac	ac+	sm	dev	dev+	inton	int80	Functio	inton	int80	Functio n
0	0	0	0	0	0	U	wide	0	0	wide
0	0	0	1	0	0	50	wide	0	0	wide
0	0	0	1	1	0	0	wide	0	0	wide
0	0	1	0	ΰ	1	1	narrow	1	1	narrow
0	0	1	1	0	0	0	wide	1	0	mid
0	0	1		1	0	0	wide	0	0	wide
1	0	0	ν	0	1	1	narrow	1	0	mid
1	1	5	0	0	1	1	narrow	1	1	narrow
1	0	0	1	0	1	0	mid	1	0	mid
1	0.0	0	1	1	1	0	mid	1	1	narrow
10	0	1	0	0	1	1	narrow	1	1	narrow
67	1	1	0	0	1	1	narrow	1	1	narrow
1	0	1	1	0	1	0	mid	1	0	mid
1	1	1	1	0	1	0	mid	1	1	narrow
1	0	1	1	1	1	0	mid	1	0	mid
1	1	1	1	1	1	0	mid	1	1	narrow

Table 38. Part list (application and measurement circuit)

Item	Description			
F1	TOKO 5KG 611SNS-A096GO			
F2	TOKO 5KM 396INS-A467AO			
F3	TOKO MC152 E558HNA-100092			

Item	Description					
F4	TOKO 7PSG 826AC-A0022EK=S					
F5	TOKO PGL 5PGLC-5103N					
L1	ΤΟΚΟ FSLM 2520-150 15 μΗ					
L2,L4	ΤΟΚΟ FSLM 2520-680 68 μH					
L3,L8	SIEMENS SIMID03 B82432 1 mH					
L5	TOKO LL 2012-220					
L6	TOKO LL 2012-270					
L7	TOKO LL 2012-22.0					
CF1,CF2	muRata SFE10.7MS3A10-A 180 kHz or (TOKO CFSK107M3-4,-20x)					
CF3	muRata SFE10.7MJA10-A 150 kHz or (TOKO CFSK107114-4E-20X)					
CF4	muRata SFPS 450H 6 kHz or (TOKO ARLFC450T)					
D1	TOSHIBA 1SV172					
D2,D3	TOKO KP2311E					
D4	TOKO KV1370NT					
D5	PHILIPS BB156					
Q1	TOSHIBA HN3G01J					

 Table 38.
 Part list (application and measurement circuit) (continued)

Figure 9. Application circuit

Appendix B Application notes

Following items are important to get highest performance of TDA7512 in application:

- In order to avoid leakage current from PLL loop filter input to ground a guardring is 1. recommended around loop filter PIN's with PLL reference voltage potential.
- 2. Distance between Crystal and VCO input PIN18 should be far as possible and Crystal package should get a shield versus ground.
- 3. Blocking of VCO supply should be near at PIN16 and PIN17.
- 4. Wire length to FM mixer1 input and output should be symmetrically and short.
- 5. FM demodulator capacitance at PIN44 should be sense connected as short as possible versus demodulator ground at PIN47.
- With respect to THD capacitive coupling from PIN20 to VCO should be avoided. 6. Capacitance at PIN20 has be connected versus VCC2 ground.
- .e filter ing obsolete bosolete bosolet Wire length from AM mixer tank output to 9 kHz ceramic filter input has to be short as

7 Revision history

Table 39.Document revision history

	Date	Revision	Changes
	24-Sep-2003	2	Initial release.
	11-Dec-2008	3	Document reformatted. Document status promoted from preliminary data to datasheet. Updated <i>Section 6: Package information on page 42</i> .
	22-Jun-2009	4	Corrected typo (ref: "K" Dim.) on <i>Figure 4: LQFP64 mechanical data</i> and package dimensions on page 42.
005018	tepro	ductl	end package dimensions on page 42.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidia. ie: (ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser ices doscribed herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property 1.9, is is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a licer se grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a tria ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein or considered as a tria ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained to the trian the trian trian.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR BALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'SS FOP A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRCD JC 'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP IN Y OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p or ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war any granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 9300 Rev 4

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.