

FEATURES

0.1 μ F to 10 μ F capacitors 120 kB/s data rate Two receivers active in shutdown (ADM213) On-board dc-to-dc converters \pm 9 V output swing with 5 V supply Low power (15 mW) Low power shutdown \leq 5 μ W \pm 30 V receiver input levels Latch-up free Plug-in upgrade for MAX205-211/213

APPLICATIONS

Computers Peripherals Modems Printers Instruments

0.1 µF, 5 V Powered CMOS RS-232 Drivers/Receivers

ADM206-ADM211/ADM213

TYPICAL OPERATING CIRCUIT

Figure 1.

All members of the ADM2xx family, except the ADM209, include two internal charge pump voltage converters that allow operation from a single 5 V supply. These parts convert the 5 V input power to the ± 10 V required for RS-232 output levels. The ADM209 is designed to operate from 5 V and 12 V supplies. An internal ± 12 V to ± 12 V charge pump voltage converter generates the ± 12 V supply.

GENERAL DESCRIPTION

The ADM2xx family of line drivers/receivers is intended for all EIA-232-E and V.28 communications interfaces, especially in applications where ± 12 V is not available. The ADM206, ADM211, and ADM213 feature a low power shutdown mode that reduces power dissipation to less than 5 μ W, making them ideally suited for battery-powered equipment. The ADM213 has an active low shutdown and an active high receiver-enable control. Two receivers of the ADM213 remain active during shutdown. This feature is useful for ring indicator monitoring.

Table 1. Selection Table

Part Number	Power Supply Voltage	Number of RS- 232 Drivers	Number of RS-232 Receivers	External Capacitors	Low Power Shutdown (SD)	TTL Three- State EN	Number of Receivers Active in Shutdown
ADM206	5 V	4	3	4	Yes	Yes	0
ADM207	5 V	5	3	4	No	No	0
ADM208	5 V	4	4	4	No	No	0
ADM209	5 V and 9 V to 13.2 V	3	5	2	No	Yes	0
ADM211	5 V	4	5	4	Yes	Yes	0
ADM213	5 V	4	5	4	Yes (SD)	Yes (EN)	2

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Specifications
Absolute Maximum Ratings 4
ESD Caution 4
Pin Configurations and Functional Descriptions
Typical Performance Characteristics

REVISION HISTORY

1/05—Data Sheet Changed from Rev. B to Rev. C

Changes to Specifications	3
Change to Receivers section	
Change to Driving Long Cables section	12
Updated Outline Dimensions	
Changes to Ordering Guide	
0 0	

6/02—Data Sheet Changed from Rev. A to Rev. B

Removed all references to ADM205......Universal

3/02—Data Sheet Changed from Rev. 0 to Rev. A

Changes to numbers in Min/Typ/Max column of	
Specifications page2	
Updated Figures8, 9	

Revision 0: Initial Version

General Information	
Circuit Description	
Application Hints	
Outline Dimensions	
Ordering Guide	

SPECIFICATIONS

 $V_{CC} = 5 \text{ V} \pm 10\% \text{ (ADM206, ADM207, ADM208, ADM209, ADM211, ADM213); V} + = 9 \text{ V to } 13.2 \text{ V (ADM209); C1-C4} = 0.1 \mu\text{F ceramic.}$ All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.					
Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
Output Voltage Swing	±5	±9		V	All transmitter outputs loaded with 3 k Ω to ground
V _{cc} Power Supply Current		5	13	mA	No load
		0.4	1	mA	No load, ADM209
V+ Power Supply Current		3.5	5	mA	No load, V+ = 12 V, ADM209 only
Shutdown Supply Current		1	10	μΑ	
Input Logic Threshold Low, VINL			0.8	V	T _{IN} , EN, SD, EN, SD
Input Logic Threshold High, VINH	2.0			v	T _{IN} , EN, SD, EN, SD
Logic Pull-Up Current		10	25	μΑ	$T_{IN} = 0 V$
RS-232 Input Voltage Range ¹	-30		+30	V	
RS-232 Input Threshold Low	0.8	1.25		V	
RS-232 Input Threshold High		1.9	2.4	V	
RS-232 Input Hysteresis		0.65		V	
RS-232 Input Resistance	3	5	7	kΩ	$T_A = 0^{\circ}C \text{ to } 85^{\circ}C$
TTL/CMOS Output Voltage Low, Vol			0.4	V	louτ = 1.6 mA
TTL/CMOS Output Voltage High, V _{OH}	3.5			V	$I_{OUT} = -1.0 \text{ mA}$
TTL/CMOS Output Leakage Current		0.05	±10	μΑ	$\overline{EN} = V_{CC}, EN = 0 V, 0 V \le R_{OUT} \le V_{CC}$
Output Enable Time (T _{EN})		115		ns	ADM206, ADM209, ADM211 (Figure 24. C _L = 150 pF)
Output Disable Time (T _{DIS})		165		ns	ADM206, ADM209, ADM211 (Figure 24. $R_L = 1 k\Omega$)
Propagation Delay		0.5	5	μs	RS-232 to TTL
Transition Region Slew Rate		8		V/µs	R_L = 3 k Ω , C_L = 2500 pF; measured from +3 V to –3 V or –3 V to +3 V
Output Resistance	300			Ω	$V_{CC} = V + = V - = 0 V, V_{OUT} = \pm 2 V$
RS-232 Output Short Circuit Current		±12	±60	mA	

¹ Guaranteed by design.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 3.

Parameter	Min
Vcc	–0.3 V to +6 V
V+	(V _{cc} – 0.3 V) to +14 V
V–	+0.3 V to -14 V
Input Voltages	
T _{IN}	–0.3 V to (V _{CC} + 0.3 V)
R _{IN}	±30 V
Output Voltages	
T _{OUT}	(V+, +0.3 V) to (V–, –0.3 V)
Rout	–0.3 V to (V _{cc} + 0.3 V)
Short-Circuit Duration	
Тоит	Continuous
Power Dissipation	
N-24 PDIP (Derate 13.5 mW/°C	1000 mW
above 70°C)	
R-24 SOIC (Derate 12 mW/°C	850 mW
above 70°C)	000
R-28 SOIC (Derate 12.5 mW/°C above 70°C)	900 mW
RS-24 SSOP (Derate 12 mW/°C	850 mW
above 70°C)	050 1111
RS-28 SSOP (Derate 10 mW/°C	900 mW
above 70°C)	
Thermal Impedance, θ_{JA}	
N-24 PDIP	120°C/W
R-24 SOIC	85°C/W
R-28 SOIC	80°C/W
RS-24 SSOP	115°C/W
RS-28 SSOP	100°C/W
Operating Temperature Range	
Industrial (A Version)	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature, Soldering	300°C
Vapor Phase (60 s)	215℃
Infrared (15 s)	220°

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

Figure 2. ADM206 PDIP/SOIC/SSOP Pin Configuration

Figure 3. ADM206 Typical Operating Circuit

Figure 4. ADM207 PDIP/SOIC/SSOP Pin Configuration

Figure 5. ADM207 Typical Operating Circuit

Figure 6. ADM208 PDIP/SOIC/SSOP Pin Configuration

Figure 8. ADM209 PDIP/SOIC/SSOP Pin Configuration

Figure 7. ADM208 Typical Operating Circuit

INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT. 2INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT.

Figure 9. ADM209 Typical Operating Circuit

00067-

Figure 10. ADM211 SOIC/SSOP Pin Configuration

Figure 12. ADM213 SOIC/SSOP Pin Configuration

 1 INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT 2 INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT. 3 ACTIVE IN SHUTDOWN.

Figure 13. ADM213 Typical Operating Circuit

0067-0-013

Table 4. Pin Function Descriptions

Mnemonic	Function
Vcc	Power Supply Input. 5 V \pm 10%.
V+	Internally Generated Positive Supply (10 V nominal) on all parts, except ADM209 . The ADM209 requires an external 9 V to 13.2 V supply.
V–	Internally Generated Negative Supply (–10 V Nominal).
GND	Ground Pin. Must be connected to 0 V.
C+	(ADM209 only) External capacitor (+ terminal) is connected to this pin.
C–	(ADM209 only) External capacitor (– terminal) is connected to this pin.
C1+	(ADM206, ADM207, ADM208, ADM211, and ADM213) External Capacitor (+ terminal) is connected to this pin.
C1-	(ADM206, ADM207, ADM208, ADM211, and ADM213) External Capacitor (- terminal) is connected to this pin.
C2+	(ADM206, ADM207, ADM208, ADM211, and ADM213) External Capacitor (+ terminal) is connected to this pin.
C2-	(ADM206, ADM207, ADM208, ADM211, and ADM213) External Capacitor (- terminal) is connected to this pin.
T _{IN}	Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 k Ω pull-up resistor to V _{CC} is connected to each input.
T _{OUT}	Transmitter (Driver) Outputs. These are RS-232 levels (typically \pm 10 V).
R _{IN}	Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 k Ω pull-down resistor to GND is connected to each input.
Rout	Receiver Outputs. These are TTL/CMOS levels.
EN/EN	Enable Input. Active low on ADM206, ADM209, and ADM211. Active high on ADM213. This input is used to enable/disable the receiver outputs. With $\overline{\text{EN}}$ = low (EN = high ADM213), the receiver outputs are enabled. With $\overline{\text{EN}}$ = high (EN = low ADM213),
	the outputs are placed in a high impedance state. This is useful for connecting to microprocessor systems.
sd/ sd	Shutdown Input. Active high on ADM206 and ADM211. Active low on ADM213. With SD = high on the ADM206 and ADM211, the charge pump is disabled, the receiver outputs are placed in a high impedance state, and the driver outputs are turned off. With SD = low on the ADM213, the charge pump is disabled, the driver outputs are turned off, and all receivers, except R4
	and R5, are placed in a high impedance state. In shutdown, the power consumption reduces to 5 μ W.
NC	No Connect. No connections are required to this pin.

Table 5. ADM206 and ADM211 Truth Table

SD	EN	Status	Transmitters T1–T5	Receivers R1–R5			
0	0	Normal Operation	Enabled	Enabled			
0	1	Normal Operation	Enabled	Disabled			
1	0	Shutdown	Disabled	Disabled			

Table 6. ADM213 Truth Table

SD	EN	Status	Transmitters T1–T4	Receivers R1–R3	Receivers R4, R5
0	0	Shutdown	Disabled	Disabled	Disabled
0	1	Shutdown	Disabled	Disabled	Enabled
1	0	Normal Operation	Enabled	Disabled	Disabled
1	1	Normal Operation	Enabled	Enabled	Enabled

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 14. Charge Pump V+, V- vs. Load Current

Figure 15. Transmitter Slew Rate vs. Load Capacitance

Figure 16. Transmitter Output Voltage vs. Vcc

Figure 17. Transmitter Output Voltage vs. Load Current

Figure 18. Charge Pump Impedance vs. V_{CC}

Figure 19. Charge Pump, V+, V- Exiting Shutdown

Figure 20. Transmitter Output Loaded Slew Rate

Figure 21. Transmitter Output Unloaded Slew Rate

GENERAL INFORMATION

The ADM206–ADM211/ADM213 family of RS-232 drivers/ receivers is designed to solve interface problems by meeting the EIA-232-E specifications while using a single digital 5 V supply. The EIA-232-E standard requires transmitters that will deliver ±5 V minimum on the transmission channel and receivers that can accept signal levels down to ±3 V. The ADM206–ADM211/ ADM213 meet these requirements by integrating step-up voltage converters and level shifting transmitters and receivers onto the same chip. CMOS technology is used to keep the power dissipation to an absolute minimum. A comprehensive range of transmitter/receiver combinations is available to cover most communication needs. The ADM206–ADM211/ADM213 are modifications, enhancements, and improvements to the AD230– AD241 family and derivatives thereof. They are essentially plugin compatible and do not have materially different applications.

The ADM206, ADM211, and ADM213 are particularly useful in battery-powered systems because they feature a low power shutdown mode that reduces power dissipation to less than 5 μ W.

The ADM209 includes only a negative charge pump converter and is intended for applications where a +12 V is available.

To facilitate sharing a common line or for connection to a microprocessor data bus, the ADM206, the ADM209, the ADM211, and the ADM213 feature an enable $(\overline{\text{EN}})$ function. When the receivers are disabled, their outputs are placed in a high impedance state.

CIRCUIT DESCRIPTION

The internal circuitry in the ADM206–ADM211/ADM213 consists of three main sections: (a) a charge pump voltage converter; (b) RS-232-to-TTL/CMOS receivers; and (c) TTL/CMOS-to-RS-232 transmitters.

Charge Pump DC-to-DC Voltage Converter

The charge pump voltage converter consists of an oscillator and a switching matrix. The converter generates a ± 10 V supply from the 5 V input. This is done in two stages using a switched capacitor technique, as illustrated in Figure 22 and Figure 23. First, the 5 V input supply is doubled to 10 V using capacitor C1 as the charge storage element. The 10 V level is then inverted to generate –10 V using C2 as the storage element.

Figure 22. Charge Pump Voltage Doubler

Figure 23. Charge Pump Voltage Inverter

Capacitors C3 and C4 are used to reduce the output ripple. Their values are not critical and can be reduced if higher levels of ripple are acceptable. The charge pump capacitors C1 and C2 may also be reduced at the expense of higher output impedance on the V+ and V- supplies.

The V+ and V- supplies may also be used to power external circuitry if the current requirements are small.

Transmitters (Drivers)

The drivers convert TTL/CMOS input levels into EIA-232-E output levels. With $V_{CC} = +5$ V and driving a typical EIA-232-E load, the output voltage swing is ± 9 V. Even under worst-case conditions, the drivers are guaranteed to meet the ± 5 V EIA-232-E minimum requirement.

The input threshold levels are both TTL- and CMOS-compatible with the switching threshold set at $V_{CC}/4$. With a nominal $V_{CC} = 5$ V, the switching threshold is 1.25 V typical. Unused inputs may be left unconnected, because an internal 400 k Ω pull-up resistor pulls them high, forcing the outputs into a low state.

As required by the EIA-232-E standard, the slew rate is limited to less than 30 V/ μ s, without the need for an external slew limiting capacitor, and the output impedance in the power-off state is greater than 300 Ω .

Receivers

The receivers are inverting level shifters that accept EIA-232-E input levels (± 5 V to ± 15 V) and translate them into 5 V TTL/ CMOS levels. The inputs have internal 5 k Ω pull-down resistors to ground and are also protected against overvoltages of up to ± 30 V. The guaranteed switching thresholds are 0.8 V minimum and 2.4 V maximum, well within the ± 3 V EIA-232-E requirement. The low level threshold is deliberately positive, since it ensures that an unconnected input will be interpreted as a low level.

The receivers have Schmitt-trigger inputs with a hysteresis level of 0.65 V. This ensures error-free reception for both noisy inputs and inputs with slow transition times.

Shutdown (SD)

The ADM206–ADM211/ADM213 feature a control input that may be used to disable the part and reduce the power consumpion to less than 5 Ω W. This is very useful in battery-operated systems. During shutdown, the charge pump is turned off, the transmitters are disabled, and all receivers except R4 and R5 on the ADM213 are put into a high impedance disabled state.

Receivers R4 and R5 on the ADM213 remain enabled during shutdown. This feature allows monitoring external activity while the device is in a low power shutdown mode. The shutdown control input is active high on all parts except the ADM213, where it is active low. See Table 5 and Table 6.

Enable Input

The ADM209, ADM211, and ADM213 feature an enable input used to enable or disable the receiver outputs. The enable input is active low on the ADM209 and ADM211 and active high on the ADM213. See Table 5 and Table 6. When the receivers are disabled, their outputs are placed in a high impedance state. This function allows the outputs to be connected directly to a microprocessor data bus. It can also be used to allow receivers from different devices to share a common data line. The timing diagram for the enable function is shown in Figure 24.

Figure 24. Enable Timing

APPLICATION HINTS *Driving Long Cables*

In accordance with the EIA-232-E standard, long cables are permissible provided the total load capacitance does not exceed 2500 pF. For longer cables that do exceed this, it is possible to trade off baud rate for cable length. Large load capacitances cause a reduction in slew rate, and therefore the maximum transmission baud rate is decreased. The ADM206–ADM211/ADM213 are designed to minimize the slew rate reduction that occurs as load capacitance increases.

For the receivers, it is important that a high level of noise immunity be inbuilt so that slow rise and fall times do not cause multiple output transitions as the signal passes slowly through the transition region. The ADM206–ADM211/ ADM213 have 0.65 V of hysteresis to guard against this. This ensures that even in noisy environments error-free reception can be achieved.

High Baud Rate Operation

The ADM206–ADM211/ADM213 feature high slew rates, permitting data transmission at rates well in excess of the EIA-232-E specification. The drivers maintain ± 5 V signal levels at data rates up to 120 kB/s under worst-case loading conditions.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADM206AN	-40°C to +85°C	24-lead DIP	N-24
ADM206AR	-40°C to +85°C	24-lead SOIC	R-24
ADM206AR-REEL	–40°C to +85°C	24-lead SOIC	R-24
ADM206ARS	–40°C to +85°C	24-lead SSOP	RS-24
ADM206ARS-REEL	-40°C to +85°C	24-lead SSOP	RS-24
ADM206ARZ ¹	–40°C to +85°C	24-lead SOIC	R-24
ADM206ARZ-REEL ¹	-40°C to +85°C	24-lead SOIC	R-24
ADM207AN	–40°C to +85°C	24-lead DIP	N-24
ADM207AR	-40°C to +85°C	24-lead SOIC	R-24
ADM207AR-REEL	–40°C to +85°C	24-lead SOIC	R-24
ADM207ARS	-40°C to +85°C	24-lead SSOP	RS-24
ADM207ARS-REEL	-40°C to +85°C	24-lead SSOP	RS-24
ADM208AN	–40°C to +85°C	24-lead DIP	N-24
ADM208AR	-40°C to +85°C	24-lead SOIC	R-24
ADM208AR-REEL	–40°C to +85°C	24-lead SOIC	R-24
ADM208ARS	-40°C to +85°C	24-lead SSOP	RS-24
ADM208ARS-REEL	-40°C to +85°C	24-lead SSOP	RS-24
ADM209AN	–40°C to +85°C	24-lead DIP	N-24
ADM209AR	-40°C to +85°C	24-lead SOIC	R-24
ADM209AR-REEL	-40°C to +85°C	24-lead SOIC	R-24
ADM209ARS	–40°C to +85°C	24-lead SSOP	RS-24
ADM209ARS-REEL	-40°C to +85°C	24-lead SSOP	RS-24
ADM211AR	–40°C to +85°C	28-lead SOIC	R-28
ADM211AR-REEL	-40°C to +85°C	28-lead SOIC	R-28
ADM211ARS	–40°C to +85°C	28-lead SSOP	RS-28
ADM211ARS-REEL	-40°C to +85°C	28-lead SSOP	RS-28
ADM211ARSZ ¹	–40°C to +85°C	28-lead SSOP	RS-28
ADM211ARSZ-REEL ¹	-40°C to +85°C	28-lead SSOP	RS-28
ADM213AR	-40°C to +85°C	28-lead SOIC	R-28
ADM213AR-REEL	-40°C to +85°C	28-lead SOIC	R-28
ADM213ARS	-40°C to +85°C	28-lead SSOP	RS-28
ADM213ARS-REEL	-40°C to +85°C	28-lead SSOP	RS-28
ADM213ARSZ ¹	-40°C to +85°C	28-lead SSOP	RS-28
ADM213ARSZ-REEL ¹	–40°C to +85°C	28-lead SSOP	RS-28

 1 Z = Pb-free part.

NOTES

www.analog.com

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00067–0–1/05(C)

Rev. C | Page 16 of 16

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.