

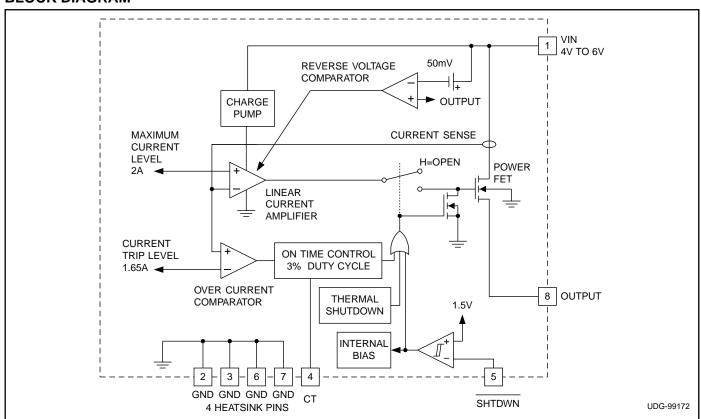
SCSI Termpower Manager

FEATURES

- Integrated Circuit Breaker Function
- Integrated 0.2Ω Power FET
- SCSI, SCSI-2, SCSI-3 Compliant
- 1μA ICC When Disabled
- Programmable On Time
- Accurate 1.65A Trip Current and 2.0A Max Current
- Fixed 3% Duty Cycle
- Uni-Directional Switch
- Thermal Shutdown

DESCRIPTION

The UCC3916 SCSI termpower manager provides complete power management, hot swap capability, and circuit breaker functions with minimal external components. For most applications, the only external component required to operate the device, other than supply bypassing, is a timing capacitor which sets the fault time.

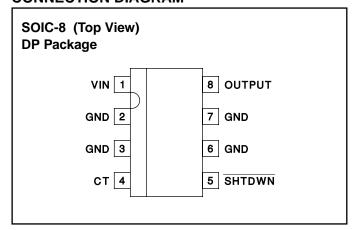

The current trip level is internally set at 1.65A, and the maximum current level is also internally programmed for 2A. While the output current is below the trip level of 1.65A, the internal power MOSFET is switched on at a nominal $220m\Omega$. When the output current exceeds the trip level but remains less than the maximum current level, the MOSFET remains switched on, but the fault timer starts charging CT. Once the fault time is reached, the circuit will shut off for a time which equates to a 3% duty cycle. Finally, when the output current reaches the maximum current level, the MOSFET transitions from a switch to a constant current source.

The UCC3916 is designed for uni-directional current flow, emulating a diode in series with the power MOSFET.

The UCC3916 can be put in a sleep mode, drawing only $1\mu A$ of supply current.

Other features include thermal shutdown and low thermal resistance Small Outline Power package.

BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

VIN+6\	٧
Output Current	
DC Self Limiting	g
Pulse (Less than 100ns)	Ā
Storage Temperature	С
Junction Temperature55°C to +150°C	С
Lead Temperature (Soldering, 10 sec.)+300°C	С

Currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAM

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these parameters apply for $T_J = 0$ °C to +70°C; VIN = 5V, SHTDWN = 2.4V, $T_A = T_J$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current Section		•			
ICC			1.00	2.00	mA
ICC - Sleep Mode	SHTDWN = 0.2V		0.50	5	μΑ
Output Section					
Voltage Drop	IOUT = 1A		0.22	0.33	V
	IOUT = 1.5A		0.33	0.50	V
	IOUT = 1.65A		0.40	0.60	V
Trip Current		-1.8	-1.65	-1.5	Α
Max Current		-2.4	-2	-1.65	Α
Reverse Leakage	VIN = 4.5V, VOUT = 5V		6	20	μΑ
	VIN = 0V, VOUT = 5V		0.50	9	μΑ
Soft Start Time	Initial Startup		50		μs
Short Circuit Response			100		ns
Fault Section					
CT Charge Current	VCT = 1.0V	-45	-36.0	-27	μΑ
CT Discharge Current	VCT = 1.0V	0.90	1.0	1.50	μΑ
Output Duty Cycle	VOUT = 0V	2.00	3.00	6.00	%
CT Charge Threshold		0.4	0.5	0.6	V
CT Discharge Threshold		1.2	1.4	1.8	V
Thermal Shutdown			170		°C
Thermal Hysteresis			10		°C
Shutdown Section					
Shutdown Threshold			1.5	3.0	V
Shutdown Hysteresis			150	300	mV
Shutdown Bias Current	SHTDWN = 1.0V		100	500	nA

Note 1: All voltages are with respect to ground.

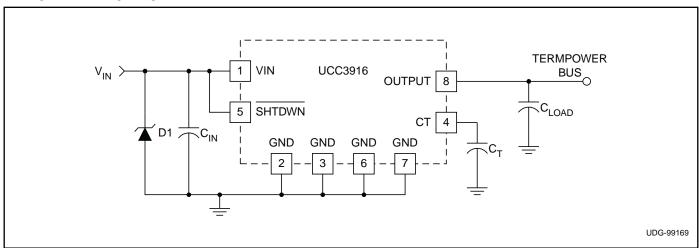
PIN DESCRIPTIONS

CT: A capacitor is applied between this pin and ground to set the maximum fault time. The maximum fault time must be more than the time to charge external capacitance. The maximum fault time is defined as:

Once the fault time is reached the output will shutdown for a time given by:

$$TSD = 1 \cdot 10^6 \cdot CT$$

this results in a 3% duty cycle. $0.1\mu F$ is recommended for SCSI applications to achieve the normal maximum capacitance on the Termpwr line.


SHTDWN: The IC enters a low-power sleep mode when this pin is low and exits the sleep mode when this pin is high.

VIN: Input voltage to the circuit breaker, ranging from 4V to 6V.

VOUT: Output voltage of the circuit breaker. When switched, the output voltage is approximately:

VOUT = VIN –
$$(220m\Omega) \cdot IOUT$$
.

TYPICAL APPLICATION

APPLICATION INFORMATION

Protecting The UCC3916 From Voltage Transients

The parasitic inductance associated with the power distribution can cause a voltage spike at $V_{\rm IN}$ if the load current is suddenly interrupted by the UCC3916. It is important to limit the peak of this spike to less than 6V to prevent damage to the UCC3916. This voltage spike can be minimized by:

- Reducing the power distribution inductance (e.g., twist the positive (+) and negative (-) leads of the power supply feeding V_{IN} pin, locate the power supply close to the UCC3916 or use a PCB ground plane).
- Decoupling V_{IN} with a capacitor, C_{IN} , located close to the V_{IN} . This capacitor is typically less than $1\mu F$ to limit the inrush current.
- Clamping the voltage at V_{IN} below 6V with a Zener diode, D1, located close to the V_{IN} pin.

SAFETY RECOMMENDATIONS

Although the UCC3916 is designed to provide system protection for all fault conditions, all integrated circuits can ultimately fail short. For this reason, if the UCC3916 is intended for use in safety critical applications where UL[©] or some other safety rating is required, a redundant safety device such as a fuse should be placed in series with the device. The UCC3916 will prevent the fuse from blowing virtually all fault conditions, increasing system reliability and reducing maintainence cost, in addition to providing the hot swap benefits of the device.

com 18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UCC3916DP	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPTR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
UCC3916DPTRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

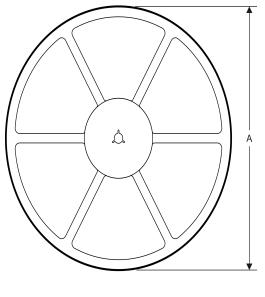
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

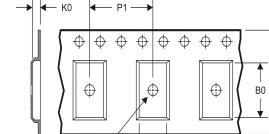
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

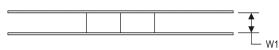
PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012


TAPE DIMENSIONS

Cavity

TAPE AND REEL INFORMATION


REEL DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

◆ A0 **▶**

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UCC3916DPTR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	UCC3916DPTR	SOIC	D	8	2500	367.0	367.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

At	polication

Audio www.ti.com/audio **Amplifiers** amplifier.ti.com **Data Converters** dataconverter.ti.com **DLP® Products** www.dlp.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com

Products

RFID www.ti-rfid.com

OMAP Mobile Processors

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/omap

Automotive and Transportation

Communications and Telecom

Computers and Peripherals

Consumer Electronics

Energy and Lighting

Industrial

Medical

Security

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/medical
www.ti.com/security

Space, Avionics and Defense

Video and Imaging

www.ti.com/space-avionics-defense

www.ti.com/video

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

TI E2E Community

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный)

Факс: 8 (812) 320-02-42

Электронная почта: org@eplast1.ru

Адрес: 198099, г. Санкт-Петербург, ул. Калинина,

дом 2, корпус 4, литера А.