

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2015

FPAM50LH60 PFC SPM[®] 2 Series for 2-Phase Interleaved PFC

Features

- UL Certified No.E209024 (UL1557)
- 600 V 50 A 2-Phase Interleaved PFC with Integral Gate Driver and Protection
- Very Low Thermal Resistance Using Al₂O₃ DBC Substrate
- Full-Wave Bridge Rectifier and High-Performance Output Diode
- Optimized for 20kHz Switching Frequency
- Built-in NTC Thermistor for Temperature Monitoring
- Isolation Rating: 2500 V_{rms}/min

Applications

• 2-Phase Interleaved PFC Converter

General Description

The FPAM50LH60 is a PFC SPM[®] 2 module providing a fully-featured, high-performance Interleaved PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature a fullwave rectifier and high-performance output diodes for additional space savings and mounting convenience.

Fig. 1. 3D Package Drawing (Click to Activate 3D Content)

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FPAM50LH60	FPAM50LH60	S32EA-032	Rail	8

Integrated Drive, Protection and System Control Functions

- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- Fault signal: corresponding to OC and UV fault
- Built-in thermistor: temperature monitoring
- Input interface : active-HIGH interface, works with 3.3 / 5 V logic, Schmitt trigger input

Pin Configuration

Pin Number	Pin Name	Pin Description
1	C _{SC}	Signal Input for Over-Current Detection
2,6,10	СОМ	Common Supply Ground
3	V _{FO}	Fault Output
4	IN _X	PWM Input for X IGBT Drive
5	IN _Y	PWM Input for Y IGBT Drive
7	N.C	No Connection
8,9	V _{CC}	Common Supply Voltage of IC for IGBT Drive
11	R _{TH}	Series Resistor for The Use of Thermistor
12	V _{TH}	Thermistor Bias Voltage
13,14	N _R	Negative DC-Link of Rectifier Diode
15,16,17	N.C	No Connection
18,19	R	AC Input for R-Phase
20,21	N.C	No Connection
22,23	S	AC Input for S-Phase
24,25	Р	Output of Diode
26	P _Y	Input of Diode
27	N.C	No Connection
28	P _X	Input of Diode
29	X	Output of X Phase IGBT
30	Y	Output of Y Phase IGBT
31	N _P	Negative DC-Link of IGBT
32	P _R	Positive DC-Link of Rectifier Diode

Internal Equivalent Circuit

FPAM50LH60 PFC SPM® 2 Series for 2-Phase Interleaved PFC

Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified.)

Converter Part

Symbol	Parameter	Conditions	Rating	Unit
V _i	Input Supply Voltage	Applied between R - S	264	V _{rms}
V _{PN}	Output Voltage	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	450	V
V _{PN(Surge)}	Output Supply Voltage (Surge)	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	500	V
V _{CES}	Collector-emitter Voltage	Breakdown Voltage between X - N _P , Y - N _P	600	V
V _{RRM}	Repetitive Peak Reverse Voltage of FRD	Breakdown Voltage between P - P _X , P - P _Y	600	V
V _{RRMR}	Repetitive Peak Reverse Voltage of Rec- tifier	Breakdown Voltage between $P_R - R$, $P_R - S$, R - N_R , S - N_R	900	V
*I _F	FRD Forward Current	T _C = 25°C, T _J < 125°C	50	А
*I _{FSM}	Peak Surge Current of FRD	Non-Repetitive, 60 Hz Single Half-Sine Wave	500	А
*I _{FR}	Rectified Forward Current	T _C = 25°C, T _J < 125°C	50	А
*I _{FSMR}	Peak Surge Current of Rectifier	Non-Repetitive, 60 Hz Single Half-Sine Wave	500	А
± *I _C	Each IGBT Collector Current	T _C = 25°C, T _J < 125°C	50	А
± *I _{CP}	Each IGBT Collector Current(Peak)	$T_C = 25^{\circ}C, T_J < 125^{\circ}C,$ Under 1 ms Pulse Width	100	A
*P _C	Collector Dissipation	T _C = 25°C per IGBT	135	W
TJ	Operating Junction Temperature	(1st Note 1)	-40 ~ 125	°C

1st Notes:

1. The maximum junction temperature rating of the power chips integrated within the PFC $\text{SPM}^{\textcircled{B}}$ product is 125°C.

2. Marking "*" is calculation value or design factor.

Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	20	V
V _{IN}	Input Signal Voltage	Applied between IN _X , IN _Y - COM	$-0.3 \sim V_{CC} + 0.3$	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	$-0.3 \sim V_{CC} + 0.3$	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	1	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3 ~ V _{CC} + 0.3	V

Total System

Symbol	Parameter	Conditions	Rating	Unit
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat-Sink Plate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction to Case Thermal	Each IGBT under Operating Condition	-	-	0.74	°C/W
R _{th(j-c)D}	Resistance	Each Diode under Operating Condition	-	-	1.13	°C/W
R _{th(j-c)R}		Each Rectifier under Operating Condition	-	-	0.74	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise specified.)

Converter Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{CE(SAT)}	IGBT Saturation Voltage	$V_{CC} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_C = 50 \text{ A}$	-	1.7	2.2	V
V _{FF}	FRD Forward Voltage	I _F = 50 A	-	1.9	2.4	V
V _{FR}	Rectifier Forward Voltage	I _{FR} = 50 A	-	1.13	1.35	V
I _{RR}	Switching Characteristic	$V_{PN} = 400 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 25 \text{ A},$	-	27	-	А
t _{RR}		$V_{IN} = 0 V \leftrightarrow 5 V$, Inductive Load (1st Note 3),	-	55	-	ns
t _{ON}			-	772	-	ns
t _{OFF}			-	1117	-	ns
t _{C(ON)}			-	110	-	ns
t _{C(OFF)}			-	125	-	ns
I _{CES}	Collector - Emitter Leakage Current	V _{CES} = 600 V	-	-	250	μΑ

1st Notes:

3. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

FPAM50LH60
PFC SPM® 2
2 Series for :
2-Phase Inte
erleaved PFC

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{QCC}	Quiescent V _{CC} Supply Current	V_{CC} = 15 V, IN _X , IN _Y - COM = 0 V, Supply current between $~V_{CC}$ and COM	-	-	2.65	mA
I _{PCC}	Operating V _{CC} Supply Current	V_{CC} = 15 V, f_{PWM} = 20 kHz, Duty = 50% Applied to One PWM Signal Input per IGBT Supply Current between V_{CC} and COM	-	-	7.0	mA
V _{FOH}	Fault Output Voltage	$V_{SC} = 0 \text{ V}, \text{ V}_{FO} \text{ Circuit: } 10 \text{ k}\Omega \text{ to } 5 \text{ V} \text{ Pull-up}$	4.5	-	-	V
V _{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 10 k Ω to 5 V Pull-up	-	-	0.5	V
V _{SC(Ref)}	Over-Current Protection Trip Level Voltage of CSC Pin	V _{CC} = 15 V	0.45	0.5	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level	10.5	-	13.0	V
UV _{CCR}	Voltage Protection	Reset Level	11.0	-	13.5	V
t _{FOD}	Fault-Out Pulse Width		30	-	-	μS
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _X , IN _Y - COM	2.6	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	Applied between IN _X , IN _Y - COM	-	-	0.8	V
R _{TH}	Resistance of Thermistor	at T _{TH} = 25°C (1st Note 4, Figure 5)	-	47	-	kΩ
		at T _{TH} = 100°C (1st Note 4, Figure 5)	-	2.9	-	kΩ

1st Notes:

4. T_{TH} is the temperature of thermister itself. To know case temperature (T_C), please make the experiment considering your application.

R-T Curve

(1) - 20 C, unless otherwise specified.)						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vi	Input Supply Voltage	Applied between R - S	187	-	253	V _{rms}
l _i	Input Current	T_{C} < 100°C, V _i = 220 V, V _O = 360 V, f_{PWM} = 20 kHz per IGBT	-	-	35	A _{rms}
V _{PN}	Supply Voltage	Applied between X - N _P , Y - N _P , P - P _X , P - P _Y	-	-	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	13.5	15.0	16.5	V
dV _{CC} /dt	Supply Variation		-1	-	1	V/µs
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	-	-	1	mA
f _{PWM}	PWM Input Frequency	-40°C < T _J < 125°C per IGBT	-	20	-	kHz

Recommended Operating Conditions (T_J = 25°C, unless otherwise specified.)

Mechanical Characteristics and Ratings

Parameter	Conditions		Min.	Тур.	Max.	Unit
Mounting Torque	Mounting Screw: M4	Recommended 0.98 N•m	0.78	0.98	1.17	N•m
		Recommended 10 kg•cm	8	10	12	kg•cm
Device Flatness	See Figure 6	See Figure 6		-	+150	μm
Weight			-	32	-	g

Figure 6. Flatness Measurement Position

2nd Notes:

- 1. To avoid malfunction, the wiring of each input should be as short as possible(less than 2 ~ 3 cm).
- 2. V_{FO} output is open-drain type. This signal line should be pulled up to the positive-side of the MCU or control power supply with a resistor that makes I_{FO} up to 1 mA. 3. Input signal is active-HIGH type. There is a 5 ko resistor inside the IC to pull-down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. R_FC_F constant should be selected in the range 50~150ns (recommended R_F = 100 Ω , C_F = 1 nF).
- 4. To prevent error of the protection function, the wiring related with R_{SCF} and C_{SCF} should be as short as possible.
- 5. In the over current protection circuit, please select the R_{SCF} , C_{SCF} time constant in the range 1.5 ~ 2 $\mu s.$ 6. Each capacitors should be mounted as close to the PFC SPM® product pins as possible.
- 7. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the MCU / controller and the relays.
- 8. Internal NTC thermistor can be used for monitoring of the case temperature and protecting the device from the overheating operation. Select an appropriate resistor RT according to the application.
- 9. It is recommended that anti-parallel diode (D_X, D_Y) be connected with each IGBT.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/dwg/MO/MOD32BA.pdf

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM Awinda [®] AX:CAP [®] A BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLT TM CTL TM CUTrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficientMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®]	F-PFS™ FRFET [®] Global Power Resource SM GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Making Small Speakers Sound Loude and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroFeT™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicronGrid®	PowerTrench [®] PowerXS™ Programmable Active Droop™ CFET [®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™ SuperSOT™3
FAST [®] FastvCore™ FETBench™ FPS™	MTi [®] MTX [®] MVN [®] MVSaver [®] OntoHiT™	SuperSOT™-8 SuperSOT™-8 SyncFET™ SyncFLock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://www.fairchildsemicom</u>, Fairchild DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain
 life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ $\mu_{\rm Set}$ UHC Ultra FRFET™ **UniFET**[®] VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™

仙童™

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Gistributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 171

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FPAM50LH60</u>

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.