AUIPS7125R # **CURRENT SENSE HIGH SIDE SWITCH** #### **Features** - Suitable for 24V systems - · Over current shutdown - Over temperature shutdown - Current sensing - Active clamp - Reverse circulation immunization - Optimized Turn On/Off for EMI - Reverse battery protection (Mosfet on) # **Applications** - 75W Filament lamp - Solenoid - 24V loads for trucks # **Description** The AUIPS7125R is a fully protected five terminal high side switch specifically designed for driving lamp. It features current sensing, over-current, over-temperature, ESD protection and drain to source active clamp. When the input voltage Vcc - Vin is higher than the specified threshold, the output power Mosfet is turned on. When the Vcc - Vin is lower than the specified Vil threshold, the output Mosfet is turned off. The Ifb pin is used for current sensing. The over-current shutdown is higher than inrush current of the lamp. # **Product Summary** $\begin{array}{ll} \text{Rds(on)} & 30\text{m}\Omega\,\text{max.} \\ \text{Vclamp} & 65\text{V} \\ \text{Current shutdown} & 50\text{A min.} \end{array}$ # **Packages** # **Typical Connection** # Qualification Information[†] | | | | Automotive | | | | |----------------------------|------------------|--|--|--|--|--| | | | (per AEC-Q100 ^{f†}) | | | | | | Qualification Level | | Comments: This family of ICs has passed an Automotive qualification IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. | | | | | | Moisture Sensitivity Level | | DPAK-5L | MSL1, 260°C
(per IPC/JEDEC J-STD-020) | | | | | | Machine Model | | ass M2 (200 V)
AEC-Q100-003) | | | | | ESD | Human Body Model | | s H1C (1500 V)
AEC-Q100-002) | | | | | Charged Device Model | | | Class C5 (1000 V)
(per AEC-Q100-011) | | | | | IC Latch-Up | Test | | ass II, Level A
AEC-Q100-004) | | | | | RoHS Comp | liant | Yes | | | | | Qualification standards can be found at International Rectifier's web site http://www.irf.com/ Exceptions (if any) to AEC-Q100 requirements are noted in the qualification report. Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tj= -40°C..150°C, Vcc=6..50V unless otherwise specified). | Symbol | Parameter | Min. | Max. | Units | |--------------|--|--------|---------|-------| | Vout | Maximum output voltage | Vcc-60 | Vcc+0.3 | V | | I rev | Maximum reverse pulsed current (t=100µs) see page 8 | _ | 60 | Α | | Isd cont. | Maximum diode continuous current Tambient=25°C, Rth=70°C/W | _ | 2.5 | ^ | | Vcc-Vin max. | Maximum Vcc voltage | -32 | 60 | V | | lifb, max. | Maximum feedback current | -50 | 10 | mΑ | | Vcc sc | Maximum Vcc voltage with short circuit protection see page 8 | _ | 50 | V | | Pd | Maximum power dissipation (internally limited by thermal protection) | | | W | | Fu | Rth=50°C/W DPack 6cm² footprint | _ | 2.5 | VV | | Tj max. | Max. storage & operating junction temperature | -40 | 150 | °C | # **Thermal Characteristics** | Symbol | Parameter | Тур. | Max. | Units | |--------|--|------|------|-------| | Rth1 | Thermal resistance junction to ambient DPak Std footprint | 70 | _ | | | Rth2 | Thermal resistance junction to ambient Dpak 6cm² footprint | 50 | _ | °C/W | | Rth3 | Thermal resistance junction to case Dpak | 2 | _ | | # Recommended Operating Conditions These values are given for a quick design. | Symbol | Parameter | Min. | Max. | Units | |--------|--|------|------|-------| | lout | Continuous output current, Tambient=85°C, Tj=125°C | | | ۸ | | | Rth=50°C/W, Dpak 6cm² footprint | _ | 3.8 | ^ | | Rifb | Ifb resistor | 1.5 | _ | kΩ | ### Static Electrical Characteristics Ti=-40°C..150°C. Vcc=6-50V (unless otherwise specified) | Symbol | Parameter | Min. | Тур. | Max. | Units | Test Conditions | |-------------|-------------------------------------|------|------|------|---------|-----------------------| | Vcc op. | Operating voltage range | 6 | _ | 60 | V | | | Rds(on) | ON state resistance Tj=25°C | _ | 24 | 30 | mΩ | lds=2A | | | ON state resistance Tj=150°C(2) | _ | 45 | 55 | 11122 | ius=2A | | Icc off | Supply leakage current | _ | 2 | 4 | | Vin=Vcc=28V,Vifb=Vgnd | | lout off | Output leakage current | _ | 2 | 4 | μA | Vout=Vgnd, Tj=25°C | | lin on | Input current when device on | 1 | 3.5 | 6 | mA | Vcc-Vin=28V, Tj=25°C | | V clamp1 | Vcc to Vout clamp voltage 1 | 60 | 64 | _ | | Id=10mA | | V clamp2 | Vcc to Vout clamp voltage 2 | 60 | 65 | 72 | V | Id=20A see fig. 2 | | Vih(1) | High level Input threshold voltage | _ | 3.5 | 5.9 | V | Id=10mA | | Vil(1) | Low level Input threshold voltage | 1.5 | 3.2 | _ | | | | Rds(on) rev | Reverse On state resistance Tj=25°C | _ | 25 | 40 | mΩ | Isd=2A | | Vf | Forward body diode voltage Tj=25°C | _ | 0.75 | 0.85 | V If=3A | | | | Forward body diode voltage Tj=125°C | _ | 0.62 | 0.7 | V | | | Rin | Input resistor | 180 | 250 | 350 | Ω | | ⁽¹⁾ Input thresholds are measured directly between the input pin and the tab. # **Switching Electrical Characteristics** Vcc=28V. Resistive load=6.8Ω. Ti=-40°C..150°C | Symbol | Parameter | Min. | Typ. | Max. | Units | Test Conditions | |--------|----------------------------------|------|------|------|-------|-----------------| | tdon | Turn on delay time | 5 | 15 | 30 | | | | tr | Rise time from 20% to 80% of Vcc | 5 | 10 | 30 | μs | Soo fig. 1 | | tdoff | Turn off delay time | 35 | 75 | 120 | 0 | See fig. 1 | | tf | Fall time from 80% to 20% of Vcc | 6 | 15 | 30 | μs | | # **Protection Characteristics** Ti=-40°C. 150°C. Vcc=6-50V (unless otherwise specified) | Symbol | Parameter | Min. | Тур. | Max. | Units | Test Conditions | |---------|--|------|------|------|-------|------------------------| | Tsd | Over temperature threshold(2) | 150 | 165 | _ | °C | See fig. 3 and fig. 11 | | Isd | Over-current shutdown | 50 | 60 | 85 | Α | See fig. 3 and page 7 | | I fault | Ifb after an over-current or an over-
temperature (latched) | 2.2 | 3 | 5 | mA | See fig. 3 | **Current Sensing Characteristics**Tj=-40°C..150°C, Vcc=6-50V (unless otherwise specified). Specified 500µs after the turn on. Vcc-Vifb>4V | Symbol | Parameter | Min. | Тур. | Max. | Units | Test Conditions | |-------------|--|-------|------|------|-------|--------------------| | Ratio | I load / Ifb current ratio | 7050 | 8500 | 9950 | | Iload<14A | | Ratio_TC | I load / Ifb variation over temperature(2) | -5% | 0 | +5 | % | Tj=-40°C to +150°C | | I offset | Load current offset | -0.06 | 0 | 0.06 | Α | lout<14A | | Ifb leakage | Ifb leakage current | 0 | 1 | 10 | μΑ | lout=0A | ⁽²⁾ Guaranteed by design **Lead Assignments** # Functional Block Diagram All values are typical #### **Truth Table** | Op. Conditions | Input | Output | Ifb pin voltage | |----------------------|-------|--------|--------------------------| | Normal mode | Н | L | 0V | | Normal mode | L | Н | I load x Rfb / Ratio | | Open load | Н | L | 0V | | Open load | L | Н | Ifb leakage x Rifb | | Short circuit to GND | Н | L | 0V | | Short circuit to GND | L | L | I fault x Rifb(latched) | | Over temperature | Н | L | 0V | | Over temperature | L | L | I fault x Rifb (latched) | # **Operating voltage** Maximum Vcc voltage: this is the maximum voltage before the breakdown of the IC process. **Operating voltage**: This is the Vcc range in which the functionality of the part is guaranteed. The AEC-Q100 qualification is run at the maximum operating voltage specified in the datasheet. # Reverse battery During the reverse battery the Mosfet is turned on if the input pin is powered with a diode in parallel of the input transistor. Power dissipation in the IPS: $P = Rdson rev * I load^2 + Vcc^2 / 250$ (internal input resistor). If the power dissipation is too high in Rifb, a diode in serial can be added to block the current. # **Active clamp** The purpose of the active clamp is to limit the voltage across the MOSFET to a value below the body diode break down voltage to reduce the amount of stress on the device during switching. The temperature increase during active clamp can be estimated as follows: $$\Delta_{\mathsf{Tj}} = \mathsf{P}_{\mathsf{CL}} \cdot \mathsf{Z}_{\mathsf{TH}}(\mathsf{t}_{\mathsf{CLAMP}})$$ Where: $Z_{TH}(t_{CLAMP})$ is the thermal impedance at t_{CLAMP} and can be read from the thermal impedance curves given in the data sheets. $P_{CL} = V_{CL} \cdot I_{CLavg}$: Power dissipation during active clamp $$V_{\text{CL}} = 65 \text{V}$$: Typical V_{CLAMP} value $$I_{\text{CLavg}} = \frac{I_{\text{CL}}}{2}$$: Average current during active clamp $$t_{CL} = \frac{I_{CL}}{\left|\frac{di}{dt}\right|} : Active clamp duration$$ $$\frac{di}{dt} = \frac{V_{Battery} - V_{CL}}{L}$$: Demagnetization current Figure 9 gives the maximum inductance versus the load current in the worst case : the part switches off after an over temperature detection. If the load inductance exceeds the curve, a free wheeling diode is required. # **Over-current protection** The threshold of the over-current protection is set in order to guarantee that the device is able to turn on a load with an inrush current lower than the minimum of Isd. Nevertheless for high current and high temperature the device may switch off for a lower current due to the over-temperature protection. This behavior is shown in Figure 11. # **Current sensing accuracy** The current sensing is specified by measuring 3 points : - Ifb1 for lout1 - Ifb2 for lout2 - Ifb leakage for lout=0 The parameters in the datasheet are computed with the following formula: Ratio = (lout2 - lout1)/(lfb2 - lfb1) I offset = Ifb1 x Ratio - lout1 This allows the designer to evaluate the Ifb for any lout value using : Ifb = (lout + I offset) / Ratio if Ifb > Ifb leakage For some applications, a calibration is required. In that case, the accuracy of the system will depends on the variation of the I offset and the ratio over the temperature range. The ratio variation is given by Ratio_TC specified in page 4. The loffset variation depends directly on the Rdson: I offset@-40°C= I offset@25°C / 0.8 I offset@150°C= I offset@25°C / 1.9 # Maximum Vcc voltage with short circuit protection The maximum Vcc voltage with short circuit is the maximum voltage for which the part is able to protect itself under test conditions representative of the application. 2 kind of short circuits are considered: terminal and load short circuit. | | L SC | R SC | |-------------|--------|----------| | Terminal SC | 0.1 µH | 10 mohm | | Load SC | 10 μH | 100 mohm | # Maximum current during reverse circulation In case of short circuit to battery, a voltage drop of the Vcc may create a current which circulate in reverse mode. When the device is on, this reverse circulation current will not trigger the internal fault latch. This immunization is also true when the part turns on while a reverse current flows into the device. The maximum current (I rev) is specified in the maximum rating section. # AUIPS7125R Figure 1 – IN rise time & switching definitions Vin Ids I shutdown Ti Tsd 165°C Vifb V fault Figure 3 - Protection timing diagram Figure 2 - Active clamp waveforms Figure 4 – Icc off (µA) Vs Tj (°C) 6 5 4 Vih and Vil (V) 3 2 1 0 -25 125 -50 25 50 75 100 150 Tj, junction temperature (°C) Figure 5 – Icc off(µA) Vs Vcc-Vin (V) Figure 6 - Vih and Vil (V) Vs Tj (°C) Figure 7 - Normalized Rds(on) (%) Vs Tj (°C) Figure 8 – Transient thermal impedance (°C/W) Vs time (s) Figure 9 - Max. lout (A) Vs inductance (µH) Figure 11 – Tsd (s) Vs I out (A) SMD with 6cm² ## Case Outline 5 Lead - DPAK DIMENSIONS INCHES .005 MIN. MAX. .086 .094 .022 .031 .022 .029 2 .026 .035 .195 .215 2 .018 .024 .016 .022 2 .018 .035 .235 .245 3 .205 .250 .265 3 .170 .370 .410 .055 .070 .035 .050 .045 .060 0. 10. 0" 15" 28. 32. .045 BSC .108 REF. .020 BSC .040 MILLIMETERS 0.13 MIN. MAX. 2.18 2.39 Α A1 #### NOTES: - 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994 - 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS]. - A- LEAD DIMENSION UNCONTROLLED IN L5. - A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD. - 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP. - DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY. ø2 28° 32° - A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY. - 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H. - 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252. - 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn # Tape & Reel 5 Lead - DPAK Ao = 10.5 mm Bo = 7.0 mm Ko = 2.8 mm K1 = 2.4 mm F = 7.5 mm P1 = 12.0 mm W = 16.0 ± .3 mm - TRUE POSITION OF POCKET, NOT POCKET HOLE 7. VENDOR: (OPTIONAL) 8. MUST ALSO MEET REQUIREMENTS OF EIA STANDARD #EIA-481A, TAPING OF SURFACE—MOUNT COMPONENTS FOR AUTOMATIC PLACEMENT. 9. TOLERANCE TO BE MANUFACTURER STANDARD 10. SURFACE RESISTIVITY OF MOLDED MATL: MUST MEASURE LESS THAN OR EQUAL TO 10* OHMS PER SQUARE. MEASURED IN ACCORDANCE TO PROCEDURE GIVEN IN ASTM D-257 & ASTM D-991 (REF. C-9000 SPEC.) 11. TOTAL LENGTH PER REEL MUST BE 79 METERS 2. © OUTTOAL DIVINISION. - 12. C CRITICAL DIMENSION # **Part Marking Information** # **Ordering Information** | Base Part Number | Davidson Toma | Standard Pack | Occupated a Board Normalism | | |---------------------------------|---------------|---------------------|-----------------------------|----------------------| | Base Part Number Package Type | | Form | Quantity | Complete Part Number | | | | Tube | 75 | AUIPS7125R | | AUIPS7125R | D-Pak-5-Lead | Tape and reel | 2000 | AUIPS7125RTR | | AUIPS/125K | D-Pak-5-Lead | Tape and reel left | 3000 | AUIPS7125RTRL | | | | Tape and reel right | 3000 | AUIPS7125RTRR | #### IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements. For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ #### **WORLD HEADQUARTERS:** 101 N Sepulbeda Blvd., El Segundo, California 90245 Tel: (310) 252-7105 **Revision History** | Revision | Date | Notes/Changes | |----------|------------|-----------------------------------| | A1 | 08/03/2010 | | | A2 | 29/04/2010 | Correct packing information | | A3 | 07/09/2010 | Update current sensing capability | | A4 | 31/05/2011 | Final release | | A5 | 06/06/2011 | Update IR address | | | | | | | | | | | | | | | | | Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.