

Vishay Semiconductors

High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

DESCRIPTION

VSML3710 is an infrared, 940 nm emitting diode in GaAlAs/GaAs technology with high radiant power, molded in a PLCC-2 package for surface mounting (SMD).

FEATURES

- · Package type: surface mount
- Package form: PLCC-2
- Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75
- Peak wavelength: $\lambda_p = 940 \text{ nm}$
- High reliability
- · High radiant power
- · High radiant intensity
- Angle of half intensity: $\phi = \pm 60^{\circ}$
- · Low forward voltage
- Suitable for high pulse current operation
- · Good spectral matching with Si photodetectors
- Package matched with IR emitter series VEMT3700
- Floor life: 168 h, MSL 3, acc. J-STD-020
- Lead (Pb)-free reflow soldering
- AEC-Q101 gualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC
- · Find out more about Vishay's Automotive Grade Product requirements at: www.vishay.com/applications

APPLICATIONS

- IR emitter in photointerrupters, sensors and reflective sensors
- IR emitter in low space applications
- Household appliance
- · Tactile keyboards

PRODUCT SUMMARY

PRODUCT SOMMANT				
COMPONENT	l _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)
VSML3710	8	± 60	940	800

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	PACKAGING REMARKS			
VSML3710-GS08	Tape and reel	MOQ: 7500 pcs, 1500 pcs/reel	PLCC-2		
VSML3710-GS18	Tape and reel	MOQ: 8000 pcs, 8000 pcs/reel	PLCC-2		

Note

MOQ: minimum order quantity

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

(5-2008)

VSML3710

Vishay Semiconductors High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		l _F	100	mA	
Peak forward current	$t_p/T = 0.5, t_p = 100 \ \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1	А	
Power dissipation		Pv	160	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	Acc. figure 11, J-STD-020	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, soldered on PCB	R _{thJA}	250	K/W	

Note $T_{amb} = 25$ °C, unless otherwise specified

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.35	1.6	V
	$I_{\rm F} = 1 \text{ A}, t_{\rm p} = 100 \ \mu \text{s}$	V _F		2.6	3	V
Temperature coefficient of V _F	$I_F = 1 \text{ mA}$	TK _{VF}		- 1.8		mV/K
Reverse current	V _B = 5 V	I _R			100	μA
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj		25		pF
	I _F = 100 mA, t _p = 20 ms	l _e	4	8	20	mW/sr
Radiant intensity	I _F = 1 A, t _p = 100 μs	l _e		60		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e		35		mW
Temperature coefficient of ϕ_{e}	I _F = 100 mA	ΤKφ _e		- 0.6		%/K
Angle of half intensity		φ		± 60		deg
Peak wavelength	I _F = 100 mA	λ _p		940		nm
Spectral bandwidth	I _F = 100 mA	Δλ		50		nm
Temperature coefficient of λ_p	I _F = 100 mA	ΤΚλρ		0.2		nm/K
Rise time	I _F = 20 mA	t _r		800		ns
	I _F = 1 A	t _r		500		ns
Fall time	I _F = 20 mA	t _f		800		ns
	I _F = 1 A	t _f		500		ns
Virtual source diameter		d		0.44		mm

Note

T_{amb} = 25 °C, unless otherwise specified

High Power Infrared Emitting Diode, Vishay Semiconductors 940 nm, GaAlAs/GaAs

BASIC CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Fig. 3 - Pulse Forward Current vs. Pulse Duration

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Forward Voltage vs. Ambient Temperature

Fig. 6 - Radiant Intensity vs. Forward Current

Fig. 7 - Radiant Power vs. Forward Current

Fig. 8 - Relative Radiant Intensity/Power vs. Ambient Temperature

VSML3710

Vishay Semiconductors High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs

Fig. 9 - Relative Radiant Power vs. Wavelength

SOLDER PROFILE

Fig. 11 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label: Floor life: 168 h Conditions: T_{amb} < 30 °C, RH < 60 % Moisture sensitivity level 3, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

High Power Infrared Emitting Diode, Vishay Semiconductors 940 nm, GaAlAs/GaAs

TAPE AND REEL

PLCC-2 components are packed in antistatic blister tape (DIN IEC (CO) 564) for automatic component insertion. Cavities of blister tape are covered with adhesive tape.

Fig. 12 - Blister Tape

Fig. 13 - Tape Dimensions in mm for PLCC-2

MISSING DEVICES

A maximum of 0.5 % of the total number of components per reel may be missing, exclusively missing components at the beginning and at the end of the reel. A maximum of three consecutive components may be missing, provided this gap is followed by six consecutive components.

The tape leader is at least 160 mm and is followed by a carrier tape leader with at least 40 empty compartments. The tape leader may include the carrier tape as long as the cover tape is not connected to the carrier tape. The least component is followed by a carrier tape trailer with a least 75 empty compartments and sealed with cover tape.

Fig. 15 - Dimensions of Reel-GS08

Fig. 16 - Dimensions of Reel-GS18

COVER TAPE REMOVAL FORCE

The removal force lies between 0.1 N and 1.0 N at a removal speed of 5 mm/s. In order to prevent components from popping out of the blisters, the cover tape must be pulled off at an angle of 180° with regard to the feed direction.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях!

Наши преимущества:

- Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов;
- Поставка более 17-ти миллионов наименований электронных компонентов;
- Поставка сложных, дефицитных, либо снятых с производства позиций;
- Оперативные сроки поставки под заказ (от 5 рабочих дней);
- Экспресс доставка в любую точку России;
- Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов;
- Система менеджмента качества сертифицирована по Международному стандарту ISO 9001;
- Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну;
- Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.);

Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела:

- Подбор оптимального решения, техническое обоснование при выборе компонента;
- Подбор аналогов;
- Консультации по применению компонента;
- Поставка образцов и прототипов;
- Техническая поддержка проекта;
- Защита от снятия компонента с производства.

Как с нами связаться

Телефон: 8 (812) 309 58 32 (многоканальный) **Факс:** 8 (812) 320-02-42 **Электронная почта:** <u>org@eplast1.ru</u> **Адрес:** 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.