SMMS661 - JANUARY 1996 Organization TM124BBJ32F . . . 1 048 576 \times 32 TM248CBJ32F . . . 2 097 152 \times 32 - Single 5-V Power Supply (±10% Tolerance) - 72-Pin Single In-Line Memory Module (SIMM) for Use With Socket - TM124BBJ32F Utilizes Two 16-Megabit DRAMs in Plastic Small-Outline J-Lead (SOJ) Packages - TM248CBJ32F Utilizes Four 16-Megabit DRAMs in Plastic Small-Outline J-Lead (SOJ) Packages - Long Refresh Period 16 ms (1024 Cycles) - All Inputs, Outputs, Clocks Fully TTL-Compatible - 3-State Output - Common CAS Control for Eight Common Data-In and Data-Out Lines in Four Blocks - Enhanced Page-Mode Operation With CAS-Before-RAS (CBR), RAS-Only, and Hidden Refresh - Presence Detect - Performance Ranges: | | ACCESS
TIME
tRAC | ACCESS
TIME
tAA | ACCESS
TIME
^t CAC | READ
OR
WRITE
CYCLE | |---------------|------------------------|-----------------------|------------------------------------|------------------------------| | | (MAX) | (MAX) | (MAX) | (MIN) | | '124BBJ32F-60 | 60 ns | 30 ns | 15 ns | 110 ns | | '124BBJ32F-70 | 70 ns | 35 ns | 18 ns | 130 ns | | '124BBJ32F-80 | 80 ns | 40 ns | 20 ns | 150 ns | | '248CBJ32F-60 | 60 ns | 30 ns | 15 ns | 110 ns | | '248CBJ32F-70 | 70 ns | 35 ns | 18 ns | 130 ns | | '248CBJ32F-80 | 80 ns | 40 ns | 20 ns | 150 ns | - Low Power Dissipation - Operating Free-Air Temperature Range 0°C to 70°C - Gold-Tabbed Versions Available:† TM124BBJ32F TM248CBJ32F - Tin-Lead (Solder) Tabbed Versions Available: TM124BBJ32U TM248CBJ32U ### description ### TM124BBJ32F The TM124BBJ32F is a 4-MByte dynamic random-access memory (DRAM) organized as four times 1048576×8 in a 72-pin SIMM. The SIMM is composed of two TMS418160DZ, 1048576×16 -bit DRAMs, each in a 42-lead plastic SOJ package mounted on a substrate with decoupling capacitors. The TMS418160DZ is described in the TMS418160 data sheet. The TM124BBJ32F SIMM is available in the single-sided BJ-leadless module for use with sockets. ### TM248CBJ32F The TM248CBJ32F is an 8-MByte DRAM organized as four times 2 097 152×8 in a 72-pin SIMM. The SIMM is composed of four TMS418160DZ, 1048576×16 -bit DRAMs, each in a 42-lead plastic SOJ package mounted on a substrate with decoupling capacitors. The TMS418160DZ is described in the TMS418160 data sheet. The TM248CBJ32F SIMM is available in the double-sided BJ-leadless module for use with sockets. #### operation The TM124BBJ32F operates as two TMS418160DZs connected as shown in the functional block diagram and Table 1. The TM248CBJ32F operates as four TMS418160DZs connected as shown in the functional block diagram and Table 1. The common I/O feature dictates the use of early-write cycles to prevent contention on D and Q. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. † Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions. **Table 1. Connection Table** | DATA BLOCK | RA | Sx | 040- | |------------|----------------------------|------|------| | DATA BLOCK | SIDE 1 SIDE 2 [†] | | CASx | | DQ0-DQ7 | RAS0 | RAS1 | CAS0 | | DQ8-DQ15 | RAS0 | RAS1 | CAS1 | | DQ16-DQ23 | RAS2 | RAS3 | CAS2 | | DQ24-DQ31 | RAS2 | RAS3 | CAS3 | [†] Side 2 applies to the TM248CBJ32F only. ### single in-line memory module and components PC substrate: $1,27 \pm 0,1$ mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage Bypass capacitors: Multilayer ceramic Contact area for TM124BBJ32F and TM248CBJ32F: Nickel plate and gold plate over copper Contact area for TM124BBJ32U and TM248CBJ32U: Nickel plate and tin/lead over copper ### functional block diagram (TM124BBJ32F and TM248CBJ32F, side 1) ### functional block diagram (TM248CBJ32F, side 2) # TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE SMMS661 - JANUARY 1996 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} (see Note 1) | \dots -1 V to 7 V | |--|---------------------| | Voltage range on any pin (see Note 1) | \dots -1 V to 7 V | | Short-circuit output current | 50 mA | | Power dissipation: TM124BBJ32F, TM124BBJ32U | 2 W | | TM248CBJ32F, TM248CBJ32U | 4 W | | Operating free-air temperature range, T _A | 0°C to 70°C | | Storage temperature range, T _{stg} | – 55°C to 125°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions | | | MIN | NOM | MAX | UNIT | |-----|--------------------------------------|-----|-----|-----|------| | VCC | Supply voltage | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | 2.4 | | 6.5 | V | | VIL | Low-level input voltage (see Note 2) | - 1 | | 0.8 | V | | TA | Operating free-air temperature | 0 | | 70 | °C | NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only. ## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | DADAMETED | | '124BBJ | 32F-60 | '124BBJ | 32F-70 | '124BBJ3 | UNIT | | | | |------------------|---|--|---------|--------|---------|--------|----------|------|---------|--|------| | | PARAMETER | TEST CONDITIONS [‡] | MIN MAX | | MIN MAX | | MIN MAX | | MIN MAX | | UNII | | ۷он | High-level output voltage | $I_{OH} = -5 \text{ mA}$ | 2.4 | | 2.4 | | 2.4 | | V | | | | V_{OL} | Low-level output voltage | $I_{OL} = 4.2 \text{ mA}$ | | 0.4 | | 0.4 | | 0.4 | V | | | | ΙĮ | Input current (leakage) | $V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V to } 6.5 \text{ V},$
All other pins = 0 V to V_{CC} | | ± 10 | | ± 10 | | ± 10 | μΑ | | | | IO | Output current (leakage) | $V_{CC} = 5.5 \text{ V},$
$V_{O} = 0 \text{ V to V}_{CC},$
\overline{CAS} high | | ± 10 | | ± 10 | | ± 10 | μΑ | | | | I _{CC1} | Read- or write-cycle current | V _{CC} = 5.5 V, Minimum cycle | | 380 | | 360 | | 340 | mA | | | | laga | | V _{IH} = 2.4 V (TTL),
After 1 memory cycle,
RAS and CAS high | | 4 | | 4 | | 4 | mA | | | | ICC2 | Standby current | V _{IH} = V _{CC} - 0.2 V (CMOS),
After 1 memory cycle,
RAS and CAS high | | 2 | | 2 | | 2 | mA | | | | ICC3 | Average refresh current (RAS only or CBR) | V _{CC} = 5.5 V, Minimum cycle, RAS cycling, CAS high (RAS only); RAS low after CAS low (CBR) | | 380 | | 360 | | 340 | mA | | | | I _{CC4} | Average page current | $\frac{\text{V}_{CC}}{\text{RAS}} = 5.5 \text{ V}, \frac{\text{t}_{PC}}{\text{CAS}} = \text{MIN},$ | | 200 | | 180 | | 160 | mA | | | [‡] For test conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions. NOTE 1: All voltage values are with respect to VSS. SMMS661 - JANUARY 1996 ## electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | | PARAMETER | | '248CBJ3 | '248CBJ32F-60 | | 2F-70 | '248CBJ3 | UNIT | | |------------------|--|---|----------|---------------|-----|-------|----------|------|------| | | PARAMETER | TEST CONDITIONS [†] | MIN | MAX | MIN | MAX | MIN | MAX | UNII | | VOH | High-level output voltage | I _{OH} = - 5 mA | 2.4 | | 2.4 | | 2.4 | | V | | VOL | Low-level output voltage | I _{OL} = 4.2 mA | | 0.4 | | 0.4 | | 0.4 | V | | Ц | Input current
(leakage) | $V_{CC} = 5.5 \text{ V},$ $V_I = 0 \text{ V to } 6.5 \text{ V},$ All other pins = 0 V to V_{CC} | | ± 10 | | ± 10 | | ± 10 | μА | | IO | Output current (leakage) | $V_{CC} = 5.5 \text{ V},$
$V_{O} = 0 \text{ V to } V_{CC}, \overline{CAS} \text{ high}$ | | ± 20 | | ± 20 | | ± 20 | μА | | I _{CC1} | Read- or write-cycle current (see Note 3) | V _{CC} = 5.5 V, Minimum cycle | | 384 | | 364 | | 344 | mA | | loos | | V _{IH} = 2.4 V (TTL),
After 1 memory cycle,
RAS and CAS high | | 8 | | 8 | | 8 | mA | | ICC2 | Standby current | V _{IH} = V _{CC} - 0.2 V (CMOS),
After 1 memory cycle,
RAS and CAS high | | 4 | | 4 | | 4 | mA | | ICC3 | Average refresh current (RAS only or CBR) (see Note 3) | V _{CC} = 5.5 V, Minimum cycle, RAS cycling, CAS high (RAS only); RAS low after CAS low (CBR) | | 760 | | 720 | | 680 | mA | | I _{CC4} | Average page current (see Note 4) | $\frac{\text{V}_{CC}}{\text{RAS}} = 5.5 \text{ V}, \qquad \frac{\text{t}_{PC} = \text{MIN},}{\text{CAS}} \text{ cycling}$ | | 204 | | 184 | | 164 | mA | [†] For test conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions. NOTES: 3. Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$ # capacitance over recommended ranges of supply voltage and operating free-air temperature, f = 1 MHz (see Note 5) | | PARAMETER | | J32F | '248CBJ32F | | UNIT | |--------------------|--------------------------------|-----|------|------------|-----|------| | | PARAINETER | MIN | MAX | MIN | MAX | UNIT | | C _{i(A)} | Input capacitance, A0-A9 | | 17 | | 27 | pF | | C _{i(R)} | Input capacitance, RAS inputs | | 10 | | 10 | pF | | C _{i(C)} | Input capacitance, CAS inputs | | 12 | | 19 | pF | | C _{i(W)} | Input capacitance, W | | 21 | | 35 | pF | | C _{o(DQ)} | Output capacitance on DQ0-DQ31 | | 10 | | 17 | pF | NOTE 5: V_{CC} = 5 V \pm 0.5 V, and the bias on pins under test is 0 V. ^{4.} Measured with a maximum of one address change while CAS = VIH # TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE SMMS661 - JANUARY 1996 # switching characteristics over recommended ranges of supply voltage and operating free-air temperature | | | '124BBJ32F-60
'248CBJ32F-60 | | '124BBJ32F-70
'248CBJ32F-70 | | '124BBJ32F-80
'248CBJ32F-80 | | UNIT | |-----------------|---|--------------------------------|-----|--------------------------------|-----|--------------------------------|-----|------| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{AA} | Access time from column address | | 30 | | 35 | | 40 | ns | | tCAC | Access time from CAS low | | 15 | | 18 | | 20 | ns | | tRAC | Access time from RAS low | | 60 | | 70 | | 80 | ns | | tCPA | Access time from column precharge | | 35 | | 40 | | 45 | ns | | tCLZ | CAS to output in the low-impedance state | 0 | | 0 | | 0 | | ns | | tOH | Output disable time from start of CAS high | 3 | | 3 | | 3 | | ns | | tOFF | Output disable time after CAS high (see Note 6) | 0 | 15 | 0 | 18 | 0 | 20 | ns | NOTE 6: toff is specified when the output is no longer driven. # timing requirements over recommended ranges of supply voltage and operating free-air temperature | | | '124BBJ32F-60 '124BBJ32F-70
'248CBJ32F-60 '248CBJ32F-70 | | | | J32F-80
J32F-80 | UNIT | | |-------------------|---|--|---------|-----|---------|--------------------|---------|----| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | t _{RC} | Cycle time, random read or write (see Note 7) | 110 | | 130 | | 150 | | ns | | ^t RWC | Cycle time, read-write | 155 | | 181 | | 205 | | ns | | tPC | Cycle time, page-mode read or write (see Notes 7 and 8) | 40 | | 45 | | 50 | | ns | | tRASP | Pulse duration, page mode, RAS low | 60 | 100 000 | 70 | 100 000 | 80 | 100 000 | ns | | tRAS | Pulse duration, nonpage mode, RAS low | 60 | 10 000 | 70 | 10 000 | 80 | 10 000 | ns | | tCAS | Pulse duration, CAS low | 15 | 10 000 | 18 | 10 000 | 20 | 10 000 | ns | | tCP | Pulse duration, CAS high | 10 | | 10 | | 10 | | ns | | t _{RP} | Pulse duration, RAS high (precharge) | 40 | | 50 | | 60 | | ns | | twp | Pulse duration, \overline{W} low | 10 | | 10 | | 10 | | ns | | tASC | Setup time, column address before CAS low | 0 | | 0 | | 0 | | ns | | ^t ASR | Setup time, row address before RAS low | 0 | | 0 | | 0 | | ns | | tDS | Setup time, data before CAS low | 0 | | 0 | | 0 | | ns | | ^t RCS | Setup time, W high before CAS low | 0 | | 0 | | 0 | | ns | | tCWL | Setup time, W low before CAS high | 15 | | 18 | | 20 | | ns | | ^t RWL | Setup time, W low before RAS high | 15 | | 18 | | 20 | | ns | | twcs | Setup time, W low before CAS low | 0 | | 0 | | 0 | | ns | | tCAH | Hold time, column address after CAS low | 10 | | 15 | | 15 | | ns | | ^t RHCP | Hold time, RAS high from CAS precharge | 35 | | 40 | | 45 | | ns | | ^t DH | Hold time, data after CAS low | 10 | | 15 | | 15 | | ns | | ^t RAH | Hold time, row address after RAS low | 10 | | 10 | | 10 | | ns | | ^t RCH | Hold time, W high after CAS high (see Note 9) | 0 | | 0 | | 0 | | ns | | ^t RRH | Hold time, W high after RAS high (see Note 9) | 0 | | 0 | | 0 | | ns | NOTES: 7. All cycles assume $t_T = 5$ ns. 8. To assure $t_{\mbox{\footnotesize{PC}}}$ min, $t_{\mbox{\footnotesize{ASC}}}$ should be $\geq t_{\mbox{\footnotesize{CP}}}$. 9. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle. # TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE SMMS661 - JANUARY 1996 # timing requirements over recommended ranges of supply voltage and operating free-air temperature | | | '124BBJ32F-60 '124BBJ32F-70 '248CBJ32F-60 '248CBJ32F-70 | | '124BBJ32F-80
'248CBJ32F-80 | | UNIT | | | |------------------|---|---|-----|--------------------------------|-----|------|-----|----| | | | MIN | MAX | MIN | MAX | MIN | MAX | | | tWCH | Hold time, W low after CAS low | 10 | | 15 | | 15 | | ns | | tCHR | Delay time, RAS low to CAS high (CBR refresh only) | 10 | | 10 | | 10 | | ns | | tCRP | Delay time, CAS high to RAS low | 5 | | 5 | | 5 | | ns | | tCSH | Delay time, RAS low to CAS high | 60 | | 70 | | 80 | | ns | | tCSR | Delay time, CAS low to RAS low (CBR refresh only) | 5 | | 5 | | 5 | | ns | | ^t RAD | Delay time, RAS low to column address (see Note 10) | 15 | 30 | 15 | 35 | 15 | 40 | ns | | t _{RAL} | Delay time, column address to RAS high | 30 | | 35 | | 40 | | ns | | tCAL | Delay time, column address to CAS high | 30 | | 35 | | 40 | | ns | | t _{RCD} | Delay time, RAS low to CAS low (see Note 10) | 20 | 45 | 20 | 52 | 20 | 60 | ns | | ^t RPC | Delay time, RAS high to CAS low (CBR only) | 0 | | 0 | | 0 | | ns | | tRSH | Delay time, CAS low to RAS high | 15 | | 18 | | 20 | | ns | | tREF | Refresh time interval | | 16 | | 16 | | 16 | ms | | tŢ | Transition time | 3 | 30 | 3 | 30 | 3 | 30 | ns | NOTE 10: The maximum value is specified only to assure access time. SMMS661 - JANUARY 1996 #### **MECHANICAL DATA** ### BJ (R-PSIM-N72) #### SINGLE-IN-LINE MEMORY MODULE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. ### device symbolization (TM124BBJ32F illustrated) YY = Year Code MM = Month Code T = Assembly Site Code -SS = Speed Code NOTE: Location of symbolization may vary. #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Компания «ЭлектроПласт» предлагает заключение долгосрочных отношений при поставках импортных электронных компонентов на взаимовыгодных условиях! ### Наши преимущества: - Оперативные поставки широкого спектра электронных компонентов отечественного и импортного производства напрямую от производителей и с крупнейших мировых складов: - Поставка более 17-ти миллионов наименований электронных компонентов; - Поставка сложных, дефицитных, либо снятых с производства позиций; - Оперативные сроки поставки под заказ (от 5 рабочих дней); - Экспресс доставка в любую точку России; - Техническая поддержка проекта, помощь в подборе аналогов, поставка прототипов; - Система менеджмента качества сертифицирована по Международному стандарту ISO 9001: - Лицензия ФСБ на осуществление работ с использованием сведений, составляющих государственную тайну; - Поставка специализированных компонентов (Xilinx, Altera, Analog Devices, Intersil, Interpoint, Microsemi, Aeroflex, Peregrine, Syfer, Eurofarad, Texas Instrument, Miteq, Cobham, E2V, MA-COM, Hittite, Mini-Circuits, General Dynamics и др.); Помимо этого, одним из направлений компании «ЭлектроПласт» является направление «Источники питания». Мы предлагаем Вам помощь Конструкторского отдела: - Подбор оптимального решения, техническое обоснование при выборе компонента; - Подбор аналогов; - Консультации по применению компонента; - Поставка образцов и прототипов; - Техническая поддержка проекта; - Защита от снятия компонента с производства. #### Как с нами связаться **Телефон:** 8 (812) 309 58 32 (многоканальный) Факс: 8 (812) 320-02-42 Электронная почта: org@eplast1.ru Адрес: 198099, г. Санкт-Петербург, ул. Калинина, дом 2, корпус 4, литера А.